Contents

Part One

<table>
<thead>
<tr>
<th>Page</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>xv</td>
<td>Conference Committee</td>
</tr>
<tr>
<td>xix</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

SESSION 1 NIR/SWIR FPAS AND APPLICATIONS

<table>
<thead>
<tr>
<th>Document</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8704-1</td>
<td>Epitaxially passivated mesa-isolated InGaAs photodetectors</td>
</tr>
<tr>
<td>8704-2</td>
<td>SWIR InGaAs focal plane arrays in France</td>
</tr>
<tr>
<td>8704-3</td>
<td>A low-noise, extended dynamic range 1.3 megapixel InGaAs array</td>
</tr>
<tr>
<td>8704-4</td>
<td>Low-power advancements for a 1.3 Mpixel SWIR imaging platform</td>
</tr>
<tr>
<td>8704-6</td>
<td>IR CMOS: infrared enhanced silicon imaging</td>
</tr>
<tr>
<td>8704-113</td>
<td>Crosstalk analysis in large-area low-capacitance InGaAs quad photodiodes</td>
</tr>
<tr>
<td>8704-128</td>
<td>A new unit cell design with automatic input stage selection capability for increased SNR</td>
</tr>
</tbody>
</table>

SESSION 2 ARMY INFRARED R&D

<table>
<thead>
<tr>
<th>Document</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8704-7</td>
<td>High-performance IR detector modules for Army applications (Invited Paper)</td>
</tr>
<tr>
<td>8704-8</td>
<td>High-performance and long-range cooled IR technologies in France (Invited Paper)</td>
</tr>
</tbody>
</table>
SESSION 3 ARMY INFRARED R&D II

8704 0D Wide field-of-view dual-band multispectral muzzle flash detection (Invited Paper) [8704-10]
J. Montoya, J. Melchor, U.S. Army Research Lab. (United States); P. Spiliotis, L. Taplin, FluxData, Inc. (United States)

8704 0E OTHELLO: a novel SWIR dual-band detection system and its applications (Invited Paper) [8704-11]
G. A. Tidhar, O. B. Aphek, E. Cohen, Elta Systems Ltd. (Israel)

8704 0F A miniature ruggedized fast frame rate infrared sensor module for hostile fire detection and industrial applications (Invited Paper) [8704-12]

8704 0G Protecting SWIR cameras from laser threats (Invited Paper) [8704-13]
A. Donval, T. Fisher, O. Lipman, M. Oron, KiloLambda Technologies Ltd. (Israel)

8704 0H A modular packaging approach for upgrading tanks with staring thermal imagers (Invited Paper) [8704-14]
M. Münzberg, B. Achtner, J. Fritze, O. Rothaupt, H. Schlemmer, M. Welk, D. Weisser, Cassidian Optronics GmbH (Germany)

8704 0I Overview of benefits, challenges, and requirements of wheeled-vehicle mounted infrared sensors (Invited Paper) [8704-15]
J. L. Miller, P. Clayton, FLIR Systems, Inc. (United States); S. Olsson, FLIR Systems AB (Sweden)

SESSION 4 INFRARED AT SEA, IN THE AIR, AND SPACE

8704 0J Development of a panoramic third generation IRST: initial study and experimental work (Invited Paper) [8704-16]
G. Barani, M. Olivieri, SELEX Galileo S.p.A. (Italy); C. Luison, Altran Italy S.p.A. (Italy); A. Rossi, M. Diani, Univ. di Pisa (Italy); N. Acito, Accademia Navale di Livorno (Italy)

8704 0K Sea Spotter: A fully staring Naval IRST System (Invited Paper) [8704-17]
M. Engel, A. Navot, I. Saban, Y. Engel, E. Arad, N. Shahar, Rafael Advanced Defense Systems Ltd. (Israel)
Hyperspectral reconnaissance in urban environment (Invited Paper) [8704-18]
I. Renhorn, Swedish Defence Research Agency (Sweden); V. Achard, ONERA (France);
M. Axelsson, Swedish Defence Research Agency (Sweden); K. Benoist, TNO (Netherlands);
D. Borghys, Royal Belgian Military Academy (Belgium); X. Briottet, ONERA (France);
R. Dekker, TNO (Netherlands); A. Dimmeler, Fraunhofer-Institut für Optronik, Systemtechnik
und Bildauswertung (Germany); O. Friman, Swedish Defence Research Agency (Sweden);
I. Kåsen, Norwegian Defence Research Establishment (Norway); S. Matteoli, Univ. di Pisa
(Italy); M. Lo Moro, Ctr. Interforze Studi per le Applicazioni Militari (Italy); T. Olsvik Opsahl,
Norwegian Defence Research Establishment (Norway); M. van Persie, National Aerospace
Lab. (Netherlands); S. Resta, Univ. di Pisa (Italy); H. Schilling, Fraunhofer-Institut für Optronik,
Systemtechnik und Bildauswertung (Germany); P. Schwering, TNO (Netherlands);
M. Shimoni, Royal Belgian Military Academy (Belgium); T. Haavardsholm, Norwegian
Defence Research Establishment (Norway); F. Viallefont, ONERA (France)

A review of the latest developments of MCT infrared technology from visible to VLWIR for
space applications at Sofradir (Invited Paper) [8704-19]
P. Pidancier, N. Jamin, B. Fièque, C. Leroy, P. Chorier, SOFRADIR (France)

Adaptive control system for vibration harmonics of cryocooler [8704-124]
B. Yang, Y. Wu, Shanghai Institute of Technical Physics (China)

SESSION 5 INFRARED IN FUTURE SOLDIER SYSTEMS

Miniaturized day/night sight in Soldato Futuro program [8704-20]
A. Landini, A. Cocchi, R. Bardazzi, M. Sardelli, S. Puntri, SELEX Galileo S.p.A. (Italy)

Next generation cooled long range thermal sights with minimum size, weight, and power
[8704-21]
R. Breiter, T. Ihle, J. Wendler, I. Rühlich, J. Ziegler, AIM INFRAROT-MODULE GmbH (Germany)

Infrared signature reduction of military and law enforcement uniforms [8704-22]
T. Emery, Milliken & Co. (United States); R. Schwarz, SSZ Camouflage Technology AG
(Switzerland)

Aural stealth of portable HOT infrared imager [8704-23]
A. Veprik, RICOR, Cryogenic & Vacuum Systems (Israel)

SESSION 6 TYPE II SUPERLATTICE FPAS

High-performance bias-selectable dual-band mid-/long-wavelength infrared
photodetectors and focal plane arrays based on InAs/GaSb Type-II superlattices (Invited
Paper) [8704-24]
M. Razeghi, A. Haddadi, A. M. Hoang, G. Chen, Northwestern Univ. (United States)

Thiol passivation of MWIR type II superlattice photodetectors [8704-26]
O. Sailhoglu, A. Mutlu, A. Aydinli, Bilkent Univ. (Turkey)
Defects and noise in Type-II superlattice infrared detectors [8704-28]
M. Walther, A. Wörl, V. Daumer, R. Rehm, L. Kirste, F. Rufz, J. Schmitz, Fraunhofer-Institut für Angewandte Festkörperphysik (Germany)

Time-resolved photoluminescence study of carrier recombination and transport in type-II superlattice infrared detector materials [8704-29]

Low-frequency noise behavior at reverse bias region in InAs/GaSb superlattice photodiodes on mid-wave infrared [8704-32]
T. Tansel, K. Kutluer, Middle East Technical Univ. (Turkey); A. Muti, Ö. Salihoglu, A. Aydinli, Bilkent Univ. (Turkey); R. Turan, Middle East Technical Univ. (Turkey)

High-performance MWIR type-II superlattice detectors [8704-33]
H. Martijn, C. Asplund, R. M. von Würtemberg, H. Malm, IRnova AB (Sweden)

Infrared emitters and photodetectors with InAsSb bulk active regions [8704-35]
D. Wang, Y. Lin, D. Donetsky, G. Kipshidze, L. Shiterengas, G. Belenyk, Stony Brook Univ. (United States); S. P. Svensson, W. L. Samney, H. Hier, U.S. Army Research Lab. (United States)

Multiwafer production of epitaxy-ready 4" GaSb: substrate performance assessments pre- and post-epitaxial growth [8704-36]
M. J. Furlong, R. Martinez, S. Amirhaghi, A. Mowbray, B. Smith, Wafer Technology Ltd. (IQE Plc) (United Kingdom); D. Lubyshev, J. M. Fastenau, A. W. K. Liu, IQE Inc. (IQE Plc) (United States)

MBE growth of Sb-based nBn photodetectors on large diameter GaAs substrates [8704-37]
D. Lubyshev, J. M. Fastenau, Y. Qiu, A. W. K. Liu, IQE, Inc. (United States); E. J. Koerperick, J. T. Olesberg, D. Norton Jr., ASL Analytical, Inc. (United States); N. N. Faleev, C. B. Honsberg, Arizona State Univ. (United States)

Exploring optimum growth window for high quality InAs/InGaSb superlattice materials [8704-25]
H. J. Haugan, G. J. Brown, M. Kim, K. Mahalingam, Air Force Research Lab. (United States); S. Elhamri, Univ. of Dayton (United States); W. C. Mitchel, L. Grazulis, Air Force Research Lab. (United States)

High quantum efficiency Type-II superlattice N-structure photodetectors with thin intrinsic layers [8704-109]
Y. Ergun, Anadolu Univ. (Turkey); M. Hostut, Akdeniz Univ. (Turkey); T. Tansel, Middle East Technical Univ. (Turkey); A. Muti, Bilkent Univ. (Turkey); A. Kilic, Anadolu Univ. (Turkey); R. Turan, Middle East Technical Univ. (Turkey); A. Aydinli, Bilkent Univ. (Turkey)
Low-dark current structures for long-wavelength Type-II strained layer superlattice photodiodes [8704-112]
Z. Tian, Univ. of New Mexico (United States); E. A. DeCuir Jr., P. S. Wijewarnasuriya, J. W. Pattison, U.S. Army Research Lab. (United States); N. Gautam, S. Krishna, Univ. of New Mexico (United States); N. Dhar, DARPA/MTO (United States); R. E. Welser, A. K. Sood, Magnolia Optical Technologies, Inc. (United States)

