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ABSTRACT

A fundamental way of describing a photon-limited imaging system is in terms of a Poisson random process
in spatial, angular and wavelength variables. The mean of this random process is the spectral radiance. The
principle of conservation of radiance then allows a full characterization of the noise in the image (conditional on
viewing a specified object). To elucidate these connections, we first review the definitions and basic properties
of radiance as defined in terms of geometrical optics, radiology, physical optics and quantum optics. The
propagation and conservation laws for radiance in each of these domains are reviewed. Then we distinguish four
categories of imaging detectors that all respond in some way to the incident radiance, including the new category
of photon-processing detectors. The relation between the radiance and the statistical properties of the detector
output is discussed and related to task-based measures of image quality and the information content of a single
detected photon.

Keywords: Radiance, geometrical optics, physical optics, quantum imaging, radiology, point processes, image
quality

1. INTRODUCTION

Radiance is a familiar and important concept in optical engineering; it describes the radiant flux in an optical
system as a function of 3D spatial position and ray direction, but only in the limit where diffraction can be
ignored. If one knows the radiance throughout a system, other familiar radiometric quantities such as irradiance,
radiant intensity and flux through some area can readily be computed (see Sec. 2).

Because x rays and gamma rays have very small wavelengths compared to most structures we encounter
in imaging, these same definitions and properties of radiance apply with minor modifications in radiological
imaging. On the other hand, diffraction often cannot be ignored at longer wavelengths, and for those cases a
physical-optics counterpart of radiance, with similar conservation and propagation formulas, is available. There
is even a form of radiance for the emerging field of quantum imaging. Details are given in Sec. 3.

Some basic propagation and conservation laws, discussed in Sec. 4, often allow the calculation of radiance for
an arbitrary point in a system and an arbitrary ray direction if the radiance function is known just on a single
plane. In imaging, these relations lead to simple ways of calculating the radiance in the image when one knows
the radiance of the object, even for very complex imaging systems.

Nothing we have said so far about radiance has any obvious relation to the second term in the title, photon
noise, but a common problem in optical engineering is the limited number of photons that can be collected and
the resulting Poisson noise in any measurement of interest, including an image. As we shall see in detail in Secs. 5
and 6, any measurement we make in optics or radiology is ultimately described by a Poisson point process (PPP),
and the complete statistical properties of this PPP are described by a radiance function. Thus the conservation

Further author information: Harrison H. Barrett, Center for Gamma-Ray Imaging, Radiology Research Laboratory,
Arizona Health Sciences Center, Tucson, AZ 85724. E-mail: barrett@radiology.arizona.edu

Plenary Paper

Novel Optical Systems Design and Optimization XVII, edited by G. Groot Gregory, Arthur J. Davis, 
Proc. of SPIE Vol. 9193, 919302 · © 2014 SPIE · CCC code: 0277-786X/14/$18  

doi: 10.1117/12.2066715

Proc. of SPIE Vol. 9193  919302-1



and propagation rules for radiance tell us all we will ever need to know about the image statistics, at least for a
single object.

Image statistics for a single object are important in assessment of image quality, but a full discussion of image
quality must also account for the randomness of the objects being imaged and in some cases the randomness
of the imaging system itself. This line of research is summarized in Sec. 7, where the concept of information
content of a photon is introduced.

A useful general reference for this paper is Barrett and Myers, Foundations of Image Science,1 especially
Chapter 10, which deals with radiance, and Chapter 11, which deals with Poisson point processes.

2. RADIANCE IN GEOMETRICAL OPTICS AND RADIOLOGY

2.1. Definitions and notation

As noted in the introduction, radiance is a function of spatial position and ray or flux direction. The position
of a point in space is specified by a 3D vector R from some arbitrary origin, and the flux direction is specified
by a unit vector ŝ. Thus radiance is denoted L(R, ŝ). Because ŝ is a unit vector, it has only two independent

components, say sx and sy; the third component is given by sz = ±
√

1− s2x + s2y, so that s2x + s2y + s2z = 1.

To define the radiance for the given point and flux direction, we construct an arbitrary plane P passing
through the point. We denote the normal to this plane by the unit vector n̂. The equation of the plane is
n̂ ·R = constant, so the position of the observation point within the plane is determined by the two components
of R perpendicular to n̂. We denote this 2D vector as r; if we choose coordinates so that the reference plane is
perpendicular to the z axis (i.e. n̂ parallel to ẑ), then R = (x, y, z) and r = (x, y)

origin

R

n̂

ŝ

Plane P

Figure 1. Geometry for specifying radiance on a reference plane. The 3D vector R specifies a point on the plane; the

3D unit vector n̂ is perpendicular to the plane, and the 3D unit vector ŝ specifies the flux direction.

With this geometry, the radiance is defined as

L(R, ŝ) ≡ 1

cos θ

∂2Φ

∂A∂ω
. (2.1)

where Φ is radiant flux (W ), dω is the differential solid angle of a cone of flux directions from a point on the
plane, and dA is the differential area on the reference plane P (see Fig. 1). The cos θ in (2.1) is defined as the
scalar product between the flux direction ŝ as and the unit vector n̂ normal to the reference plane:

cos θ = n̂ · ŝ . (2.2)

The cosine can be associated with either of the partial derivatives in (2.1), leading to two alternative definitions
of radiance:

L(R, ŝ) =
∂2Φ

∂Aproj∂ω
=

∂2Φ

∂A∂Ω
, (2.3)
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where dAproj is the projected differential area and dΩ is the projected differential solid angle. If we again choose
coordinates so that the reference plane is perpendicular to the z axis, these projections are given by

dA = dxdy , dAproj = cos θ dA = cos θ dxdy ; (2.4)

dω = sin θdθdφ , dΩ = cos θ dω = cos θ sin θ dθdφ . (2.5)

The two alternative definitions in (2.3) show that radiance can be interpreted either as the flux per unit
projected area per unit solid angle or as the flux per unit projected solid angle per unit actual area (on the
reference plane). In both cases the word projected refers to projection onto a plane perpendicular to the flux
direction through multiplication with cos θ. With either interpretation, radiance is invariant as the orientation
of the reference plane is changed.

