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ABSTRACT  

IRIS (InfraRed Imaging Spectrograph) is a first light near-infrared diffraction limited imager and integral field 
spectrograph being designed for the future Thirty Meter Telescope (TMT). IRIS is optimized to perform astronomical 
studies across a significant fraction of cosmic time, from our Solar System to distant newly formed galaxies (Barton et 
al. [1]). We present a selection of the innovative science cases that are unique to IRIS in the era of upcoming space and 
ground-based telescopes. We focus on integral field spectroscopy of directly imaged exoplanet atmospheres, probing 
fundamental physics in the Galactic Center, measuring 104 to 1010 M  supermassive black hole masses, resolved 
spectroscopy of young star-forming galaxies (1 < z < 5) and first light galaxies (6 < z < 12), and resolved spectroscopy 
of strong gravitational lensed sources to measure dark matter substructure. For each of these science cases we use the 
IRIS simulator (Wright et al. [2], Do et al. [3]) to explore IRIS capabilities. To highlight the unique IRIS capabilities, we 
also update the point and resolved source sensitivities for the integral field spectrograph (IFS) in all five broadband 
filters (Z, Y, J, H, K) for the finest spatial scale of 0.004′′ per spaxel. We briefly discuss future development plans for the 
data reduction pipeline and quicklook software for the IRIS instrument suite. 
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1. INTRODUCTION  
The coming decade promises a revolution in astronomical discoveries from new instruments on upcoming 

telescopes like the Giant Segmented Mirror Telescopes (GSMTs), James Webb Space Telescope (JWST4), and Large 
Synoptic Survey Telescope (LSST5). IRIS (InfraRed Imaging Spectrograph) is one such revolutionary instrument being 
designed to sample the diffraction limit obtained from the multi-conjugate adaptive optics system, NFIRAOS6, on the 
future Thirty Meter Telescope (TMT7). IRIS will house a dedicated near-infrared (0.845 – 2.4 μm) imager and integral 
field spectrograph (IFS), as described by Moore et al. [8], this conference. Both imager and IFS will offer unprecedented 
angular resolution, sampled with the imager at 4 mas/pixel with a total field of view† of 16.4′′ × 16.4′′ and the IFS with 
four spatial scales spanning 4 – 50 mas/spaxel with a range of field of views from 0.064′′ × 0.51′′ to  4.4′′ × 2.25′′. The 
IFS spectral resolution has been carefully selected to maximize scientific return at R=4,000 and include an additional set 
of high spectral resolution gratings at R=8,000.  

IRIS is being optimized to perform astronomical studies of point and resolved sources with a wide range of surface 
brightness. We have investigated a range of science cases and used the IRIS data simulator2,3 to facilitate the conceptual 
design of the instrument. These cases include Solar System objects, exoplanets, microlensing, star-forming regions, the 
Galactic Center, nearby galaxies and supermassive black holes, strong gravitational lensing, high redshift galaxies and 
quasars, and first-light galaxies (see Barton et al. [1]). 

We present a selection of innovative IRIS science cases that are uniquely suited to studies with TMT and NFIRAOS 
and the expected powerful synergy with other ground and space-based telescopes in the coming decade. All three 
GSMTs with diffraction limited capabilities will be able to exploit a range of interesting science cases, and each of these 
GSMTs plan on a first-light diffraction limited IFS (GMTIFS9 for GMT and HARMONI10 for E-ELT). Compared to 
future space-based missions, JWST will have an IFS with similar wavelength coverage (NIRSPEC11), but will have 
limited spatial resolution at 0.1′′/spaxel and spectral resolution of R < 2700 and limited lifetime. IRIS imager and 
spectrograph are being designed for high photometric and astrometric accuracy, which will open a new paradigm in 
near-infrared experimental astrophysics. In this paper, we present the following sample of science cases that are 
particularly exclusive to the capabilities to IRIS and NFIRAOS: directly-imaged exoplanet atmospheres, the Galactic 
Center, supermassive black holes, high-redshift star-forming galaxies, first light galaxies, and strong gravitational lensed 
systems. 