Development status of Type II superlattice infrared detector in JAXA [8704-116]
H. Katayama, J. Murooka, M. Naitoh, R. Sato, Japan Aerospace Exploration Agency (Japan); S. Kawasaki, Y. Itoh, S. Sugano, T. Takekawa, M. Kimata, Ritsumeikan Univ. (Japan); M. Patrashin, I. Hosako, National Institute of Information and Communications Technology (Japan); Y. Iguchi, Sumitomo Electric Industries, Ltd. (Japan)

SESSION 8 EMERGING UNCOOLED TECHNOLOGIES

Wavelength selective wideband uncooled infrared sensor using a two-dimensional plasmonic absorber [8704-38]
S. Ogawa, Mitsubishi Electric Corp. (Japan); J. Komoda, K. Masuda, M. Kimata, Ritsumeikan Univ. (Japan)

Three-dimensional dual-band stacked microbolometer design using resistive dipoles and slots [8704-39]
H. Kim, D. P. Neikirk, The Univ. of Texas at Austin (United States)

Vertically integrated pixel microbolometers for IR imaging using high-resistivity VOx [8704-40]
H. A. Basantani, H.-B. Shin, T. N. Jackson, M. W. Horn, The Pennsylvania State Univ. (United States)

High-performance LWIR microbolometer with Si/SiGe quantum well thermistor and wafer level packaging [8704-41]
A. Roer, A. Lapadatu, E. Wolla, G. Kittilsland, Sensonor AS (Norway)

Frequency-selective surface coupled metal-oxide-metal diodes [8704-108]
E. C. Kinzel, Missouri Univ. of Science & Technology (United States); R. L. Brown, Northwestern Univ. (United States); J. C. Ginn, Plasmonics Inc. (United States); B. A. Lail, Florida Institute of Technology (United States); B. A. Slovick, SRI International (United States); G. D. Boreman, Univ. of North Carolina at Charlotte (United States)

Thin-film, wide-angle, design-tunable, selective absorber from near UV to far infrared [8704-127]
J. Nath, D. Maukonen, E. Smith, P. Figueiredo, G. Zummo, D. Panjwani, R. E. Peale, Univ. of Central Florida (United States); G. Boreman, Univ. of North Carolina at Charlotte (United States); J. W. Cleary, K. Eyink, Air Force Research Lab. (United States)

A plasmonically enhanced pixel structure for uncooled microbolometer detectors [8704-131]
O. Erturk, Middle East Technical Univ. (Turkey); E. Battal, Bilkent Univ. (Turkey); S. E. Kucuk, Middle East Technical Univ. (Turkey); A. K. Okyay, Bilkent Univ. (Turkey); T. Akin, Middle East Technical Univ. (Turkey)
SESSION 9 UNCOOLED FPAS AND APPLICATIONS

8704 1F Paul W. Kruse (1927-2012), In Memoriam [8704-42]
M. B. Reine, Consultant, Infrared Detectors (United States); P. R. Norton, U.S. Army Night Vision & Electronic Sensors Directorate (United States); E. L. Stelzer, Honeywell Corp. Research Ctr. (retired) (United States)

8704 1G Uncooled infrared detector with 12µm pixel pitch video graphics array [8704-43]

8704 1H Large-format 17µm high-end VOx µ-bolometer infrared detector [8704-44]

8704 1I Temperature stability improvement of a QVGA uncooled infrared radiation FPA [8704-45]

8704 1J BAE Systems' 17µm LWIR camera core for civil, commercial, and military applications [8704-46]
J. Lee, C. Rodriguez, R. Blackwell, BAE Systems (United States)

8704 1L Low-cost uncooled VOx infrared camera development [8704-47]
C. Li, C. J. Han, G. D. Skidmore, G. Cook, DRS Network and Imaging Systems (United States); K. Kubala, R. Bates, FiveFocal LLC (United States); D. Temple, J. Lannon, A. Hilton, RTI International (United States); K. Glukh, B. Hardy, MEMSCAP Inc. (United States)

8704 1M 80×80 VPD PbSe: the first uncooled MWIR FPA monolithically integrated with a Si-CMOS ROIC [8704-49]
G. Vergara, R. Linares Herrero, R. Gutierrez Álvarez, C. Fernández-Montojo, L. J. Gómez, V. Villamayor, A. Baldasano Ramírez, M. T. Montojo, New Infrared Technologies (Spain)

8704 1N Pyroelectric sensor arrays for detection and thermal imaging [8704-106]
A. J. Holden, InfraRed Integrated Systems Ltd. (United Kingdom)

8704 1O Low-cost compact thermal imaging sensors for body temperature measurement [8704-114]
M.-S. Han, S. M. Han, H. J. Kim, J. C. Shin, Korea Photonics Technology Institute (Korea, Republic of); M. S. Ahn, H. W. Kim, Y. H. Han, U Electronics (Korea, Republic of)

Part 2

8704 1P Characteristic of nickel oxide microbolometer [8704-115]
G. Koo, Kyungpook National Univ. (Korea, Republic of); Y.-C. Jung, Gyeongju Univ. (Korea, Republic of); S.-H. Hahm, D.-G. Jung, Y. S. Lee, Kyungpook National Univ. (Korea, Republic of)
Influence of pixel geometry on the 1/f noise coefficient [8704-122]
F. Généreux, J.-E. Paultre, B. Tremblay, F. Provençal, C. Alain, INO (Canada)

A low-noise silicon-based 20µm*20µm uncooled thermoelectric infrared detector [8704-123]
M. J. Modarres-Zadeh, R. Abdolvand, Oklahoma State Univ. (United States)

SESSION 10 HOT: HIGH OPERATING TEMPERATURE FPAS

Low SWaP MWIR detector based on X8n focal plane array (Invited Paper) [8704-50]

Quantum-engineered mid-infrared type-II InAs/GaSb superlattice photodetectors for high temperature operations [8704-51]
Z.-B. Tian, T. Schuler-Sandy, S. E. Godoy, H. S. Kim, J. Montoya, S. Myers, B. Klein, E. Plis, S. Krishna, The Univ. of New Mexico (United States)

Fabrication of high-operating temperature (HOT), visible to MWIR, nCBn photon-trap detector arrays [8704-52]
H. Sharifi, M. Roebuck, T. De Lyon, H. Nguyen, M. Cline, D. Chang, D. Yap, S. Mehta, R. Rajavel, HRL Labs., LLC (United States); A. Ionescu, A. D'Souza, E. Robinson, D. Okerlund, DRS Sensors & Targeting Systems, Inc. (United States); N. Dhar, DARPA/MTO (United States)

MWIR InAsSb barrier detector data and analysis [8704-53]
A. I. D'Souza, E. Robinson, A. C. Ionescu, D. Okerlund, DRS Sensors & Targeting Systems, Inc. (United States); T. J. De Lyon, R. D. Rajavel, H. Sharifi, HRL Labs., LLC (United States); N. K. Dhar, DARPA/MTO (United States); P. S. Wijewarnasuriya, U.S. Army Research Lab. (United States); C. Grein, Univ. of Illinois at Chicago (United States)

High-performance bias-selectable dual-band short-/mid-wavelength infrared photodetectors and focal plane arrays based on InAs/GaSb/AlSb Type-II superlattices (Invited Paper) [8704-54]
M. Razeghi, A. M. Hoang, A. Haddadi, G. Chen, S. Ramezani-Darvish, P. Blijham, Northwestern Univ. (United States); P. Wijewarnasuriya, E. Decuir, U.S. Army Research Lab. (United States)

Modeling of InAsSb/AlAsSb nBn HOT detector's performance limit (Invited Paper) [8704-55]
P. Martyniuk, A. Rogalski, Military Univ. of Technology (Poland)

Numerical simulation of InAs nBn infrared detectors with n-type barrier layers [8704-56]
M. Reine, Consultant, Infrared Detectors (United States); B. Pinkie, J. Schuster, E. Belloffi, Boston Univ. (United States)
SESSION 11 IR OPTICS

8704 20 **Nickel-oxide film as an AR coating of Si window for IR sensor packaging** [8704-58]
H. Shim, D. Kim, I. Kang, J. Kim, H. C. Lee, KAIST (Korea, Republic of)

8704 21 **High-resistant multispectral optical coatings for infrared applications** [8704-59]
M. Degel, E. Gittler, T. Wagner, M. Serwazi, P. Maushake, JENOPTIK Optical Systems GmbH (Germany)

8704 22 **Dual- and triple-band AR coatings for IR systems** [8704-60]
D. Cohen, Y. Stolov, A. Azran, M. Gilo, Ophir Optronics Solutions Ltd. (Israel)

8704 23 **New solutions and technologies for uncooled infrared imaging** [8704-61]
J. Rollin, F. Diaz, C. Fontaine, Thales Angénieux S.A. (France); B. Loiseaux, M.-S. L. Lee, C. Clienti, F. Lemonnier, Thales Research and Technology (France); X. Zhang, L. Calvez, Univ. de Rennes I (France)

8704 24 **Challenges, constraints and results of lens design in 8-12micron waveband for bolometer-FPAs having a pixel pitch 12micron** [8704-132]
N. Schuster, J. Franks, Umicore Electro-Optic Materials (Belgium)

8704 25 **A practical approach to LWIR wafer-level optics for thermal imaging systems** [8704-62]
A. Symmons, R. Pini, LightPath Technologies, Inc. (United States)

