Front Matter: Volume 9170

Event: SPIE NanoScience + Engineering, 2014, San Diego, California, United States
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9781628411973

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2014, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/14/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the last two digits of the six-digit CID Number.
Contents

SESSION 1 NANOPHOTONICS FOR ENERGY

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>9170 02</td>
<td>High-sensitivity silicon nanowire phototransistors (Invited Paper)</td>
<td>[9170-1]</td>
</tr>
<tr>
<td>9170 03</td>
<td>Thermo-active polymer nanocomposites: a spectroscopic study</td>
<td>[9170-2]</td>
</tr>
<tr>
<td>9170 06</td>
<td>Heterojunction of nano-poly (O-toluidine) on silicon nanowires is investigated as a candidate heterojunction diode</td>
<td>[9170-5]</td>
</tr>
<tr>
<td>9170 08</td>
<td>Characteristic temperature analysis for PbSe/PbSrSe multiple quantum well structure</td>
<td>[9170-7]</td>
</tr>
</tbody>
</table>

SESSION 2 NANOMECHANICAL NANOFLUIDIC DEVICES

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>9170 09</td>
<td>Mechanical behavior of microelectromechanical microshutters</td>
<td>[9170-8]</td>
</tr>
<tr>
<td>9170 0B</td>
<td>Photothermal nanopositioners based on graphene nanocomposites</td>
<td>[9170-10]</td>
</tr>
<tr>
<td>9170 0C</td>
<td>Progress towards a MEMS tunable infrared filter using porous silicon</td>
<td>[9170-11]</td>
</tr>
</tbody>
</table>

SESSION 3 NANOSTRUCTURE PROPERTIES AND DEVICES

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>9170 0E</td>
<td>Tracking of the organic species during the synthesis of cobalt-based nanoparticles in non-aqueous solution (Invited Paper)</td>
<td>[9170-13]</td>
</tr>
<tr>
<td>9170 0F</td>
<td>Optical characterization of CMOS compatible micro optics fabricated by mask-based and mask-less hybrid lithography</td>
<td>[9170-14]</td>
</tr>
<tr>
<td>9170 0H</td>
<td>Polymer-carbon nanotube composites: electrospinning, alignment and interactions (Invited Paper)</td>
<td>[9170-16]</td>
</tr>
</tbody>
</table>

SESSION 4 SUBWAVELENGTH STRUCTURES

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>9170 0L</td>
<td>Effects of different wetting layers on the growth of smooth ultra-thin silver thin films</td>
<td>[9170-20]</td>
</tr>
<tr>
<td>9170 0M</td>
<td>Simulation of a film of random particulate medium containing aggregates of metal nanospheres</td>
<td>[9170-22]</td>
</tr>
</tbody>
</table>
SESSION 5 NANOPHOTONIC DEVICES

9170 0O High finesse silicon ring resonators for monolithic mode-locked lasers [9170-24]

SESSION 6 NANOFABRICATION OF OPTICAL ELEMENTS

9170 0V Nano fabrication of compound bifocal zone plate for x-ray optics [9170-32]
9170 0X Omnidirectional wavelength selective emitters/absorbers based on dielectric-filled anti-reflection coated two-dimensional metallic photonic crystals [9170-34]

SESSION 7 INNOVATIVE PATTERNING

9170 0Z Laser-assisted biosynthesis for noble nanoparticles production [9170-36]
9170 10 Nanoimprint fabrication of wiregrids micro-polarizers in near infrared spectra using SU-8 as an intermediate film [9170-37]

SESSION 8 NANOPARTICLE PROPERTIES

9170 13 Polarized light emission by deposition of aligned semiconductor nanorods [9170-41]
9170 14 Design of single-polarization single-mode photonic nanowire [9170-42]
9170 15 Generation of Cd1-xZnxS nanoparticles by laser ablation in liquids [9170-43]
9170 16 Deep UV microsphere nanolithography to achieve sub-100 nm feature size [9170-44]