Since radiant flux is measured in watts (W), the SI units of radiance are watts per square meter per steradian,
which we indicate as [L] = W/(m2 · sr).

2.2. Other radiometric quantities derived from radiance

Irradiance, radiant intensity and radiant flux can all be found by appropriate integration if the radiance is known
on a reference plane.

Irradiance (power per unit area) incident on the plane P is given by

EP (r) ≡ ∂Φ

∂A
=

∫

hemi

L(R, ŝ)dΩ =

∫

hemi

L(R, ŝ) cos θdω , [E] = W/m2 . (2.6)

The 3D observation point R is fully specified by the plane P indicated in the superscript and the 2D vector r in
that plane. For n̂ parallel to the z axis, for example, EP (r) is interpreted as the power per unit area on a plane
of constant z, and r = (x, y). So long as the plane is specified, r and R determine the same point. The notation
EP (r) indicates that the irradiance depends on (x, y) and on the location of the plane, z. Moreover, tilting the
plane tilts the z axis and changes the irradiance; unlike radiance, the irradiance on a plane does depend on the
orientation of the plane.

The two integrals in (2.6) run over hemispheres centered on the normal to the plane, so (2.5) applies, but∫
hemi

dω = 2π while
∫
hemi

dΩ = π.

Radiant exitance, denoted MP (r), has the same definition as irradiance, (2.6), but it refers to flux reflected or
emitted from plane P rather that incident on it. For a planar Lambertian source or reflector, where the radiance
at the plane is independent of direction ŝ, it follows from (2.6) that M = πL.

Radiant intensity, used to express the directional dependence of the flux from some area A on plane P , is
given by

IP (ŝ) ≡ ∂Φ

∂ω
=

∫

A

L(R, ŝ) cos θd2r , [I] = W/sr . (2.7)

The radiant flux (power) through some area A on plane P is given by

ΦA =

∫

A

d2r

∫

hemi

L(R, ŝ) cos θ dω d2r , [Φ] = W . (2.8)

2.3. Spectral radiance

If we wish to specify the spectral dependence of the radiance (per unit wavelength), we define [cf. (2.3)]

Lλ(R, ŝ, λ) ≡ ∂3Φ

∂λ∂A∂Ω
, [Lλ] =

W

m2 · sr · nm
if [λ] = nm . (2.9)

We can also define the spectral radiance in terms of the frequency of the radiation, ν = c/λ:

Lν(R, ŝ, ν) ≡ ∂3Φ

∂ν∂A∂Ω
, [Lν ] =

W

m2 · sr ·Hz
where [ν] = Hz = s−1 , (2.10)

or in terms of the photon energy E = hν:

LE(R, ŝ, E) ≡ ∂3Φ

∂E∂A∂Ω
, [LE ] =

W

m2 · sr · eV
if [E ] = eV . (2.11)
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2.4. Flux and radiance in photon units

So far radiant flux has been in SI units of watts or joules per second, but for monochromatic radiation or for
the spectral radiances defined above, we can express the flux in photons per second just by dividing the flux
in joules/s by the photon energy in joules, denoted as EJ . Thus, for example, the spectral radiance per unit
wavelength from (2.9) becomes a spectral photon radiance, given by

Lp,λ(R, ŝ, λ) ≡ 1

EJ
Lλ(R, ŝ, λ) , [Lp,λ] =

photons/s

m2 · sr · nm
if [λ] = nm . (2.12)

The photon energy in joules is equal to the photon energy in electron volts multiplied by the charge of an electron
in coulombs: EJ = eEeV , e = 1.6× 10−19.

The word photon in this usage has no quantum-mechanical implications; it is just a way of changing the units
of flux and spectral radiance.

3. RADIANCE IN PHYSICAL OPTICS AND QUANTUM OPTICS

3.1. Physical optics

Physical optics deals with coherence and diffraction. The basic difficulty in integrating radiometry with coherence
theory and scalar diffraction theory is that scalar fields are complex, while radiometric quantities are real and
nonnegative.

For quasimonochromatic light of frequency ν (wavelength λ =c/ν), Adriaan Walther2–4 defined the generalized
spectral radiance (actually a spectral radiance per unit frequency) at a point R on plane P by

LPν (R, ŝ, ν) =
cos θ

λ2

∫

P

d2r′
〈
e(R + 1

2R′) e∗(R− 1
2R′)

〉
exp(−ik ŝ ·R′) , (3.1)

where θ is the usual angle between ŝ and the normal to the plane, k = 2π/λ = 2πν/cm, e(R) is a scalar electric
field (e.g., one component of the electric field vector), the angle brackets denote a statistical average over an
ensemble of scalar fields, and R and R′ are 3D position vectors specifying points in the plane.

The expectation in (3.1) is a familiar quantity from coherence theory, the mutual intensity, and (3.1) states
that (within constants) the generalized spectral radiance is the 2D Fourier transform of the mutual intensity.
Thus Walther’s radiance definition makes an important connection between radiometry and coherence.