8704 26 **Dewar-cooler-integrated high sensitivity MWIR wave front sensor** [8704-63]
S. Velghe, PHASICS S.A. (France); S. Magli, SOFRADIR (France); G. Aubry, HGH Systèmes Infrarouges (France); N. Guérineau, S. Rommeluère, J. Jaeck, ONERA (France); B. Wattellier, PHASICS S.A. (France)

8704 27 **Cryogenic wafer-level MWIR camera: laboratory demonstration** [8704-64]
G. Druart, F. De La Barrière, M. Chambon, N. Guérineau, ONERA (France); G. Lastargues, M. Fendler, CEA-LETI-Minatec (France)

8704 28 **New multiband IR imaging optics** [8704-66]
S. Bayya, J. Sanghera, W. Kim, D. Gibson, E. Fleet, B. Shaw, U.S. Naval Research Lab. (United States); M. Hunt, Univ. Research Foundation (United States); I. Aggarwal, Sotera Defense Solutions (United States)

SESSION 12 IR OPTICS II

8704 2A **Wide-angle catadioptric optics for broadband applications** [8704-67]
N. J. Pollica, C. C. Alexay, StingRay Optics, LLC (United States)

8704 2B **Optical methods for the optimization of system SWaP-C using aspheric components and advanced optical polymers** [8704-69]
A. Zelazny, R. Benson, J. Deegan, K. Walsh, W. D. Schmidt, R. Howe, Rochester Precision Optics, LLC (United States)
Enhanced processability of ZrF$_4$-BaF$_2$-LaF$_3$-AlF$_3$-NaF glass in microgravity [8704-70]
A. Torres, Univ. of New Mexico (United States); J. Ganley, Air Force Research Lab. (United States); A. Maji, Univ. of New Mexico (United States) and Air Force Research Lab. (United States); D. Tucker, NASA Marshall Space Flight Ctr. (United States); D. Starodubov, Physical Optics Corp. (United States)

Precise opto-mechanical characterization of assembled infrared optics [8704-71]
D. Winters, P. Langehanenberg, J. Heinisch, E. Dumitrescu, TRIOPTICS GmbH (Germany)

Nanowire grid polarizers for mid- and long-wavelength infrared applications [8704-121]
M. C. George, B. Wang, R. Petrova, H. Li, J. Bergquist, Moxtek Inc. (United States)

Thin film coating analysis using a novel IR camera and a broadband Echelle spectrograph [8704-125]
S. Pappas, Infrared Laboratories, Inc. (United States); B. Beardsley, Catalina Scientific (United States); G. Ritchie, Rider Univ. (United States)

SESSION 13 ACTIVE IMAGING

2.2 micron, uncooled, InGaAs photodiodes, and balanced photoreceivers up to 25 GHz bandwidth [8704-72]
A. Joshi, S. Datta, M. Lange, Discovery Semiconductors, Inc. (United States)

Development of high-sensitivity SWIR APD receivers [8704-73]
X. Bai, P. Yuan, J. Chang, R. Sudharsanan, Spectralab Inc. (United States); M. Krainak, G. Yang, X. Sun, W. Lu, NASA Goddard Space Flight Ctr. (United States)

Multifunction InGaAs detector with on-chip signal processing [8704-74]

Long-range night/day human identification using active-SWIR imaging [8704-75]
B. E. Lemoff, R. B. Martin, M. Sluch, K. M. Kafka, W. McCormick, R. Ice, West Virginia High Technology Consortium Foundation (United States)

A novel optical gating method for laser gated imaging [8704-76]
R. Ginat, R. Schneider, E. Zohar, O. Nesher, Elbit Systems (Israel)

SESSION 14 HGCDTE

Large-format MWIR and LWIR detectors at AIM [8704-77]
J. Ziegler, H. Bitterlich, R. Breiter, M. Bruder, D. Eich, P. Fries, R. Wallrab, J. Wendler, J. Wenisch, AIM INFRAROT-MODULE GmbH (Germany)

16 megapixel 12µm array developments at Selex ES [8704-78]
P. Thorne, J. Gordon, L. G. Hipwood, A. Bradford, SELEX Galileo Infrared Ltd. (United Kingdom)
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>HgCdTe II</td>
<td></td>
</tr>
</tbody>
</table>
| | **8704 2O**
| | **8704 2P**
MCT planar p-on-n LW and VLW IRFPAs [8704-81] | N. Baier, L. Mollard, G. Bourgeois, J.-P. Zanatta, G. Destefanis, CEA-LETI-Minatec (France); O. Boulade, V. Moreau, F. Pinsard, CEA-IRFU (France); L. Tauziède, A. Bardoux, Ctr. National d’Etudes Spatiales (France); L. Rubaldo, A. Kerlain, SOFRADIR (France) |
| | **8704 2Q**
Numerical simulation of quantum efficiency and surface recombination in HgCdTe IR photon-trapping structures [8704-57] | J. Schuster, E. Bellotti, Boston Univ. (United States) |
| | **8704 2R**
Analysis of propellant combustion with real-time multispectral infrared camera [8704-82] | E. Sakat, ONERA - The French Aerospace Lab. (France) and Lab. de Photonique et de Nanostructures, CNRS (France); G. Vincent, S. Rommeluère, C. Eradès, S. Lefebvre, F. Cauty, ONERA - The French Aerospace Lab. (France); S. Collin, Lab. de Photonique et de Nanostructures, CNRS (France); G. Druart, ONERA - The French Aerospace Lab. (France); J.-L. Peloüard, Lab. de Photonique et de Nanostructures, CNRS (France); R. Haidar, ONERA - The French Aerospace Lab. (France) |
| | **8704 2S**
Large-scale numerical simulation of reduced-pitch HgCdTe infrared detector arrays [8704-120] | B. Pinkie, E. Bellotti, Boston Univ. (United States) |
| 16 | **SMART PROCESSING** | |
| | **8704 2T**
Thermal imagers: from ancient analog video output to state-of-the-art video streaming [8704-83] | H. Haan, T. Feuchter, M. Münzberg, J. Fritze, H. Schlemmer, Cassidian Optronics GmbH (Germany) |
| | **8704 2W**
Solid state temperature-dependent NUC (non-uniformity correction) in uncooled LWIR (long-wave infrared) imaging system [8704-86] | Y. Cao, C.-L. Tisse, Mtech Imaging Pte Ltd. (Singapore) |
| | **8704 2X**
Spatial oversampling in imaging sensors: benefits in sensitivity and detection [8704-87] | J. T. Caulfield, J. A. Wilson, Cyan Systems (United States); N. K. Dhar, DARPA (United States) |
| | **8704 2Y**
MT3250BA: a 320×256-50µm snapshot microbolometer ROIC for high-resistance detector arrays [8704-88] | S. Eminoglu, Mikro-Tasarim Ltd. (Turkey); T. Akin, Mikro-Tasarim Ltd. (Turkey) and Middle East Technical Univ. (Turkey) |
| | **8704 2Z**
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>IR and visible images registration method based on cross cumulative residual entropy</td>
<td>C. Li, Q. Chen, G. Gu, T. Man, Nanjing Univ. of Science and Technology (China)</td>
</tr>
<tr>
<td>30</td>
<td>A fully digital readout employing extended counting method to achieve very low quantization noise</td>
<td>H. Kayahan, Ö. Ceylan, M. Yazıcı, Y. Gurbuz, Sabancı Univ. (Turkey)</td>
</tr>
<tr>
<td>31</td>
<td>Design of 90×8 ROIC with pixel level digital TDI implementation for scanning type LWIR FPAs</td>
<td>O. Ceylan, H. Kayahan, M. Yazıcı, Y. Gurbuz, Sabancı Univ. (Turkey)</td>
</tr>
<tr>
<td>32</td>
<td>Surface states characterization and simulation of Type-II In(Ga)Sb quantum dot structures for processing optimization of LWIR detectors</td>
<td>Q. Wang, M. Rajabi, A. Karim, S. Almqvist, M. Bakowski, S. Savage, J. V. Andersson, Acreo Swedish ICT AB (Sweden); M. Göthelid, S. Yu, O. Gustafsson, M. Hammar, Royal Institute of Technology (Sweden); C. Asplund, IRnova AB (Sweden)</td>
</tr>
<tr>
<td>33</td>
<td>In(Ga)Sb/InAs quantum dot based IR photodetectors with thermally activated photoresponse</td>
<td>A. Karim, Acreo Swedish ICT AB (Sweden); O. Gustafsson, Royal Institute of Technology (Sweden); S. Savage, Q. Wang, S. Almqvist, Acreo Swedish ICT AB (Sweden); C. Asplund, IRnova AB (Sweden); M. Hammar, Royal Institute of Technology (Sweden); J. Y. Andersson, Acreo Swedish ICT AB (Sweden)</td>
</tr>
<tr>
<td>34</td>
<td>Reduction of dark current density by five orders at high bias and enhanced multicolour photo response at low bias for quaternary alloy capped InGaAs/ GaAs QDIPs, when implanted with low-energy light (H-) ions</td>
<td>A. Mandal, H. Ghadi, G. K. K. C., Indian Institute of Technology Bombay (India); A. Basu, N. B. V. Subrahmanyam, P. Singh, Bhabha Atomic Research Ctr. (India); S. Chakrabarti, Indian Institute of Technology Bombay (India)</td>
</tr>
<tr>
<td>35</td>
<td>Room temperature SWIR sensing from colloidal quantum dot photodiode arrays</td>
<td>E. Klem, J. Lewis, C. Gregory, G. Cunningham, D. Temple, RTI International (United States); A. D’Souza, E. Robinson, DRS Sensors & Targeting Systems, Inc. (United States); P. S. Wijewarnasuriya, U.S. Army Research Lab. (United States); N. Dhar, DARPA/MTO (United States)</td>
</tr>
<tr>
<td>36</td>
<td>Broadband enhancement of infrared photodetectors with metamaterial resonators</td>
<td>J. Montoya, S. A. Myers, A. Barve, J. O. Kim, S. Krishna, Univ. of New Mexico (United States); D. W. Peters, C. M. Reinke, J. Wendt, Sandia National Labs. (United States)</td>
</tr>
<tr>
<td>37</td>
<td>3 mega-pixel InSb detector with 10µm pitch</td>
<td>G. Gershon, A. Albo, M. Eylon, O. Cohen, Z. Calahorra, M. Brumer, M. Nitzani, E. Avnon, Y. Aghion, I. Kogan, E. Ilan, L. Shkedy, SCD Semiconductor Devices (Israel)</td>
</tr>
</tbody>
</table>
8704 39 Design and development of wafer-level short wave infrared micro-camera [8704-98]
A. K. Sood, R. A. Richwine, G. Pethuraja, Y. R. Puri, Magnolia Optical Technologies, Inc. (United States); J.-U. Lee, P. Haldar, College of Nanoscale Science & Engineering (United States); N. K. Dhar, DARPA/MTO (United States)