2.  DIFFRACTION LIMITED IFS: POINT AND RESOLVED SENSITIVITIES 
Our team has developed an end-to-end data simulator for the imager and spectrograph to assess the capabilities of 

IRIS and to aid in the development of the data reduction pipeline, see Wright et al. [2], Do et al. [3]. We have continued 
to update the simulator as the design of IRIS and NFIRAOS have evolved, modifying the point spread functions (PSFs) 
from NFIRAOS and total throughput per waveband across the entire system8. Figure 1 presents the sensitivity for both 
resolved and point sources on the IFS for five of the IRIS broadband filters, Z (λcen=0.93 μm), Y (λcen=1.09 μm), J 
(λcen=1.27 μm), H (λcen=1.63 μm), and K (λcen=2.18 μm), in its finest spatial scale of 0.004′′ per spaxel. Our simulations 
show that the IFS using 0.004′′/spaxel to observe a 25 mag (Z, Y, J, H, or K; Vega) point source in 5 hours (20 × 900s) 
will be able to achieve a signal-to-noise ratio (SNR) of ~10 per wavelength channel (R=4000) for a 2λ/D aperture (given 
a flat spectrum). In addition, the IFS using 0.004′′/spaxel on a resolved source with a uniform surface brightness in 5 
hours (20 × 900s) will be able to reach a SNR of ~10 per wavelength channel per spaxel for a Z=15.5 mag arcsec-2 and 
K=14 mag arcsec-2. Thus the sensitivity estimates for NFIRAOS and IRIS in Figure 1 are unprecedented compared to 
current facilities. 

                                                 
† The IRIS imager is currently designed to have a 16.4′′ × 16.4′′ field of view, but the technical team has developed a 
plan for an easy upgrade to a larger field of view of 32.8′′ × 32.8′′.  
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Figure 2: The observed R=3800 spectrum of the HR 8799c planet (black) from OSIRIS at Keck Observatory (Konopacky et al. [23]). 
The green curve represents the best-fit atmospheric model. A binned version of this spectrum (R~10, purple dots) illustrates what the 
spectrum would look like if it had the typical resolution of space-based transit spectroscopy. This is one of the highest spectral 
resolution observations of any extrasolar planet atmosphere. The R=3800 resolution allowed for detailed measurements of the 
strengths of the molecular features H2O and CO, and the lack of CH4. This is one of the few targets observable with current 
instrumentation due to its brightness and relatively wide separation from the host star16. IRIS will be able to routinely achieve this 
level of spectroscopy on the newly discovered extrasolar planets at lower masses, cooler temperatures, and closer separations. 

3.2 Crowded field spectroscopy: resolved stellar populations at the Galactic Center 

One of the leading science cases for IRIS is to study the Galactic Center with unprecedented sensitivity and spatial 
resolution. The Galactic Center is the closest laboratory for studying the environments and fundamental physics of 
supermassive black holes and offers several unique science cases for TMT, e.g., Yelda et al. [25]. Both the IRIS imager 
and IFS have been carefully designed to characterize the surroundings of the supermassive black hole (SMBH), SgrA*, 
at the Milky Way’s center.26,27 The high relative astrometric accuracy of 30 μas will offer a test of General Relativity and 
probe the distribution of dark matter through orbital monitoring of the stars surrounding SgrA*.28,29 Characterizing the 
stellar population at the Galactic Center is of great interest to ascertain how stars form and evolve around a SMBH.30,31 
The young stellar population near SgrA* has puzzled astronomers, as young massive stars should have difficulty 
forming in close proximity to a SMBH. Researchers have thus far been limited to studying only the most luminous stars 
in the area, including OB main sequences stars, red giants, and Wolf-Rayet stars. Currently, OSIRIS32 on Keck is able to 
achieve spectroscopy with sufficient SNR to measure spectral types and radial velocities for Kp < 15.5 mag stars. In 
contrast, IRIS is predicted to have the sensitivity to allow for high SNR spectroscopy on Kp = 20 - 21 mag stars (Figure 
3). These sensitivities and high angular resolutions will allow researchers to study the low mass-end of the main 
sequence, which will be crucial for investigating the stellar population. They will also provide essential radial velocity 
measurements to couple with the proper motion monitoring via imaging for deriving 3D orbital solutions. Currently, the 
shortest period star identified around the black hole has a period of 11.5 years.33 IRIS is expected to identify multiple 
sources with shorter orbital periods (1-2 years), which will be instrumental for fundamental physics studies like testing 
General Relativity. 
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Figure 3: We present the theoretical luminosity function of the stellar population within 1′′ of Sgr A* including both the young and 
old stellar population in the Galactic Center that has been explored by Lu et al. [31] and Do et al. [34], respectively. The fraction of all 
stars as a function of Kp magnitude (left) illustrates the number of stars observable with TMT (right) compared to the current 
capabilities of Keck AO imaging (middle). The Keck LGS-AO has a magnitude limit of 15.5 magnitude for spectroscopy (dotted line 
in left figure), while TMT will easily observe low mass stars on the main sequence and probe the initial mass function, which is 
essential for understanding the mysterious origins of the stellar population surrounding the SMBH. The IFS will be able to do 
spectroscopy with a signal-to-noise ratio of 20 in 2 hours of observations for Kp=20 mag stars. This is important for investigating the 
star formation history, as well as coupling radial velocity measurements for 3D orbital analysis to investigate General Relativity and 
the dark matter distribution.  