Another connection, noted by Walther in his 1968 paper, is that the integral in (3.1) is a Wigner Distribution
Function (WDF), which originated in quantum mechanics but is now an important tool in phase-space optics;
see the book by Testorf et al.5 and the review article by Alonso.6

By construction, the WDF is real, but it can take on negative values, which of course the radiance defined
by (2.1) cannot. Nevertheless, when one uses the generalized radiance to compute irradiance, radiant intensity
or flux with the integral formulas from Sec. 2, the results are nonnegative.

3.2. Quantum optics

A quantum-mechanical definition of radiance can be given by a straightforward generalization of (3.1)1:

LPν (R, ŝ, ν) =
cos θ

λ2

∫

P

d2r′
〈
ê−(R + 1

2R′) · ê+(R′ − 1
2R′)

〉
exp(−ik ŝ ·R′) , (3.2)

where ê+ and ê− are electric field operators and the angle brackets now denote a quantum-mechanical expecta-
tion. The other radiometric quantities can then be computed just as in the classical case.

An example of a quantum imaging systems that can be described radiometrically by (3.2) is shown in Fig. 2.
In the optical or infrared realm, the source of entangled photons in this figure can be a process called spontaneous
parametric down-conversion (SPDC), but in medical imaging with positron-emission tomography (PET) it can
be the two entangled gamma-ray photons produced by electron-positron annihilation.
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Figure 2. Quantum imaging with entangled photons.

4. TRANSPORT AND CONSERVATION OF RADIANCE

4.1. Boltzmann transport equation

The Boltzmann equation is an equation for the time derivative of the spectral photon radiance Lp,E(R, ŝ, E , t), or
Lp,E for short. This derivative has contributions from the physical processes of absorption, emission, scattering
and propagation radiation, so we have

dLp,E
dt

=

[
∂Lp,E
∂t

]

abs

+

[
∂Lp,E
∂t

]

em

+

[
∂Lp,E
∂t

]

sc

+

[
∂Lp,E
∂t

]

prop

, (4.1)

where the subscripts have the obvious meanings. The four terms in this equation are derived in Sec. 10.3 of Ref.
1, and the resulting transport equation is

dLp,E
dt

= −cmµtotLp,E + cmΞp,E + KLp,E − cmŝ · ∇Lp,E , (4.2)

where cm is the speed of light in the medium, µtot is the total attenuation coefficient (with contributions from both
absorption and scattering processes), K is an integral operator describing the angular and energy dependence of
the scattering, and Ξp,E describes the photon source. All of these quantities can depend in general on R, ŝ, E
and t.

For a self-luiminous volumetric source, as in fluorescent microscopy or nuclear medicine, the units of the
source term are [Ξp,E ] = (photons/s)/(m3 · sr · eV ). If the source emits isotropically, we can write

Ξp,E(R, ŝ, E , t) =
1

4π
f(R, E , t) , (4.3)

where f(R, E , t) is the volumetric source we wish to image. Note that the 4π in (4.3) carries the units of sr.

For planar Lambertian sources (a common model in optics), the source is confined to a plane (say, z = 0),
and the source term is written as

Ξp,E(R, ŝ, E , t) =
1

π
f(r, E , t)δ(z) . (4.4)

Now f(r, E , t) is the planar Lambertian source we wish to image. Note that [δ(z)] = 1/m.

If the source is independent of time, or at least slowly varying, we can derive a steady-state form of the
Boltzmann equation by setting dLp,E/dt = 0; the result is

cmŝ · ∇Lp,E + cmµtotLp,E −KLp,E = cmΞp,E , (4.5)
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If we use either of the two source models, (4.3) or (4.4), then (4.5) can be written abstractly as

BLp,E = f , (4.6)

where f is the object to be imaged and (within constants) B is the operator defined by the left side of (4.5).

If we assume there are no sources outside some volume V , then B has a left inverse, which we denote by P ,
so that

Pf = Lp,E . (4.7)

If we know the source distribution and the characteristics of the propagation medium and/or imaging system,
we can calculate the spectral photon radiance at any point outside V .

4.2. Conservation of radiance along a ray in lossless media

A simple but important example of the Boltzmann formalism is to consider a volumetric, monochromatic, time-
independent source f(R) inside a medium with constant speed of light cm and no absorption, scattering or other
radiation sources. For points outside the source region, (4.5) becomes

ŝ · ∇Lp,E(R, ŝ, E) =
1

4π
f(R)δ(E − E0) , (4.8)

To solve this equation,1 we choose a Cartesian coordinate system such that the z axis is parallel to ŝ. Then
ŝ · ∇ = ∂

∂z , and (4.8) is an ordinary differential equation in z, which integrates to

Lp,E(x, y, z, ŝ, E) =
δ(E − E0)

4π

∫ z

−∞
dz′ f(x, y, z′) . (4.9)

If we define ` = z − z′ and go back to a general vector notation, we can also write this result as

Lp,E(R, ŝ, E) =
δ(E − E0)

4π
=

∫ ∞

0

d` f(R− ŝ`, ŝ) ≡ [Pf ](R, ŝ, E) . (4.10)

As illustrated in Fig. 3, the interpretation of this equation is that Lp,E(R, ŝ, E) is obtained by integrating the
source distribution along a line parallel to ŝ and passing through the point R. The operator that performs this
integration is a special case of the operator P defined in (4.7), and [Pf ](R, ŝ, E) is a spectral photon radiance
with the indicated arguments.

Source

ŝ

ŝ

ŝ

R1 R2 R3

Figure 3. Diagram showing that radiance in a homogeneous medium is a line integral of a volumetric source that does

not absorb or scatter its own radiation. The cross indicates the origin of coordinates for the three 3D position vectors.