8704 3A Nanoantenna-enabled midwave infrared detection [8704-119]
D. W. Peters, D. Leonhardt, C. M. Reinke, J. K. Kim, J. R. Wendt, P. S. Davids, J. F. Klem, Sandia National Labs. (United States)

SESSION 19 EMERGING UNCOOLED TECHNOLOGIES II

8704 3B MEMS clocking-cantilever thermal detector [8704-100]
E. Smith, J. Boroumand, I. Rezadad, P. Figueiredo, J. Nath, D. Panjwani, R. E. Peale, Univ. of Central Florida (United States); O. Edwards, Zybertec, Inc. (United States)

8704 3C High-resistivity and high-TCR vanadium oxide thin films for infrared imaging prepared by bias target ion-beam deposition [8704-101]

8704 3D Room-temperature micro-photonic bolometer based on dielectric optical resonators [8704-102]
T. Ioppolo, E. Rubino, Southern Methodist Univ. (United States)

SESSION 20 UNCOOLED FPAS AND APPLICATIONS II

8704 3E Wafer-level reliability characterization for wafer-level packaged microbolometer with ultra-small array size [8704-103]
H. Y. Kim, C. Yang, J. H. Park, H. Jung, T. Kim, K. T. Kim, S. K. Lim, National Nanofab Ctr. (Korea, Republic of); S. W. Lee, J. Mitchell, ePack Inc. (United States); W. J. Hwang, K. Lee, National Nanofab Ctr. (Korea, Republic of)

8704 3F Application of mosaic pixel microbolometer technology to very high-performance, low-cost thermography and pedestrian detection [8704-104]
K. C. Liddiard, Electro-optic Sensor Design (Australia)

Author Index
Conference Committee

Symposium Chair
Kenneth R. Israel, Major General (USAF Retired) (United States)

Symposium Cochair
David A. Whelan, Boeing Defense, Space, and Security (United States)

Conference Chairs
Bjørn F. Andresen, Acktar Ltd. (Israel)
Gabor F. Fulop, Maxtech International, Inc. (United States)
Charles M. Hanson, Texas Instruments Inc. (United States)
Paul R. Norton, U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Conference Program Committee
Tayfun Akin, Middle East Technical University (Turkey)
Christopher C. Alexay, StingRay Optics, LLC (United States)
Jagmohan Bajaj, Teledyne Imaging Sensors (United States)
Stefan T. Baur, Raytheon Vision Systems (United States)
Philippe F. Bois, Thales Research & Technology (France)
Wolfgang A. Cabanski, AIM INFRAROT-MODULE GmbH (Germany)
John T. Caulfield, Cyan Systems (United States)
John W. Devitt, Raytheon Vision Systems (United States)
Nibir K. Dhar, Defense Advanced Research Projects Agency (United States)
Michael T. Eismann, Air Force Research Laboratory (United States)
Mark E. Greiner, L-3 Communications Cincinnati Electronics (United States)
Sarah D. Gunapala, Jet Propulsion Laboratory (United States)
Andrew Hood, FLIR Electro-Optical Components (United States)
Masafumi Kimata, Ritsumeikan University (Japan)
Hee Chul Lee, KAIST (Korea, Republic of)
Paul D. LeVan, Air Force Research Laboratory (United States)
Chuan C. Li, DRS Technologies, Inc. (United States)
Kevin C. Liddiard, Electro-optic Sensor Design (Australia)
Wei Lu, Shanghai Institute of Technical Physics (China)
Tara J. Martin, UTC Aerospace Systems (United States)
Paul L. McCarley, Air Force Research Laboratories (United States)
R. Kennedy McEwen, SELEX Galileo Infrared Ltd. (United Kingdom)
John L. Miller, FLIR Systems, Inc. (United States)
A. Fenner Milton, U.S. Army RDECOM CERDEC NVESD (United States)
Mario O. Münzberg, Cassidian Optronics GmbH (Germany)
Peter W. Norton, BAE Systems (United States)
Robert A. Owen, L-3 Communications Infrared Products (United States)
Joseph G. Pellegrino, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Ray Radebaugh, National Institute of Standards and Technology (United States)
Manijeh Razeghi, Northwestern University (United States)
Colin E. Reese, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Ingmar G. Renhorn, Swedish Defence Research Agency (Sweden)
Patrick Robert, ULIS (France)
Antoni Rogalski, Military University of Technology (Poland)
Ingo Rühlich, AIM INFRAROT-MODULE GmbH (Germany)
Piet B. W. Schwering, TNO Defence, Security and Safety (Netherlands)
Itay Shtrichman, SCD Semiconductor Devices (Israel)
Rengarajan Sudharsanan, Spectrolab, Inc., a Boeing Company (United States)
Stefan P. Svensson, U.S. Army Research Laboratory (United States)
Venkatakrishnan Swaminathan, U.S. Army Armament Research, Development and Engineering Center (United States)
Simon Thibault, University Laval (Canada)
Gil A. Tidhar, Israel Aerospace Industries-ELTA (Israel)
Meimei Z. Tidrow, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Alexander Veprik, RICOR-Cryogenic & Vacuum Systems (Israel)
Jay N. Vizgaitis, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Michel Vuillermet, SOFRADIR (France)
James R. Waterman, U.S. Naval Research Laboratory (United States)
Lucy Zheng, Institute for Defense Analyses (United States)

Session Chairs

Opening Remarks
Bjørn F. Andresen, Acktar Ltd. (Israel)

1 NIR/SWIR FPAs and Applications
Tara J. Martin, UTC Aerospace Systems (United States)
Andrew Hood, FLIR Electro-Optical Components (United States)

2 Army Infrared R&D
Stefan P. Svensson, U.S. Army Research Laboratories (United States)
Mario O. Münzberg, Cassidian Optronics GmbH (Germany)
Gil A. Tidhar, Israel Aerospace Industries-Elta (Israel)

xvi
3 Army Infrared R&D II
Stefan P. Svensson, U.S. Army Research Laboratories (United States)
Mario O. Münzberg, Cassidian Optronics GmbH (Germany)
Gil A. Tidhar, Israel Aerospace Industries-Elta (Israel)

4 Infrared at Sea, in the Air, and Space
R. Kennedy McEwen, SELEX Galileo Infrared Ltd. (United Kingdom)

Introduction to Infrared in Future Soldier Systems Session
Gabor F. Fulop, Maxtech International, Inc. (United States)

5 Infrared in Future Soldier Systems
Wolfgang A. Cabanski, AIM INFRAROT-MODULE GmbH (Germany)

6 Type II Superlattice FPAs
Meimei Z. Tidrow, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Manijeh Razeghi, Northwestern University (United States)
Lucy Zheng, Institute for Defense Analyses (United States)

7 Type II Superlattice FPAs II
Meimei Z. Tidrow, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Manijeh Razeghi, Northwestern University (United States)
Lucy Zheng, Institute for Defense Analyses (United States)

8 Emerging Uncooled Technologies
Colin E. Reese, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Charles M. Hanson, Texas Instruments Inc. (United States)

9 Uncooled FPAs and Applications
Masafumi Kimata, Ritsumeikan University (Japan)
Chuan C. Li, DRS Technologies, Inc. (United States)

10 HOT: High Operating Temperature FPAs
Michael T. Eismann, Air Force Research Laboratories (United States)
Stuart B. Horn, U.S. Army Night Vision & Electronic Sensors Directorate
(United States)
Antoni Rogalski, Military University of Technology (Poland)
Stefan T. Baur, Raytheon Co. (United States)

11 IR Optics
Jay N. Vizgaitis, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Christopher C. Alexay, StingRay Optics, LLC (United States)
Troy A. Palmer, StingRay Optics, LLC (United States)
12 IR Optics II
Christopher C. Alexay, StingRay Optics, LLC (United States)
Jay N. Vizgaitis, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Troy A. Palmer, StingRay Optics, LLC (United States)

13 Active Imaging
Michael D. Jack, Raytheon Company (United States)
Ofer Nesher, Elbit Systems Ltd. (Israel)

14 HgCdTe
Joseph G. Pellegrino, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Gérard L. Destéfanis, CEA-LETI-Minatec (France)
Marion B. Reine, Photon Detector Physics, LLC (United States)

15 HgCdTe II
Joseph G. Pellegrino, U.S. Army Night Vision & Electronic Sensors
Directorate (United States)
Gérard L. Destéfanis, CEA-LETI-Minatec (France)
Marion B. Reine, Photon Detector Physics, LLC (United States)

16 Smart Processing
Paul L. McCarley, Air Force Research Laboratory (United States)
John T. Caulfield, Cyan Systems (United States)
Paul R. Norton, U.S. Army Night Vision & Electronic Sensors Directorate
(United States)