3.3 Black hole mass measurements: probing MBH-σ and MBH-L  

Understanding the interplay between supermassive black hole (SMBH) growth and formation of its host galaxy is 
currently one of the most outstanding astrophysical questions. Some of the largest puzzles are the origins of the MBH-σ 
relationship,35,36 the role of active galactic nuclei (AGN) feedback, mergers of black holes and their effect on the centers 
of galaxies, and how to effectively fuel black hole growth. The angular resolution of IRIS represents the next major leap 
in observational capabilities for SMBH detection. These measurements will greatly impact our understanding of galaxy 
and SMBH formation. TMT will make it possible to expand the mass range over which black holes can be detected, into 
the largely unexplored low to high-mass range of the MBH-σ relation (see Figure 4).  Quiescent galaxy black hole masses 
have been primarily measured from stellar or gas dynamics, with only ~80 galaxies measured to-date36. Most recently, 
the use of adaptive optics on 8-10m class telescopes has allowed some of the most precise measurements of SMBH 
masses,38,39,40 since the angular resolution is sufficient for sampling the sphere of influence of the SMBH and near-
infrared wavelengths is less susceptible to dust extinction. Do et al. [3] have recently explored the prospects for 
measuring SMBH masses in the range of 104 to 1010 M  using IRIS. They demonstrated that IRIS will provide the SNR 
to easily measure intermediate SMBH masses (>106 M ) out to z~0.2 and will have the capability of investigating the 
elusive intermediate black holes in globular clusters and dwarf galaxies. In contrast, the spatial scales offered by JWST 
and HST are insufficient to probe the sphere of influence of the SMBH, which is necessary to make mass measurements 
and explore the full MBH-σ phase space. It is also worth noting that the most massive black holes (109-10 M ) have the 
largest sphere of influence, and IRIS has the angular resolution necessary to resolve the stellar or gas dynamics around 
such behemoth black holes even early in the universe (z > 1). These would be incredibly challenging observations, but 
TMT's angular resolution makes this project potentially viable. 
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Figure 4: The current black hole mass and stellar velocity dispersion (MBH vs. σ) phase space (values obtained from McConnell & 
Ma [37]). The highlighted regions show the capabilities for measuring black hole masses with TMT and IRIS. For black hole masses 
in the range 106 - 107 M , very few detections exist outside of the Local Group. TMT will make it possible to resolve the black hole 
sphere of influence in nearby late-type spiral galaxies and dwarf ellipticals (red and green regions), allowing measurements that were 
previously only possible for Local Group galaxies to reach greater distances (see Do et al. [3]). IRIS will even be able to explore the 
elusive intermediate black hole mass (103 to 104 M ) phase space (shaded blue). 

3.4 Resolved spectroscopy of high-redshift galaxies (1 < z < 5) 

IRIS will expand our knowledge of galaxy formation in the young universe. While we are beginning to compile 
measures of the global parameters (e.g., luminosity, color, star formation rate, gas and dust content, and stellar mass) of 
very high redshift galaxies, there is still a gap in our knowledge of the processes that regulate galaxy growth and 
evolution even at modest redshifts of z ~1 – 3.  This is an extremely important epoch in the lives of normal galaxies, 
mirrored in the precipitous drop in the cosmic star formation rate density below z ~ 2.41 Recent groundbreaking 
observations have made use of IFSs and AO (e.g., OSIRIS and SINFONI) on 8-10m class telescopes, and have been able 
to probe the dynamical processes of individual high-redshift galaxies (z > 1.5),42,43,44,45 but they are limited to the most 
luminous galaxies (10 – 100 M  yr-1) and coarse sampling (≥ 0.5 kpc) compared to the sampling capabilities of IRIS and 
TMT (e.g., 34 pc at z = 2). 