It follows immediately from (4.10) that

Lp,E(R1, ŝ) = Lp,E(R2, ŝ) = Lp,E(R3, ŝ) , (4.11)

where R1, R2 and R3 are three different points along the same line through the source, but all three lying
outside the source region (see Fig. 3).
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Since this expression holds for all photon energies and all units for the flux, it is valid for the total radiance
as well as the spectral photon radiance:

L(R1, ŝ) = L(R2, ŝ) = L(R3, ŝ) . (4.12)

Noting that the three radiances in (4.12) have the same angular argument ŝ, we can call this line a ray, and
(4.12) shows that radiance is constant along a ray in a homogeneous, lossless medium. Alternatively, we can
define a ray as the path along which the radiance is constant, a path found by solving the Boltzmann transport
equation.

ŝ1
ŝ2

ŝ3

R1 R2

R3

Figure 4. Diagram showing the invariance of radiance along a ray in a lossless optical system, as expressed by (4.13).

The three points are vectors from a common origin of coordinates, as in Fig. 3, but the vectors themselves are omitted

for simplicity in this figure. Note that all three points are in media of the same refractive index; otherwise L/n2 would

be the conserved quantity.

Moreover, this same conclusion holds if we consider a lossless optical system, i.e., one with no absorption,
scattering or reflection losses, and trace any ray through it as in Fig. 4. Again, radiance is constant along the
ray, but now the ray direction depends on which portion of the ray we examine, so we have to write

L(R1, ŝ1) = L(R2, ŝ2) = L(R3, ŝ3) , (4.13)

so long as all three points are in media of the same refractive index (e.g., air). If the points are in homogeneous
media of different refractive indices, but again there are no losses, it can be shown that L/n2 is the conserved
quantity:

L(R1, ŝ1)

n21
=
L(R2, ŝ2)

n22
=
L(R3, ŝ3)

n23
. (4.14)

4.3. Conservation of radiance in a lossless paraxial imaging system

ABCD matrices are an elementary tool for analyzing paraxial optical systems. If we consider two arbitrary
planes perpendicular to the optical axis in a system with rotational symmetry, the ray height x and the angle of
the ray with respect to the optical axis, α, in the two planes are well known to be related by

[
x
α

]
=

[
A B
C D

] [
x′

α′

]
, (4.15)

If the system is paraxial but not rotationally symmetric, then we wirite
[

r
s⊥

]
=

[
A B
C D

] [
r′

s′⊥

]
≡M

[
r′

s′⊥

]
, (4.16)

where s⊥ is the projection of the flux direction ŝ onto the plane (i.e., perpendicular to n̂), and A, B, C and D
are all 2× 2 matrices, so M is 4× 4. We refer to matrices in this form as ABCD matrices rather than ABCD
matrices.

The principle of conservation of radiance in a lossless paraxial system is most easily stated if we write the
radiance as

L(r, ŝ) = L

([
r

s⊥

])
. (4.17)
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With this notation, the radiance on an output plane is related to the radiance on a parallel input plane by

Lout

([
r

s⊥

])
= Lin

(
M

[
r

s⊥

])
. (4.18)

4.4. Transport equations for physical optics

A lesser-known application of ABCD matrices is to paraxial diffraction problems. The field propagation from
input to output plane is described in the Fresnel approximation by7

eout(r)= − i

λ
√

det B

∫

∞
d2r0 ein(r0) exp

[
iπ

λ

(
rt0B

−1Ar0 + rtDB−1r− 2rt0B
−1r
)]

. (4.19)

Friberg8 studied the propagation of Walther’s generalized radiance through systems described by ABCD ma-
trices. With notation similar to (4.18), he showed that

Loutν

([
r

s⊥

])
= Linν

(
M

[
r

s⊥

])
. (4.20)

Thus the physical-optics radiance is constant along the ray defined by geometrical optics. The same conclusion
was reached by Walther (1978) by a stationary-phase approximation, valid asymptotically in the limit of zero
wavelength. Friberg’s derivation does not require this limit (though it does use the Fresnel approximation), and
it is valid for any state of coherence of the fields.1, 6

A fully quantum mechanical version of Fresnel diffraction theory has been given by Shapiro.9 Combining
this theory with the quantum-mechanical form of the Walther generalized radiance in (3.1) leads to a transport
equation for quantum radiance, at least for paraxial propagation.

5. RADIANCE DETECTORS FOR IMAGING SYSTEMS

All radiation detectors are sensitive to the radiance incident on them. In particular, if we exclude so-called
thermal detectors, they all respond in some way to the spectral photon radiance defined in Sec. 2, but in the
subsections below we distinguish four different classes of detectors, depending on what information they yield
about the spectral photon radiance function.

5.1. Integrating detectors

A CCD or CMOS camera produces a pixellated image related to the optically induced electrical charge accu-
mulated at each pixel. A first approximation is that the mean charge (averaged over many images of the same
object) is proportional to mean number of incident photons with energy above the bandgap energy during the
exposure time. In fact, however, the mean charge produced is influenced also by the spectral, spatial, angular
and temporal distribution of the flux. If the spectral photon radiance is known in the detector plane, and if the
sensor array responds linearly to the radiation incident on it, the most general expression for the mean output
at pixel m has the form1

gm =

∫

det

d2r

∫ ∞

0

dE
∫

hemi

dΩ

∫ τ

0

dt ηm(R, ŝ, E)Ldetp,E(R, ŝ, E , t) , (5.1)

where ηm(R, ŝ, E) specifies the quantum efficiency of the detector, τ is the exposure time and R is a general 3D
vector, but the spatial integral is over the two variables needed to specify points in the detector plane.