17 QWIP and Q-DOT
Henk Martijn, IRnova AB (Sweden)

18 Other Advanced Photon FPAs
Paul R. Norton, U.S. Army Night Vision & Electronic Sensors Directorate
(United States)
Bjørn F. Andresen, Acktar Ltd. (Israel)

19 Emerging Uncooled Technologies II
Kevin C. Liddiard, Electro-optic Sensor Design (Australia)
John L. Miller, FLIR Systems, Inc. (United States)

20 Uncooled FPAs and Applications II
John L. Miller, FLIR Systems, Inc. (United States)
Kevin C. Liddiard, Electro-optic Sensor Design (Australia)
Introduction

The Thirty-Ninth conference on Infrared Technology and Applications was held the week of April 29th-May 3rd, 2013 at the Baltimore Convention Center in Baltimore, Maryland. The agenda was divided into 20 sessions:

1. NIR/SWIR FPAs and Applications
2. Army Infrared Research and Development I
3. Army Infrared Research and Development II
4. IR at Sea, in the Air, and in Space
5. IR in Future Soldier Systems
6. Type II Superlattice FPAs I
7. Type II Superlattice FPAs II
8. Emerging Uncooled Technologies I
9. Uncooled FPAs and Applications I
10. HOT: High Operating Temperature FPAs
11. IR Optics I
12. IR Optics II
13. Active Imaging
14. HgCdTe FPAs and Applications
15. HgCdTe FPAs and Applications
16. Smart Processing
17. QWIP and Q-DOT
18. Other Advanced Photon FPAs
19. Emerging Uncooled Technologies II
20. Uncooled FPAs and Applications II

In addition, there were twenty-four poster papers presented for discussion on Thursday evening—these have been added to the 20 sessions in the Proceedings. Highlights of five topical areas are summarized below:

- Photon Detectors
- Uncooled Detectors
- Optics
- Smart Processing
- Applications

Phonon Detectors

NIR/SWIR FPAs and Applications

Near-infrared and shortwave infrared imaging—0.7 to 3 μm—continues to rise in popularity because of its ability to make use of sky glow to enhance performance during exceptionally dark periods of the night. The primary technology being developed for these spectral bands is InGaAs, although other alternatives continue to be investigated. Session 1 addressed improvements in state-of-the-art InGaAs sensors, but it also addressed an alternative, silicon-based technology.

Dark current in SWIR detectors is inherently higher than that in detectors of visible light because of the requisite bandgap for detection of SWIR radiation is somewhat smaller. Reduction of dark current is a continual pursuit for detectors in this spectral region as it is also in MWIR and LWIR photodetectors, because of the implications for cooling requirements. While those requirements are less stringent for SWIR detectors, they are nonetheless burdensome in terms of system power, especially when operation is required at elevated temperatures. One accepted means of reducing dark current is to form buried-junction diodes implanted at an InGaAs/InP interface, thus limiting the exposed surface area and the associated surface-generated dark current. Another means—illustrated in Fig. 1—has been developed that permits use of mesa diodes formed without the need for implantation, namely, the use of a graded InGaAlAs layer to transition from InGaAs to InAlAs. This process produced the epitaxial design and mesa structure for the epitaxially-passivated InGaAs mesa detectors.

Fig. 1 Diagram of the epitaxial design and mesa structure for the epitaxially-passivated InGaAs mesa detectors.
devices that have areal dark current of 8 nA/cm2 and perimeter dark current of 18 pA/cm, much of which was likely due to lateral collection in the unguarded diodes.

InGaAs arrays are now available in a number of configurations, including 320×256 with 30 μm pixels, 640×512 with 25 μm pixels, 640×512 with 12.5 μm pixels, and 1280×1024 with pixels as small as 15 μm. Dark currents are being reduced, but most devices still use thermoelectric coolers for operation at higher ambient temperatures. InGaAs material quality has been improved to the point that dark current is generally limited by interface effects, as evidenced by its dependence on the perimeter of a pixel rather than its area.

Some 1280×1024 arrays can operate at up to 50 Hz frame rates using only 2 outputs, and at higher frame rates with more outputs. In some cases the signal is handled by a charge-sensitive transimpedance amplifier having a photocurrent threshold above which the signal is logarithmically compressed, providing greatly extended dynamic range. In another variation the thermoelectric cooler (TEC) has been eliminated by characterizing the FPA over the range of operating temperatures and applying corrections accordingly. This, of course, does not reduce the impact of dark current on noise and dynamic range, but it does provide a sensor with significant capability at greatly reduced power, exchanging up to 6.5 W of TEC power for about 250 mW of processing power, giving a total system power of about 3.75 W across the temperature range.

Advances in black silicon extend responsivity of silicon-based sensors out to about 1.2 μm. This extended quantum efficiency—XQE in Fig. 2—is sufficient to capture some of the sky-glow signal as well as to permit detection of 1064 nm lasers. The technology is positioned not as a substitute for InGaAs, whose response extends out to about 1.7 μm, but as a much lower cost alternative. Black silicon is formed by sub-picosecond laser pulses that modify the structure and composition of the silicon surface. Use of this process does not affect the operation of standard silicon circuitry, enabling the monolithic use of standard CMOS processing, including those features that have made CMOS sensors performance-competitive with CCDs for most applications. Devices are fabricated on 8-inch wafers at the 180 nm process node, and pixels are 5.6 μm or 10 μm square. Figure 3 shows imagery on a moonless night with a light level below 5 mLux.

Type II Superlattice and Barrier FPAs

There were a total of eleven papers in the two sessions devoted to Type II Superlattice and Barrier detectors, and several more on this subject in the Poster session. This reflects the continued strong interest in the potential performance advantages that this technology has been predicted to have theoretically—long carrier lifetimes and a high optical absorption coefficient. Experimentally, lifetimes as long as those predicted have not yet been achieved, but improvements have been made recently for material structures that exclude gallium. Lifetimes continue to be shorter than for HgCdTe with comparable bandgaps.
A comparison of detector performance for a series of superlattices grown with a bandgap of approximately 50 meV over a range of growth temperatures found that a growth temperature of 440 °C gave optimal photoresponse as measured by photoconductivity. Fig. 4 illustrates this result.

Passivation of superlattice mesa sidewalls with sulfur atoms at the end of organic molecules was shown to lower the leakage current compared to unpassivated mesas. The surface configuration is shown in Fig. 5.

Defects and noise in Type II superlattice detectors were examined using synchrotron X-rays to characterize threading dislocations. The MWIR detectors were dominated by g-r dark current. For devices with noise values above that caused by g-r currents. A model—see Fig. 6—was suggested that avalanching occurs around localized crystallographic defects to explain the excess noise characteristics.

Type II SLS lifetime was measured using time-resolved photoluminescence. Using a sub-bandgap laser to fill the recombination traps in a sample with an InAs/GaSb absorber, the lifetime was increased from about 30 nsec to 140 nsec—a value that may be indicative of radiative recombination. In another sample—see Fig. 7—that did not include Ga, the lifetime was as long as 400 nsec for long-period samples that had minimal overlap of the electron and hole wavefunctions.

Another paper reported on the comparison between unpassivated, Si$_3$N$_4$-passivated, and SiO$_2$-passivated MWIR Type II superlattice detectors. SiO$_2$ gave the lowest noise. Even so there was bias-dependent 1/f noise above 10 Hz as illustrated in Fig. 8.
An MWIR superlattice design that uses barriers to reduce g-r noise components was described. Fig. 9 illustrates the device design. Effective passivation and 65% quantum efficiency were reported.

4-inch GaSb substrate development continues with a report on the implementation of polishing for these larger wafers. Fig. 10 shows a large GaSb crystal being pulled from a melt using the Czochralski method.

Efforts continue to grow novel III-V detectors on non-lattice-matched substrates. Growth of a variety of nBn device designs on 6-inch GaAs substrates were made—see Fig. 11. The crystal and electrical properties were studied.

A pBiBn structure was reported to reduce dark current in a Type II superlattice-based low-noise LWIR photodetector. Fig. 12 shows the band structure of pBiBn design and compares electric field of that design to that of a pin diode design.

A thin intrinsic-layer Type II superlattice design with an “N” structure was described. This arrangement uses an AlSb barrier to aid in getting the electron and hole wave functions to overlap—see Fig. 13.

A variety of InAs superlattice layer thicknesses were grown in combination with a constant 7 mL GaSb thickness as part of a project to extend this technology to a 15 µm cutoff for space applications. Fig. 14 shows the spectral response of the samples measured at 3 K.

Fig. 9 Overview of the detector structure at zero bias.

Fig. 10 A bulk GaSb crystal being grown by the Czochralski method.

Fig. 11 One of the full nBn structures grown on a GaAs substrate.

Fig. 12 Band structure of a pBiBn Type II superlattice and a comparison of the electric field in it to a conventional pin device at 250 mV reverse bias.

Fig. 13 (a) Conduction and valence band profiles for the proposed InAs/AlSb/GaSb based T2SL “N” structure. (b) Overlap integral for InAs/AlSb/GaSb based N-structure with AlSb barrier (red line) and Standard InAs/GaSb T2SL without AlSb barrier (black line) under 0.001meV bias. Negative bias is applied to the right side of the structure.
High Operating Temperature (HOT) FPAs

The goal of increasing the operating temperature of FPAs without sacrificing performance is motivated by the reduction in cooler power, improved cooler efficiency, longer cooler lifetime, smaller imager size, and lighter weight sensor systems that this makes possible. This goal is being pursued using HgCdTe, Type II superlattices, and nBn materials and has relevance especially in the MWIR and LWIR spectral bands.