IRIS will be able to spatially resolve nebular emission lines such as Hβ, [O II], [O III], [N II], and [S II] in addition 
to Hα. With these measurements, it will be possible to construct spatially resolved maps of diagnostic nebular line ratios 
on a range of galaxy masses and redshifts. In addition to spatially isolating regions dominated by different excitation 
mechanisms (photoionization, shock heating, etc.), the spatial resolution of IRIS at high-z will also probe the star 
formation history and differential enrichment of large H II regions and individual super star clusters. It will therefore be 
possible to compare the abundances of different components of high redshift galaxies, differentiating (for instance) 
between a central AGN,46,47 bulge, and the nascent stellar disk. This will offer strong constraints on the origin of the 
mass-metallicity relation48,49 and the primary sources of feedback responsible for regulating star formation during the 
epoch when the majority of stars in the visible universe were formed. 

IRIS will also be able to probe lower integrated star formation rates, well below 1 M  yr-1. IRIS will achieve 
sensitivities that are 20-30 times better than current 8-10m telescope AO-fed IFSs. This is illustrated in Figure 5, where 
the 0.05′′ scale will allow observations of z = 1.5 star-forming galaxies with integrated star formation rates of 0.1 – 10 
M  yr-1. The 0.025′′ and 0.05′′ scales are advantageous for detecting fainter emission lines (e.g., [OII], Hβ, [OIII], [NII]) 
to study the 2D metallicity and dynamics of high-redshift galaxies (>10 M  yr-1), while the finer spatial scales 0.004′′ 
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PSF calibration, and advanced shift and add mosaicking routines. The expected challenges for this pipeline will likely be 
addressing new artifacts and anomalies with the newest Hawaii-4RG detectors and PSF calibrations. 

There are several pipelines for existing near-infrared IFSs (like OSIRIS31, SINFONI69, GPI70) on which to base the 
IRIS reduction procedures. The IFS data reduction pipeline will use similar procedures as those described for the imager, 
with additional routines for flat fielding, spectral extraction, wavelength solution, assembly of the data cube (x, y, 
lambda), and atmospheric dispersion correction for any residuals.  

Both day and night time calibration data will need to be obtained. During the daytime, dark frames, arc lamp for 
wavelength solution and resolution, white light illumination for flats and IFS spectral extraction, white light fiber for 
image quality, and a pinhole grid for optical distortion solutions will be obtained. Other “metadata” needed for the data 
reduction pipeline will be well organized and easily accessible for all day-time calibration frames, NFIRAOS 
configuration, PSF calibration and telemetry information (e.g., real-time seeing monitor information), and all 
environmental information for the telescope and atmosphere. Our team will make use of existing near-infrared pipelines 
for resources, but we will also implement new algorithms based on the lessons learned from these pipelines. Ease of use 
and fast-processing at the telescope is essential for the success of IRIS. 

5. SUMMARY 
IRIS is being designed to provide a broad spectrum of scientific capabilities that will exploit the first-light 

capabilities of TMT to answer some of the most fundamental questions in astrophysics. We have presented a small 
sample of science programs that are uniquely suited to IRIS, maximizing the angular resolution and sensitivity offered 
by TMT. In particular, we have highlighted IRIS science cases for (1) studying exoplanet atmospheres at moderate 
spectral resolution and their orbits from astrometric monitoring; (2) spectroscopy to study the stellar population and test 
General Relativity at the Galactic Center; (3) building up crucial statistics for measuring supermassive black hole 
masses; (4) resolved spectroscopy of high-redshift galaxies and (5) first light galaxies in the epoch of reionization; and 
(6) measuring dark matter substructure with the use strong gravitational lens systems. For each of these cases, we have 
utilized the IRIS data simulator to present realistic estimates of the performance of the instrument. These simulations 
show that IRIS will enable unique and unprecedented observations that will shape our understanding of both the nearby 
and distant Universe. 
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