Other locations for P may also be chosen. Various optical elements such as lenslets, pinholes, spectral filters,
choppers or other optical modulators may be placed in the optical path between P and the detector array. The
general form of the mean CCD/CMOS output signal in this case is

gm =

∫

P

d2r

∫ ∞

0

dE
∫

hemi

dΩ

∫ τ

0

dt dm(R, ŝ, E , t)LPp,E(R, ŝ, E , t) . (5.2)
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The function dm(R, ŝ, E , t) describes the propagation of radiance through the optical elements between plane
P and the detector as well as the response of the detector to the the radiance incident on it. One way to
summarize (5.2) is to say each mean pixel output is a linear functional of the radiance in plane P , where the
optical elements between the reference plane and the detector give us great freedom in choosing the weighting
functions dm(R, ŝ, E , t). Cell-phone cameras and DSLRs are now available with 50 MP sensors, which means
that we can measure 50 million independent linear functionals of the radiance function in an arbitrary plane.

One application of (5.2), of considerable current interest, is the light-field camera, pioneered by Ren Ng10

and illustrated in Fig. 5. The microlens array makes the photosensor array sensitive to the angular dependence
of the radiance and not just the irradiance, and that allows the image to be refocused on different planes after it
is recorded. Plane P in (5.2) is tangent to the left face of the microlens array in Fig. 5, so the light-field camera
essentially captures samples of LPp,E(R, ŝ, E , t).

Object

Lens

Microlens
array

Photosensor

Figure 5. Schematic of a light-field camera (adapted from Ng10). The object is imaged onto the microlens array, and

each microlens images the pupil of the main imaging system onto the photosensor array.

5.2. Pixellated photon-counting detectors

So-called photon counting detectors have circuitry at each pixel to detect the presence of a photoelectric interac-
tion in the pixel and record the number of interactions (“counts”) during some exposure time for later readout.
What is counted, therefore, is photoelectric interactions rather than photons; even a classical electromagnetic
field induces photoelectric interactions. Nevertheless, we will continue to use common parlance and refer to a
photoelectric interaction as absorption of a photon.

As a practical matter, it is easier to distinguish radiation-induced photoelectric interactions from thermally
induced electrons (dark current) if some form of optical gain is used. Intensified CCDs, for example, use an
optical image intensifier ahead of the CCD sensor so that a single optical photon absorbed in the photocathode
of the intensifier produces a burst of light and hence multiple photons absorbed in the CCD element.

Another way of incorporating gain is to consider an array of avalanche photodiodes (APDs) as the image
detector. In this case an absorbed photon produces an electron-hole pair, and each charge carrier is accelerated
by an applied electric field to energies greater than the bandgap energy, so it can produce additional electron-hole
pairs.

For x rays or gamma rays, the gain can be provided by scintillation materials for which each absorbed
high-energy photon produces a burst of low-energy optical photons that can be detected by optical sensors.

Perhaps surprisingly, (5.1) and (5.2) are still valid descriptions of the mean output at pixel m for arrays of
photon-counting detector. The actual outputs, gm without the bar, are integers for photon-counting arrays, but
the means are still linear functionals of the radiance so long as the event rate is low enough that there is no loss
of counts from temporally overlapping events (pile-up) and no overflow of the registers that store the number of
counts at each pixel.
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Figure 6. Position-sensitive silicon detector.

5.3. Position-sensitive photon-counting detectors

It is also possible to build photon-counting detectors without pixels. A common configuration is shown in Fig.
6, which shows a large-area silicon photodiode with strip electrodes on the four edges. Light incident in a spot,
as shown, creates signals in all four electrodes, and a simple centroid calculation provides a measure of the x-y
position of the spot.

The primary application of position-sensitive detectors is to track a beam or localized spot of light, but the
addition of an image intensifier makes it possible for them to respond to individual photoelectric interactions.
As in Sec. 5.2, a single interaction in the photocathode of the intensifier produces a burst of light and hence
measurable signals at each of the four output electrodes.

Thus the x-y coordinates of the individual interactions can be computed and stored in real time, as the events
occur; no integration time is needed, and there are no detector pixels. Instead, the data consist of a list of the
coordinates, possibly tagged with the time at which the event occurred. This form of data storage is referred to
as list mode, in contrast to the pixellated or binned mode implicit in (5.1) and (5.2). Listmode data storage has
received considerable attention in the radiology literature,11–13 and it is used routinely in PET.

5.4. Photon-processing detectors

A photon-absorption event in a detector can be characterized by several attributes, including the position R of
the interaction, the energy E deposited in the detector by the event, the direction ŝ of the radiant flux that
produced the event and possibly the time t at which the event occurs. For the jth event (j = 1..., J), We can
organize these attributes into an attribute vector with 5-7 components (2 or 3 components for Rj , depending on
the thickness of the detector; one component for energy Ej ; two components for the unit vector ŝ, and possibly
time tj). We denote this attribute vector for the jth event by Aj .

Of course we cannot directly measure the components of an attribute vector, but we can estimate them from
suitable data sets. For example, if the position-sensitive detector of Fig. 6 is operated with an image intensifier,
the pulse signals from the four electrodes can be used to estimate xj and yj , which are two of the 5-7 components
of Aj . To get sufficient information to estimate additional components, we need to add optical elements such as
lenslets or color filters in front of the detector to alter its sensitivity to the spectral photon radiance [see (5.2)
and Fig. 5).

The goal of a photon-processing detector is estimate the components of each attribute vector as accurately as
possible. We denote the estimated attributes with tildes. Thus, if Aj = (Rj , ŝj , Ej), then Ãj = (R̃j , ˜̂sj , Ẽj).