An nBn FPA was described based upon an InAsSb absorber layer that is lattice matched to its GaSb substrate. This device operates only out to 4.2 μm which helps to provide higher operating temperature compared to arrays that extend closer to or beyond 5 μm. There is also an argument that the band short of the CO₂ atmospheric absorption between 4.2 and 4.3 μm can be less absorbing which helps at longer transmission distances. Fig. 15 shows how the signal-to-noise ratio (SNR) varies with cutoff for range distances of 5 and 15 km and for three scene temperatures. The sacrifice for the shorter waveband is that it requires longer integration times to half-fill the unit cell integration capacitor—16 msec at f/4—and that penalty increases with decreasing scene temperature.

Another paper reported on HOT nBn operation with an interband cascade structure—see Fig. 16—that has multiple absorber regions sandwiched between barriers. Separation of electrons and holes in the structure provides a photovoltaic-like response. The measured device had a cutoff (50 %) of about 3.8 μm at 80 K which increased to about 4.3 μm at 300 K. Operation was reported for temperatures as high as 420 K.

Photon-trapping was included in another HOT paper that used an nCBn structure with an InAsSb absorber with a 5.2 μm cutoff at 200 K. Fig. 17 shows a cross-sectional schematic and an SEM photo of the

Fig. 15 SNR versus cutoff for (a) a short range hand held system looking at scenery 5 Km away and (b) a long range observation system looking at scenery 15 Km away. For each system, 3 environmental temperatures are tested (-20°C, 0°C and 27°C) where a temperature contrast of 1°C in the landscape is assumed. In each plot, the dashed line indicates SNR=2, which is taken to be the threshold for a meaningful image.

Fig. 16 Band diagram of a modified mid-IR interband cascade photodetector—the envelop wave-functions and their energy levels are shown. The incoming photons are absorbed in the InAs/GaSb SL absorber, generating electron-hole pairs. The electrons will diffuse into the electron relaxation region, and then effectively transport into the valence band of the next stage, through fast LO-phonon assist intraband relaxation and interband tunneling.
staggered pyramid “traps”. Compared to side-by-side arrays without the pyramid absorbers, the dark current was reduced by a factor of ~3 with the pyramids.

A dual-band Type II superlattice focal plane was reported that combined SWIR—2 μm—and MWIR—4.2 μm—bands. This combination is able to image in both reflective and emissive bands that are not highly correlated. Fig 18 shows imagery from both bands. Substrate removal was used to allow full sensitivity of the SWIR band.

An nBn HOT modeling paper considered InAsSb/AlAsSb MWIR device structures and results were presented for dark current, barrier dependence on bias, quantum efficiency, photocurrent, spectral responsivity, D*, and R/A product. A comparison was made between nBn, and p-on-n diodes—both InAsSb and HgCdTe. Figure 19 shows that particular comparison.

The second modeling paper focused on conditions of doping and bias that allow an nBn detector to operate in a region that is free of depletion regions. Both n-type and p-type barriers were considered. The dark current was calculated for a range of bias voltages with the doping concentration of the barrier as a parameter as illustrated in Fig. 20.

The session ended with a presentation on enhancing HOT performance by reducing the volume of the detector material while retaining high quantum efficiency. Fig. 21 shows an SEM photo of the device structure with etched holes where material has been removed. Efficient internal reflection allows all of the light to still be absorbed in the remaining material. The approach has been applied to dual-band designs.
Active Imaging

Active imaging is based upon the combination of laser illumination and fast, SWIR, avalanche photodiode (APD) arrays that can extend recognition ranges with the higher resolution available with shorter wavelengths.

A very high speed (up to 25 GHz) InGaAs diode with a 2.2 μm cutoff was reported that has very high photocurrent capacity allowing it to utilize high local oscillator power with minimal signal compression. Fig. 22 shows the frequency response for three diode sizes.

A variety of InGaAs absorbers coupled with an InAlAs avalanche region APDs were reported with k < 0.15. Fig. 23 shows the device current in the dark and with illumination.

A multi-function readout combined with an InGaAs SWIR array with 15 μm pitch was described having high- and low-gain and asynchronous laser pulse detection. Fig. 24 is a photograph of the sensor package together with proximity electronics. Sensitivity can be extended into the visible spectrum with optional substrate removal.

Human identification at long range was the subject of an active-SWIR paper. Fig. 25 illustrates the system concept.

Fig. 22 Normalized RF response for 30 μm, 40 μm, and 50 μm diameter photodiodes having internal 50 Ω termination at 5 V reverse bias.

Fig. 23 Current voltage characteristics for a 200 μm diameter InAlAs APD with carbon as a dopant.

Fig. 24 Photo of the InGaAs detector including the proximity electronic boards.

Fig. 25 Conceptual illustration of the long-range, active SWIR facial recognition hardware.
The HgCdTe alloy detector—characterized by a high absorption coefficient and a long lifetime—continues to dominate the choice for a broad range of infrared applications. Aside from applications that are ideal for either InSb in the MWIR spectral band, or InGaAs in the 1.7 μm SWIR band, or those that can utilize uncooled FPAs, HgCdTe continues to be the most popular choice. Papers in this section update how HgCdTe is continuing to develop and evolve. Papers on this topic were presented in two sessions on HgCdTe detectors as well as in the HOT session, the Applications sessions, and in the Poster session.

Development of large format MWIR and LWIR detectors for a 1280 × 1024 format with 15 μm pixels was described using both LPE on CdZnTe substrates and MBE on GaAs substrates. Fig. 26 is an example of an image taken with an LWIR array fabricated from MBE-grown material.

Very large format, 1960 × 1080 arrays with 12 μm pixels of MWIR HgCdTe grown by MOVPE on GaAs were reported. These FPAs are 3-side buttable—the FPAs can be spaced closely together on 3 sides of each array. A mosaic of 8 FPAs using this approach is shown in Fig. 27 giving a total of 16 Mpixels.

Progress in HgCdTe across a broad range of material technologies, devices, and applications was reported. CdZnTe substrates with diameters as large as 115 mm were shown. Devices with both n-on-p and p-on-n are being utilized with success. Applications including avalanche photodiodes and VLWIR arrays for space applications. Pixel pitch reduction down to 10 μm and less is being accompanied by plans for the development of larger formats—1024 × 768 and 2K × 2K. Dark current is reduced by two orders of magnitude with newer p-on-n diodes, including in the SWIR band. Fig. 28 shows a roadmap for dual band detector development.

The temperature dependence of 1/f noise was studied for both MWIR and LWIR n-on-p detectors. Fig. 29 shows how the main distribution and the high-noise tail for an MWIR array vary with temperature be-
Fig. 30 Temperature dependence and nonparametric skew of the rms noise probability distribution function for a single 640 × 480 MWIR array integrated to 50 % full well condition, showing that the peak broadens with increasing temperature but the magnitude of the tail saturates at 180 K.

tween 120 and 230 K. A temperature dependence proportional to n_i was observed for standard FPAs.

VLWIR HgCdTe detectors are being developed with p-on-n technology as described by one paper. Fig. 30 shows how the R_0A product of this technology compares with other reports in the literature and a heuristic equation that describes the state-of-the-art for this technology.

A finite-difference, time-domain model was used to calculate the quantum efficiency and surface recombination in HgCdTe photonic trapping structures. Fig. 31 illustrate the results of one of the model runs.

A multispectral camera—an array of filters over 256 × 320 array of MWIR HgCdTe detectors—was used to monitor the spectral composition of a burning propellant. Fig. 32 shows the arrangement of the filters that gave 11 MWIR spectral channels and the spectral coverage of each.

Fig. 31 Auger recombination (left), electron density (center) and hole density (right) for the center pixel are shown by performing a linecut through the center of the array. In these plots the surface recombination velocity is 1000 cms^{-1}, the surface charge is 10^{12} cm$^{-2}$ and the array is illuminated with planewaves at $\lambda = 1.0 \mu m$.

Fig. 32 (left) Overview of the filter arrays. Eleven filters are free-standing and one path is filter-free for wide-band imaging. (b) Transmission spectra of the filters measured with a Fourier-transform infrared spectrometer under normal incidence and for TM-polarized wave.

QWIP and Q-Dot FPAs

Quantum dot structures were discussed in four papers at the conference. In the first of these, Type II In(Ga) Sb superlattice dots were embedded in an InAs matrix. Fig. 33 illustrates one of the structures that was fabricated and measured—an LWIR pin diode.

Quantum dot LWIR detectors were characterized as a function of temperature for devices that had a pho-
toresponse based upon an indirect bandgap. Fig. 34 shows how thermal activation can play a role in enabling the photoresponse in this case.

A reduction by five orders of magnitude in the dark current of an InGaAs/GaAs quantum dot device following ion implantation was reported.

The novel use of PbS quantum dots in a hetero-structure with electron- and hole-blocking layers—see Fig. 35—was described. The device can be deposited directly onto a silicon readout.

Other Advanced Photon FPAs

The use of broadband resonators to enhance the absorption in infrared detectors was proposed. Fig. 36 shows an array of such resonators fabricated by e-beam lithography in conjunction with a QWIP detector array. The use of these metamaterials was suggested for use in infrared sensors capable of “color” imaging.

The development of a 1920 × 1536 pixel InSb array having 10 μm pixels with operation up to 120 Hz was described. On-chip analog-to-digital conversion is provided by 3840 A/Ds—one at the top and bottom of each array column. An image taken with this array is shown in Fig. 37.

SiGe technology for low-cost SWIR sensors was the subject of the final presentation of this session. Low-cost is implied by the fact that SiGe technology can be
processed on 12-inch silicon wafers using selective-area epitaxy—see Fig. 38.

Uncooled Detectors

Emerging Uncooled I & II

In addition to progress in the development of bolometers and bolometer-like uncooled detectors, new ideas continue to emerge. Presentations included novel detector materials, variations in pixel design, innovative absorption methods, new detection techniques.