POSTER SESSION

9170 18 Fabrication of high aspect ratio silicon gratings by interference lithography and potassium hydroxide anisotropic etch technique [9170-47]
9170 1C Surface potential and field effect in structures with Ge-nanoclusters grown on Si(100) surface [9170-51]
9170 1D Comparison of triangular and squared ITO nano-grating of GaN LEDs [9170-52]
9170 1F Lightfast optical current in dielectric by plasmonically induced local field [9170-54]
9170 1I Formation of sub-wavelength pitch regular structures employing a motorized multiple exposure Lloyd’s mirror holographic lithography setup [9170-57]
9170 1J Processing and characterization of monodisperse phosphine-free CdSe colloidal quantum dots [9170-58]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Akhlaghi-Bouzan, M., 0O
Aalamir, Faisal M., 0H
Aristov, V. V., 0V
Asgari, Sirous, 1J
Aubert, Tangi, 13
Baili, A., 14
Banerjee, Saswatee, 0M
Behill, Ashli, 1D
Ben Salem, A., 14
Bi, Lali, 18
Bonakdar, Alireza, 16
Brown, Robert L., 16
Burns, Devin E., 09
Campo, Eva M., 03, 0H
Čelanović, Ivan, 0X
Cherif, R., 14
Chou, Jeffrey B., 0X
Dan, Yaping, 02
Davenport, Tatiana K. C., 1D
Delfyett, P. J., 0O
Edwards, Vernessa, 0Z
El-Zohary, Salah E., 06
Fischer, Daniel A., 03, 0H
Gomes, Raquel, 13
Haraguchi, M., 06
Hayenga, W. E., 0O
Hens, Zeger, 13
Hong, Yilin, 18
Hýnka, Yu. V., 1C
Ishikawa, T., 0V
Isyan, A. A., 0V
Jafari, R., 15
Jafarav, M. A., 15
Jang, Sung Jun, 16
Jaye, Cherno, 03, 0H
Jiang, Xiaolong, 18
Jin, Xiaomin, 1D
Joannopoulos, John D., 0X
Johnson, Lee, 0F
Jones, Justin S., 09
Jurkevičičius, Aušrine, 1I
Khajavikhan, M., 0O
Khodr, M., 08
Kim, Sang-Gook, 0X
Kim, Seungchul, 1F
Kondratenko, S. V., 1C
Kozak, Dmitry A., 0C
Kožieň, D., 0E
Kukhtareva, Tatiana, 0Z
Kukhtareva, Nickolai, 0Z
Kumar, A., 14
Kuyumchyan, A. V., 0V
Kuyumchyan, N. A., 0V
Kwon, Ojoon, 1F
Larios, Eduardo, 03, 0H
Lee, Tae-Woo, 1F
Li, Mary J., 09
Loomis, James, 0B
Maghsoudi, Hadi, 1J
Mahboub, Melika, 1J
Milster, Tom, 0F
Mrkrtchyan, V. P., 0V
Mrkrtchyan, V. A., 0V
Mohammadimoufidi, Mohammad, 13
Mohseni, Hooman, 16
Moses, Sherita, 0Z
Nasirov, E. F., 15
Neyts, Kristoan, 13
Ni, Chuan, 0L
Niederberger, M., 0E
Okamoto, T., 06
Omastová, Mária, 03
Panchapakesan, Balaji, 0B
Penninck, Lieven, 13
Pruessner, Marcel, 0C
Qiu, Keqiang, 18
Rabinovich, William, 0C
Rezaei, Mohsen, 16
Rinnerbauer, Veronika, 0X
Saini, T. S., 14
Sarangan, Andrew M., 0L, 10
Shah, Piyush, 0L
Shen, Yichen, 0X
Shenashen, M. A., 06
Shulakov, E. V., 0V
Šimantoni, Linas, 1I
Sinha, R. K., 14
Soljačić, Marin, 0X
Staniuk, M., 0E
Stievator, Todd, 0C
Strubbe, Filip, 13
Summitt, Chris, 0F
Suvorov, A. Y., 0V
Takashima, Yuzuru, 0F
Tamulevičius, Sigita, 1I
Tamulevičius, Tomas, 1I
Tan, Siew Li, 02
Tsujii, Akinori, 06
Viraganavičius, Dainius, 1I
Wang, Junxin, 10
Wang, Qingbo, 18
Wang, Sunglin, 0F
Winter, A. Douglas, 03, 0H
Wu, Lixiang, 18
Yeng, Yi Xiang, 0X
Zaverton, Melissa, 0F
Zghal, M., 14
Zhao, Xingyan, 02
Zheng, Yanchang, 18
Conference Committee

Symposium Chairs

Satoshi Kawata, Osaka University (Japan)
Manijeh Razeghi, Northwestern University (United States)

Symposium Co-chairs

David L. Andrews, University of East Anglia Norwich (United Kingdom)
James G. Grote, Air Force Research Laboratory (United States)

Conference Chairs

Eva M. Campo, Bangor University (United Kingdom)
Elizabeth A. Dobisz, HGST (United States)
Louay A. Eldada, Quanergy, Inc. (United States)

Conference Program Committee

André-Jean Attias, Université Pierre et Marie Curie (France)
Irene Fernandez-Cuesta, Lawrence Berkeley National Laboratory (United States)
Sarah Haigh, The University of Manchester (United Kingdom)
Sondra Hellstrom, California Institute of Technology (United States)
Ghassan E. Jabbour, Arizona State University (United States)
Robert Magnusson, The University of Texas at Arlington (United States)
Balaji U. Panchapakesan, University of Louisville (United States)
Won Park, University of Colorado at Boulder (United States)
Dorota A. Pawlak, Institute of Electronic Materials Technology (Poland)
Jun Tanida, Osaka University (Japan)
Richard Tiberio, Stanford University (United States)
Chee Wei Wong, Columbia University (United States)

Session Chairs

1 Nanophotonics for Energy
Louay A. Eldada, Quanergy Systems, Inc. (United States)

2 Nanomechanical Nanofluidic Devices
Eva M. Campo, Bangor University (United Kingdom)

3 Nanostructure Properties and Devices
Louay A. Eldada, Quanergy Systems, Inc. (United States)
4 Subwavelength Structures
Elizabeth A. Dobisz, HGST (United States)

5 Nanophotonic Devices
Elizabeth A. Dobisz, HGST (United States)

6 Nanofabrication of Optical Elements
Louay A. Eldada, Quanergy Systems, Inc. (United States)

7 Innovative Patterning
Won Park, University of Colorado at Boulder (United States)

8 Nanoparticle Properties
Eva M. Campo, Bangor University (United Kingdom)