Of course these estimates will not constitute perfect measurements of the true photon attributes, but statis-
tical estimation theory1, 14, 15 provides us with the tools to analyze and minimize the bias and variance of the
estimates with respect to the true attributes.

An efficient estimator is one that is unbiased and has the smallest possible variance, as specified by the
Cramèr-Rao lower bound. It is well known from statistical estimation theory that the maximum-likelihood (ML)
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estimator is efficient in any problem where an efficient estimator exists, and in any case the ML estimator is
asymptotically efficient as more or better data are acquired about each photon-absorption event.

For a review of ML estimation as applied to photon-processing detectors, see Barrett et al.16

To summarize what we know about how to implement optimum estimation of photon attributes, an ideal
photon-processing detector must:

• Use a gain mechanism and multiple sensors (not just a single pixel) to obtain multiple non-redundant
measurements for a single absorbed photon.

• Collect data from all sensors that respond to each event, at full precision; this form of data has
been called super listmode.

• Use the super-listmode sensor data and specifically maximum-likelihood estimation (MLE) to esti-
mate multiple attributes (e.g., 3D position, direction, energy, time) of each absorbed photon.

• Store all ML estimates of attributes in a list, at full precision

Figure 7 shows a conceptual diagram of a photon-processing detector capable of operating in the visible or
NIR portions of the spectrum. A practical realization of a photon-processing detector for x rays, gamma rays and
charged particles is the intensified Quantum Imaging Detector (iQID) developed by Brian Miller.17, 18 Computer
systems for performing the MLE step in real time are discussed by Hesterman at al.19

6. PROPERTIES OF IMAGE DATA FROM PHOTON-PROCESSING DETECTORS

So far we have discussed the mean values of data obtained by integrating detectors and photon-counting arrays
(see Secs. 5.1 and 5.2), but we have not done the same for photon-processing detectors, and we have not discussed
the statistical properties of the data in any case.

6.1. List-mode data and point processes

In practice, the estimated photon attributes will be stored in listmode, where each list entry is a K-dimensional
vector, with K being the number of estimated attributes per event; K = 6 in our example where 3D position,
two components of a unit vector and an energy are estimated.

A mathematically equivalent representation of the same information is a random point process, a sum of delta
functions defined by

u(R, ŝ, E) ≡
J∑

j=1

δ(R− R̃j)δ(ŝ− ˜̂sj)δ(E − Ẽj) . (6.1)
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For a discussion of angular delta functions, δ(ŝ− ˜̂sj), see Sec. 2.4.7 in Barrett and Myers,1 and for a thorough
treatment of random point processes, see Sec. 11.3.

Because of the independence of the photon-absorption events, the number of events J is a Poisson random
variable, and u(R, ŝ, E) is called a Poisson random process.

The mean of this point process is obtained by averaging over the statistics of each of the J vectors Aj and
over J itself for a given object f that produced the data. The result is a function of A which depends on f , so we
can denote it as u(A|f), or more explicitly as u(R, ŝ, E|f). Technically, this function can be regarded as a vector
u(f) in the Hilbert space L2(RK), which is the space of square-integrable functions of K continuous variables.

6.2. Linear imaging of emissive objects

For self-luminous objects as in astronomy, nuclear medicine or fluorescence microscopy, Caucci and Barrett13

have shown that
u(f) = Lf , (6.2)

where L is a linear operator that maps L2(R3) to L2(RK). We emphasize that L is linear even when the relation
between raw data (e.g., sensor signals) and estimated attributes is nonlinear. Linearity depends only on the
independence of the individual photon interactions.

For comparison, all linear photon-counting imaging systems that record only the number of counts in each of
M bins are described by

g(f) = Hf , (6.3)

where now H maps L2(R3) to an M -dimensional Euclidean space EM . In the terminology of Barrett and Myers,1

H is a continuous-to-discrete (CD) operator but L is a continuous-to-continuous (CC) operator. The crucial
difference between CC and CD operators is that the latter must necessarily have an infinite-dimensional null
space; the system maps a vector in an infinite-dimensional Hilbert space to a finite set of numbers, so there is an
infinite set of objects fnull that yield no data at all: Hfnull = 0 . Because real objects almost always have null
components for any CD system, the object itself cannot be recovered from the discrete data, and even simple
linear functionals such as integrals of the object over voxels cannot be estimated without a possibly infinite bias.
A CC operator like L may have a null space, but if K ≥ 3 the null space is not demanded by dimensionality
considerations, so it is possible that many of the indeterminacy problems inherent in the world of conventional
digital imaging may disappear with photon processing rather than mere photon counting.

6.3. Nonlinear imaging of transmissive objects

In many situations in optics and radiology, an image is formed by illuminating a transmissive object with a known
radiation source. In these cases, the object is described by the spatial and spectral distributions of its attenuation
and scattering coefficients. In terms of the Boltzmann equation (4.5), the object properties are embedded in the
attenuation term cmµtotLp,E and the scattering term KLp,E rather than the source term cmΞp,E . The solution
of the Boltzmann equation shows that the radiance is exponentially attenuated as it passes through the object,
so the radiance on the image detector depends nonlinearly on the object.

We can still use (6.3) to describe the mean image data with a photon-counting or integrating detector, and
(6.2) for a photon-processing detector, but now the operators H and L are nonlinear, and it is much more
difficult to say anything about null functions.

6.4. Probability density functions for photon-processing data

The full probability law for a univariate Poisson random variable is determined by its mean. The same thing
is true for a Poisson random process but now the mean is a function, u(R, ŝ, E) and the probability law is a
probability density function or PDF.