Plasmonic absorbers formed by a rectangular array of cylindrical dimples in a gold film have been shown to provide high narrow-band absorption in the MWIR and LWIR for MEMS-based IR detectors. The absorption peak is determined by the spacing of the dimples. The full width, half maximum for the absorption peak is typically 80 nm, and absorption outside of that region is generally in the 20% to 40% range, as shown in Fig. 39. This enables the fabrication of detector arrays in which all pixels experience the exact same process, but different pixels can have different spectral sensitivities, even so far as being sensitive to different spectral bands.

Another means of customizing the absorption spectrum is the use of a frequency-selective surface (FSS). Both resistive dipoles and slots in a resistive sheet, both shown in Figure 40, provide relatively narrow-band absorption. The former transmits most out-of-band radiation, whereas the latter reflects it. This permits a dual-band sensor as shown in Fig. 41, wherein the top layer absorbs MWIR and transmits LWIR, and the second layer absorbs LWIR and reflects MWIR. Thus, the second layer serves as the mirror for the upper (MWIR) resonant cavity, while also serving as the absorber for the lower (LWIR) resonant cavity. The resulting absorption spectrum is shown in Fig. 42.
Among the approaches for improvement of bolometer arrays is the use of Si/SiGe quantum wells as the sensitive material. The material must be processed at temperatures higher than those a standard CMOS circuit can withstand, so the device is prepared with a film-transfer process. The pixel is designed as shown in Fig. 43 so that current flows transversely through the multiple layers of the quantum well, and the top electrode is split to allow for a double pass. The advantages claimed for this approach are higher TCR and reduced 1/f noise.

Novel concepts in the early stages of development included an optical resonator whose resonance is spoiled by a change in temperature, and an electrically activated cantilever for which deformation due to a temperature change causes a variation in the time required for the cantilever to relax and make contact with an electrode, the signal being a digital representation of that time.

Uncooled I and II

The uncooled session started with a memorial tribute to Paul Kruse—right—who was one of the pioneers not only in uncooled detector technology but also in cooled infrared detectors.

*Fig. 43 Schematic representations—cross section top, 3D bottom—of the quantum well bolometer pixel illustrating the electrical connections to the underlying ROIC via the supporting legs.

Fig. 44 Arrayed vs. Traditional Manufacturing of uncooled FPAs.

The two leading uncooled technologies – vanadium oxide (VO₃) and amorphous silicon microbolometers continue to advance although there were no papers reporting on the latter technology.

VOₓ microbolometers with 17-μm pixel pitch are now widely available. Sub-17-μm pitch FPAs are under development.

One company compared the performance of its 1024 × 768 pixel VOₓ microbolometer with 17-μm pitch to that of a cooled 2nd Gen sight (288 × 4 HgCdTe with TDI scanning) in a simulation and found that the uncooled sight had better range performance than the cooled sight.

An overview was given of development of sub-17-μm 640 × 480 VOₓ arrays with wafer-scale optics, electronics and vacuum packaging. Fig. 44 shows the manufacturing process for Arrayed Manufacturing vs. Traditional Manufacturing.

Some groups are experimenting with combinations of vanadium oxide with other metals.

A Japanese company described their 640 × 480 microbolometer with 12 μm pitch that was made using vanadium niobium oxide as the bolometric material. The addition of Nb to VOₓ resulted in a TCR of -3.6%/K. In addition, the thermal isolation was improved by a factor of five to 5 nW/K by using a three-level structure—see Fig. 45. The resulting FPA had an NEΔT of 60 mK @f/1 and 30 Hz. Images from a miniature camera are shown in Fig. 46.
Researchers in South Korea have fabricated a small low-cost 32 × 32 microbolometer array with vanadium tungsten oxide. The array is intended to be used for measuring body temperature. The FPA is wafer-level vacuum packaged (WLVP) and has an NEΔT of 100 mK.

A Japanese company has enhanced its SOI (silicon-on-insulator) uncooled FPA (320 × 240/22) by making its ROIC temperature independent using correlated double sampling (CDS) operation with reference pixels that are insensitive to infrared radiation. The resulting FPA requires no TE cooling between -30 and 80 °C. The structure of a unit cell is shown in Fig. 47.

Other uncooled papers included:

- An 80 × 80 PbSe array that is deposited by vapor phase deposition (VPD) directly on large CMOS wafers. The MWIR FPAs can be operated at full frame rates as high as 2 kHz.
- Pyroelectric arrays of relatively small formats—without MEMS processing and vacuum packaging—used for people counting and thermal imaging.

Optics

Several optics presentations discussed new optical materials, including coatings, and optical designs which are required in order to work with the new multiband infrared detectors and systems.

One company outlined a wide-angle catadioptric design combined with a method for selection of materials suitable for spanning a 0.6 – 11.0 μm wide band. Color correction was maximized, a flat field was provided to the FPA and a significantly reduced package size was achieved. The modular, compact design—Fig. 48—answers requirements for many applications.
such as helmet-mounted devices, hand-held devices and UAVs.

A government laboratory reported on their development of new IR glasses for applications covering all the SWIR + MWIR + LWIR wavebands. These new glasses in general have negative or very low dn/dT, making it easier to athermalize the imaging system. They offer some unique solutions for multiband achromats which can significantly reduce the size and weight of the imager for payload sensitive applications. Advantages of the new materials were demonstrated through preliminary design of a MWIR/LWIR multispectral imager—see Fig. 49.

Two presentations addressed anti-reflection optics coatings required for multi band IR systems. One company showed their dual-band and triple-band coatings for the 1.06 μm (YAG laser wavelength), 3-5 μm and 8-12 μm spectrum regions designed and deposited on ZnSe, ZnS, Ge and IG-6 substrates—see Fig. 50. The number of coating layers were restricted to 7-20

Another company presented a new technology – hybrid-Diamond-Like-Carbon (h-DLC) coating for multispectral optical systems. The technology combines the superior toughness of protective DLC coatings with the versatility and multispectral functionality of IR coatings. Figure 51 shows a comparison between h-DLC for a dual MWIR/LWIR coating (blue) and a DLC coating optimized for the LWIR band (red).

Ways of reducing cost of optical systems was one of the main subjects of the IR optics sessions. Can optical Performance (P) be optimized while at the same time minimizing Size (S), Weight (W) and Cost (C)?

One company discussed impact on optics SWaP-C (where P stands for Performance and not Power as in detector modules) by introduction of glass aspheres and molded polymer aspheres. The results of the discussion are summarized in Table I. The trade benefits of using polymers and moldable glasses in optical designs were demonstrated in two examples to reduce size, weight, and cost while maintaining high performance.

A team of scientists from industry and university laboratories outlined a combination of two approaches for reducing cost of uncooled IR imagers. The first approach consisted of developing new low-cost chalcogenide glasses with better mechanical properties than those presently available. New ways of fabrication of the yet-to-be-named material, 80GeSe₃-18Ga₂Se₃, were outlined. The second approach makes use of wave-front coding—see Fig. 52. A combined amplitude/phase filter mask introduces a controlled distortion of the transmitted wave-front. A well-designed

Table I Effects on design SWaP-C by using glass and polymer aspheres.

<table>
<thead>
<tr>
<th>Lens form</th>
<th>Impact on system</th>
<th>SWaP-C effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>No aspheres, all glass</td>
<td>Max number of elements</td>
<td>+S, +W, +C, -P</td>
</tr>
<tr>
<td>Addition of aspheres</td>
<td>Fewer elements, shorter track</td>
<td>-S, -W, +P</td>
</tr>
<tr>
<td>Addition of polymer aspheres</td>
<td>Less Weight, Less cost</td>
<td>-S, -W, -C</td>
</tr>
</tbody>
</table>
Fig. 52 Wave-front and image processing principles.

filter will lessen the impacts of focus-related aberrations. Post-processing is used to recover the image quality.

One company discussed the impact of using pixel pitches equaling the wavelength of the imaged radiation, on the optics design. It was pointed out that the traditional design approach will quickly increase the number of elements to 3 or more when LW pixel pitch is reduced from 17 μm to 12 μm. It was concluded that in order to achieve low system costs, the future development of lenses for high resolution 12 μm detectors will need to employ image improvement techniques such as wave-front coding.

The manufacture of wafer level chalcogenide arrays is a new technology driven by the recent interest in wafer level thermal cameras. The development and implementation of wafer level packaging for commercial microbolometers has opened the pathway towards full wafer-based thermal imaging systems. The next challenge in development is moving from discrete element LWIR imaging systems to a wafer based optical system, similar to lens assemblies found in cell phone cameras. One paper compared a typical high volume thermal imaging design manufactured from discrete lens elements to a similar design optimized for manufacture through a wafer based approach. Both performance and cost trade-offs were reviewed and discussed.

The use of wafer-level optics was also investigated and presented by a team consisting of representatives from industry and governmental laboratories. A compact MWIR cryogenically cooled multichannel camera in which the optics is merged with the detector, was discussed. Due to the cooling of the optics a very low NEΔT was achieved. Using a post-processing algorithm a well-sampled image was created from a set of under-sampled raw sub-images. The resulting camera has a 4.1 mm track length and 120 ° FOV. Among other new IR optics developments, the following should be noted:

- Increasing the LWIR transmittance of Si windows from 50% to over 80% by use of NiO AR coating and annealing.
- A wave-front sensor using a Quadri-Wave Lateral Shearing Interferometer (QWLSI) for characterizing optical components in a way that complements or replaces MTF measurement—see Fig. 53.
- Presentation of a new measurement system which enables characterization of alignment of all individual elements of an IR lens assembly in a non-contact fashion.
- Combining an Echelle spectrograph with an IR camera in order to measure the dielectric coating thickness of thin film coatings.
- Achieving a spectral transmission range from UV to 7 μm for ZBLAN fibers by processing under controlled microgravity conditions during a parabolic flight.

Fig. 53 Schematic of the “Phase Inside” wave front sensor. The incoming light goes through a two-dimensional grating prior to being detected by a focal plane array. The FPA output is converted to digital and signal processed before being sent to a computer for processing the interferogram showing the wave front.
Smart Processing

This session primarily covers advances in detector readout technology that include functionality beyond simple signal/image acquisition.

The first paper in this session considered the evolution of the video output signal from thermal imagers, going back to World War II. Issues for new systems that utilize a million pixels or more were included.

The nonuniformity correction of uncooled FPAs that is computationally-based and includes the influence of optics was discussed and compared to the traditional method of using a camera shutter. Fig. 54 shows how the two methods compare.

The benefits of over-sampling in image sensors were presented in a paper that used the example of false alarm suppression as illustrated in Fig. 55.

A novel readout circuit having the ability to select between two distinct types of input circuits—source-follower and CTIA—for high- and low-level flux conditions, respectively was presented. The readout design was specifically targeted for SWIR detectors, but may have usefulness for dual-band detectors as well.

Digital implementation of a time-delay-and-integration (TDI) readout function was the subject of a presentation. Lower power consumption was claimed, compared to an analog equivalent.

A readout with a CTIA input and low noise—~5 electrons—for SWIR imaging was given. A sample image from a camera using this 640 × 512 readout with 15 μm pitch unit cells is shown in Fig. 56.

A new type of digital readout was reported with reduced quantization noise. Fig. 57 shows the circuit schematic overview. Quantization noise less than 200 e− is claimed with a charge handling capacity of 2.3 × 10⁹ electrons.

Fig. 54 Comparison of NUC methods: (a) exhibits the raw images, (b) shows the results after FPA NUC, (c) after both FPA and optics NUC, and (d) the results for standard shutter-based NUC.

Fig. 55 Over-sampled pixels illustrate realistic blur from the PSF and can identify single point noise spike as a false alarm (left), while under-sampled imager (right) has a near single pixel real target and single pixel noise spike which cannot easily be distinguished.

Fig. 56 A SWIR image obtained from a camera using a CTIA ROIC hybridized with an InGaAs detector array.

Fig. 57 Block diagram of the proposed digital readout unit cell circuit with reduced quantization noise.
Applications

Presentations focusing on applications of the various infrared technologies in systems and subsystems were presented in Oral Sessions 2, 3, 4, 5, and in the Poster Session. As applications are the main drivers for technology R&D, references to system applications can be found throughout the Proceedings.

Infrared in Future Soldier Systems

Future Soldier Systems programs are being implemented in over 25 countries. Presentations at this conference were made describing some of the EO/IR components in the German IdZ (Gladius) program and the Italian Soldato Futuro program.

The German WBZG clip-on sight (HuntIR Mk2) makes use of a HOT 640 × 512 15 µm HgCdTe FPA which is cooled by a specially-designed single-piston linear Stirling cryocooler. The FPA operates at 140 K and the cryocooler has a 25,000 h lifetime. A comparison of this sight with the previous version is shown in Fig. 58.

The Italian Mini Sight 320 makes use of a 320 × 240 uncooled microbolometer (17 µm pixels) and a visible light camera. It is usable as either a pocket scope or mounted on a weapon and weighs less than 330 grams—see Fig. 59.

A new camouflage technology has the potential to reduce the signature of troops and vehicles significantly, thus making the use of infrared sights less effective. Fig. 60 shows the effectiveness of the technology.

Army Infrared R&D I and II

Several presentations were addressing the detection from moving vehicles of hostile fire threats ranging from small arms to guided missiles. The ultimate goal is to utilize the launch flash or missile propulsion plume in a multi-spectral passive detection methodology that has a low Size, Weight, Power and Cost (SWaP-C).

The flash detection section opened with a discussion of the optimal spectral bands for detection of threats at short and medium ranges. It was indicated how SWIR-NIR-VIS multi-band low cost and low complexity detection means may provide for an optimal technical solution. Following this analysis, a fourth generation SWIR-VIS passive uncooled optical threat locator—see Fig. 61—was presented. Good situation awareness was achieved by using an FPA with a high number of pixels together with a low number of...
sensor heads. An optional inclusion of a radar, adding a range capability to the system, was outlined.

A governmental laboratory presented a dual band, passive, uncooled, wide FOV based muzzle flash detection system operating in the NIR spectrum—see Fig. 62. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that create two side-by-side images of a scene on a single sensor, thus obtaining good spatial registration between the two bands.

A third sensor module for hostile fire detection at up to long ranges was presented. It was designed for single band MWIR operation at a maximum frame rate of 6500 fps. Fig. 63 shows the difference between two frames, 297 μsec apart, of a .22 caliber rifle round.

Fig. 62 Wide angle NIR dual band sensor head.

Army vehicles, as well as their mounted infrared sensors, are frequently being upgraded in order to answer new battlefield performance requirements. A flexible approach for the optical concept of a tank thermal sight was outlined. The approach, which uses a varying number of mirrors, facilitates the integration of the sight into upgraded tanks having different available space requirements.

Improved situational awareness is gaining importance and lessons learned from integrations of infrared sensors on armored vehicles, unarmored military vehicles and commercial automobiles were discussed. Each of the applications—close-in and far range situational awareness, as well as drivers vision enhancement, ISR (Intelligence, Surveillance and Reconnaissance) and target designation—has different requirements and challenges. These were detailed and analyzed in the presentation—see Table II.
Table II Typical requirements for wheeled vehicle IR sensors.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Human Drivers Aid</th>
<th>Autonomous Vehicle</th>
<th>Situational Awareness</th>
<th>ISR</th>
<th>Targeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOV</td>
<td>40 to 60 degrees, fixed</td>
<td>40 to 60 degrees fixed, zoom optional</td>
<td>180 to 360 degrees fixed</td>
<td>2 degrees to 30, Zoom</td>
<td>1 to 30 degrees in multiple steps</td>
</tr>
<tr>
<td>Bandpass</td>
<td>LWIR</td>
<td>Visible and LWIR</td>
<td>Visible and LWIR</td>
<td>Visible and MWIR and LWIR, with optional SWIR and LWIR</td>
<td></td>
</tr>
<tr>
<td>NEDT</td>
<td><70 mK</td>
<td><40 mK</td>
<td><60 mK</td>
<td><30 mK</td>
<td><25 mK</td>
</tr>
<tr>
<td>Laser Rangefinder</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>MTBF</td>
<td>>15,000 hours</td>
<td>>10,000 hours</td>
<td>>5000 hours</td>
<td>>1500 hours</td>
<td>>1000 hours</td>
</tr>
<tr>
<td>Cost Sensitivity</td>
<td>High</td>
<td>Moderate</td>
<td>High in the future</td>
<td>Moderate to Low</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td><2 Kg</td>
<td><5 Kg</td>
<td><5 Kg</td>
<td>Typically less than 30Kg</td>
<td></td>
</tr>
<tr>
<td># of dimensions to the imagery</td>
<td>Two, but three preferred</td>
<td>Two, but three preferred</td>
<td>Two, but three preferred</td>
<td>One</td>
<td></td>
</tr>
</tbody>
</table>

Several enabling technologies, having a dominating impact on applications like those covered in the above sections, were discussed. Among these were:

- State-of-the-art 640 × 512, 15 μm pitch detector modules optimized for specific key requirements on system level, such as detector-dewar length for gimbal applications, and size, weight and power reduction for UAVs.

- Megapixel FPAs for both MWIR and LWIR bands with 15 μm pitch for applications like rotorcraft pilotage, persistent surveillance and determination of threat level in personnel targets.

- High Operating Temperature modules with cryocoolers having reduced SWaP and increased reliability, life-time and aural stealth. These characteristics are very attractive for handheld or sniper applications like clip-on for thermal weapon sights.

- Decreasing pixel pitch leading to longer identification ranges and higher compactness. Fig. 64 shows existing and predicted future pixel pitch reduction trends from one major detector developer.

- Use of active e-APD MCT detector for amplification of photo-electrons in order to avoid photon starvation for small detector pitches in systems with high f-numbers against cold backgrounds.

- Development of detectors covering spectral bands between Vis and VLWIR. The applications range from military to meteorology.

A novel technology for protection of SWIR cameras against laser threats.

Infrared at Sea, in the Air, and Space

Two presentations outlined concepts for ship-based InfraRed Search and Track (IRST) systems as protection against anti-ship missiles and attacking aircraft from up to very long ranges. Both systems provided panoramic search over 360 degrees azimuth at the high update rates required for operation in high atmospheric scintillation. One configuration employed step-and-stare, by use of continuous scanning of the sensor head and a counter-rotating polygonal drum, while the second configuration achieved full stare (no dead-time) by using large FPAs.
In a follow-up presentation to last year’s DUCAS (Detection in Urban scenario using Combined Airborne imaging Sensors) project overview, several examples were presented which showed the successful use of combined hyperspectral and high spatial-resolution data in identifying objects from a suite of airborne sensor-systems. The spectral data contain information pertaining to material qualities. Fig. 65 shows a road network in the old city of Zeebrugge, characterized by three different types of concrete.

One company at the forefront of detector developments presented its advanced FPAs for hyperspectral imaging from air and space. Examples of configurations for airborne and space flight, with and without cryogenic cooling, are shown in Fig 66.

Fig. 65 A road network in the old city of Zeebrugge, characterized by three different types of concrete shown in different colors.

Fig. 66 Neptune and Saturn detectors available configurations: a) airborne configuration of the Saturn detector with a Dewar and a cooler; b) Space configuration of the Neptune detector (500 × 256) with a Dewar and a cooler adapted to space constraints; c) Space configuration of the Saturn detector (1000 × 256) compatible with passive cooling system.