The 6D PDF for the attribute estimates is obtained by normalizing the mean:

pr(R̃, ˜̂s, Ẽ |f) =
[Lf ](R̃, ˜̂s, Ẽ)∫

V
d3R

∫
hemi

dΩs
∫∞
0
dE [Lf ](R, ŝ, E)

. (6.4)

Because the events are statistically independent (conditional on f), the overall PDF for the entire data set can
be expressed as a product of 6D PDFs like those in (6.4).11, 13
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6.5. Computation of the conditional mean of the Poisson Point Process

According to (6.4), the mean of the Poisson point process tells you everything about the statistics of the process,
conditional on a a specific object f , but how do we compute that mean?

The first approach is to recognize that, within constants, the mean u(R, ŝ, E|f) is just a blurred version of the
spectral photon radiance in plane P , LPp,E(R, ŝ, E|f), with the blurring arising from the inaccuracies in estimating
the photon attributes from the sensor data. Ways of accounting mathematically for this estimation blur have
been discussed by Caucci and Barrett,13 so finding the mean of photon-processing data, and hence the full PDF
by (6.4), boils down to computing the spectral photon radiance in plane P .

As we saw in Sec. 4.1, the spectral photon radiance is the solution of the Boltzmann transport equation, and
often analytical solutions can be found; a simple example is (4.10). In many other situations LPp,E in a plane of
interest P can be computed from the radiance in another plane, such as a source plane, by simple invocation of
the principle of conservation of radiance along a ray, as discussed in Secs. 4.2 and 4.3. As we know from Sec. 4.4,
these conservation and propagation laws apply to physical-optics and quantum-optics versions of radiance also.

For emissive objects, it may be possible to approximate the linear operator L with a very large matrix and
find its elements by simulation of he imaging system. For transmissive objects, L is nonlinear, but nevertheless
the Boltzmann can be solved to get the spectral photon radiance on the detector and from there get the mean
data for any of the four detection modes discussed in Sec. 5. For an example of this approach as applied to
diffuse optical imaging, see Jha et al.20–22

When analytical solutions are not readily available, we can use Monte-Carlo simulation to estimate the
spectral photon radiance. There is even a version of Monte-Carlo simulation, called adjoint Monte Carlo,1 that
allows direct estimation of the spectral photon radiance blurred by the estimation errors.

7. RELATION TO IMAGE QUALITY

7.1. Task-based assessment

In much of the medical-imaging community, and increasingly in other areas of imaging, image quality is defined in
terms of the performance of some observer on some clinically or scientifically relevant task. Generically, the task
can be either classification or estimation. An estimation (or quantitation) task is to determine a numerical value
for one or more parameters associated with the object being imaged. Examples include cardiac ejection fraction or
the concentration of a dye or contrast agent in some region of interest. In a classification task, the goal is to assign
the object to one of two or more classes. A simple example is tumor detection, where the classes are tumor-present
and tumor-absent. The observer for a classification task can be either a human or a mathematical algorithm.
The performance of a human observer can be measured by well-established psychophysical methods and analysis
of the resulting ROC (receiver operating characteristic) curves. Psychophysical studies are complicated and
time-consuming, however, so there is considerable interest in developing mathematical model observers that will
predict human performance. Another form of mathematical observer is the ideal observer, which makes optimal
use of the available data in such a way as to maximize an ROC-based figure of merit. If we know the performance
of the ideal observer, we can compare it to the performance of a human and determine how well the human can
extract the information contained in the data. Often the performance of the true ideal observer is difficult to
compute, so we use the optimal linear observer, which we call the Hotelling observer. It is optimal among all
observers constrained to perform only linear observations on the data. An important variant on the Hotelling
observer is the channelized Hotelling observer (CHO), which is the Hotelling observer applied not to an image
but to a reduced data set consisting of the sampled outputs of a small number of linear filters, called channels.
An important example is spatial-frequency-selective channels such as those known to be operative in the human
visual system.

7.2. Object variability

For all of these tasks and observers, task performance is limited by the randomness in the data. So far we have
discussed randomness arising from photon noise in different kinds of detectors, but there is also an inevitable
statistical variability in the objects being imaged,23 and in some cases the imaging system itself introduces a
form of noise.24
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To account for the object variability in a classification task, we have to understand the statistics of the data
conditional on a class C of objects. For any data set g, including the listmode data acquired by photon-processing
detectors, it follows from elementary laws of probability that

pr(g|C) = 〈pr(g|f)〉f∈C , (7.1)

where pr(g|f) is the PDF of the data given a particular object f , and the expectation is over all objects drawn
from the class.

To visualize this expectation and its impact on classification performance, we can imagine using an accurate
simulation program to generate N sample objects from class C. Denoting the nth sample object as fn (n =
1, ...N), we can approximate pr(g|C) by a sample average as

pr(g|C) ≈ 1

N

N∑

n=1

pr(g|fn) . (7.2)

For any form of photon noise, which is the subject of this paper, the PDF pr(g|fn) is fully determined by its
conditional mean g(fn). For a photon-counting detector with M pixels, therefore, (6.3) and (7.2) show that

pr(g|C) ≈ 1

N

N∑

n=1

pr(g|Hfn) , (7.3)

where g is a vector in an M -D space with components (g1, g2, g3, ..., gM ). These components are statistically
independent conditional on an object f , so pr(g|Hfn) is a product of M univariate Poissons, but the average
over objects in (7.1) introduces statistical dependence. The accuracy of the approximation in (7.3) increases as
the number of sample objects, N , increases.

To display this M -D PDF, we consider two components at a time. For example, we can plot the bivariate
PDF pr(gm, gm′ |C) as in Fig. 8 for different total exposure times τ . The axes on these plots represent gm and
gm′ (not m and m′), and the gray level is the PDF. The leftmost panel is for the largest τ , and the rightmost
panel is for the smallest τ .

The points shown by x on all three panels correspond to the values of Hfn for the N sample objects used
in (7.3). For this illustration, N = 20, and the bivariate PDFs for different objects are well separated on the
leftmost panel where τ is large so the standard deviation of the counts per pixel is small compared to its mean.
For smaller τ , however, the standard deviation of the counts on each pixel increases relative to its mean, and the
individual PDFs, pr(gm, gm′ |Hfn) merge into one big blob, which for large N will be a good approximation to the
class PDF, pr(gm, gm′ |C). The overall variance and covariance for the class PDF depends on both the exposure
time (mean number of counts per pixel for a given object) and the randomness of the objects themselves.

A similar illustration holds for photon-processing detectors, but there the discrete index m is replaced by
continuous indices like (R, ŝ, E). The exposure time τ controls the total number of recorded events J in the data
list for a particular object, and again the overall variance and covariance for the class PDF depend on both the
exposure time and the randomness of the objects. For mathematical details, see Caucci.13

7.3. Information content of a photon

Consider an imaging problem where the task is to decide if the object that produced a particular image g was
from class C1 or class C2. To perform this task, we need some knowledge the two class PDFs, pr(g|C1) and
pr(g|C2). These densities can again be approximated by expressions like (7.3) if we can accurately simulate
objects from the two classes.

A depiction of the data statistics like that in Fig. 8, but for two classes, is given in Fig. 9. It is visually
evident that the classification task can be performed with high accuracy at large exposure time (leftmost image
in the figure) but not for shorter exposures where the photon noise dominates.

It is beyond the scope of this paper, but it is possible to make these statements much more precise by
specifying the observer that will perform the tasks (e.g., human or Hotelling observer) and by adopting some
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. A

Figure 8. Illustration of the bivariate class PDF pr(gm, gm′ |C) for a class of objects C and a photon-counting pixel

array. Distributions are shown for three different values of the exposure time τ (increasing right to left). See text for

explanation.

Figure 9. Illustration of the bivariate PDFs, pr(gm, gm′ |C1) and pr(gm, gm′ |C2), for two classes and a photon-counting

pixel array. Distributions are shown for three different values of the exposure time τ (increasing right to left). See text

for explanation.

measure of the task performance, such as area under an ROC curve. If one then plots this performance metric
as a function of the mean number of absorbed photons, then one can define the information content per photon
for this particular imaging system, task and observer. For a full mathematical exposition of this approach, with
application to imaging with ionizing radiation, the reader can consult a forthcoming tutorial review article in
Physics in Medicine and Biology.25

8. SUMMARY AND CONCLUSIONS

This paper has considered two topics that at first blush might appear to be unrelated: radiance and photon noise.
In one sense the connection is elementary: All radiation detectors respond to electromagnetic radiation through
photoelectric interactions, and the statistical properties of the detector output are related to the inherent Poisson
randomness of these interactions. Poisson probability laws are determined by their means, and the mean output
from a detector is some functional of the radiance incident on the detector. In practical engineering problems
we strive to develop highly linear detectors, so the relation between radiance incident on the detector and the
mean of some Poisson process is usually also linear.

In the context of imaging, the radiance incident on the detector is some other functional of the radiance inci-
dent on or emitted by the object being imaged; this functional is linear for self-luminous or reflecting objects but
nonlinear for transmissive objects. In either case, the basic problem in image analysis or task-based assessment
of image quality is to understand the full relationship between object properties and the Poisson statistics on
the detector output. This program requires clear definitions of radiance in various circumstance; methods for
transport of the radiance from object to imaging detector; mathematical expressions for the mean response of
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the detector to a given incident radiance; a clear statement of just what constitutes a detector output; an under-
standing of how the statistics of this output relate to the randomness not only of the photoelectric interactions
but also of the objects being image, and finally a rigorous way of relating these statistics to image quality.

This paper has attempted to survey the current state of knowledge for all steps in this chain. We started with
the usual elementary definition of radiance in terms of radiant flux, in the limit of geometrical optics, and we
related this radiance to other radiometric quantities, such as irradiance and radiant intensity in the usual way.
A particularly important radiometric quantity for this discussion turned out to be the spectral photon radiance,
defined in (2.12).

Then we explored definitions of radiance valid for physical optics and quantum optics, and we studied the
transport and conservation of radiance beginning with the Boltzmann transport equation. In particular, the cru-
cial principle that radiance is constant along a ray for lossless optical systems was developed for both geometrical
and physical optics.

We discussed four generic types of radiance detector for imaging systems. In addition to the familiar distinc-
tion between integrating and photon-counting detectors, we briefly discussed position-sensitive photon-counting
detectors, which are usually used for beam-tracking applications but can be used for single-photon counting and
position estimation with the addition of an image intensifier or other optical gain medium. An interesting facet
of this class of detectors is that the output is a list of estimated interaction positions rather than an array of
pixel values. Finally, we introduced a new class of devices, called photon-processing detectors, where multiple
attributes of each photon interaction event can be estimated and stored in an expanded list.

The statistical properties of the listmode data from these last two classes of detectors were analyzed by
introducing a Poisson point process, defined as a sum of delta functions in photon-attribute space; the mean of
this point process is the spectral photon radiance.

We concluded with a brief summary of task-based assessment of image quality, with an emphasis on photon-
counting and photon-processing detectors. This analysis led to a definition of the task-based information content
of a single photon.
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