Fiber Lasers XII: Technology, Systems, and Applications

L. Brandon Shaw
John Ballato
Editors

9–12 February 2015
San Francisco, California, United States

Sponsored by
SPIE

Cosponsored by
NKT Photonics A/S (Denmark)
PolarOnyx, Inc. (United States)

Published by
SPIE
Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Authors</td>
</tr>
<tr>
<td>xiii</td>
<td>Conference Committee</td>
</tr>
</tbody>
</table>

NOVEL FIBERS AND DESIGNS I

9344 02	Large mode area Yb-doped photonic bandgap fiber lasers (Invited Paper) [9344-1]
9344 03	Polarizing 50µm core Yb-doped photonic bandgap fiber [9344-2]
9344 04	Yb-doped large mode area fibers with reduced cladding symmetry [9344-3]
9344 05	Asymptotically single-mode hybrid fiber with a high anomalous dispersion in the 1µm wavelength region [9344-4]

NARROW LINEWIDTH

| 9344 06 | High-power narrow-linewidth large mode area photonic bandgap fiber amplifier [9344-5] |
| 9344 08 | Record peak power single-frequency erbium-doped fiber amplifiers [9344-7] |

APPLICATIONS

| 9344 0B | High stability single-frequency Yb fiber amplifier for next generation gravity missions [9344-10] |
| 9344 0C | High-intensity nanosecond all-fiber-coiled laser and extreme ultraviolet generation [9344-11] |

FIBER COMPONENTS AND NOVEL ARCHITECTURES

9344 0E	Femtosecond inscribed mode modulators in large mode area fibers: experimental and theoretical analysis [9344-13]
9344 0F	High power cladding mode stripper [9344-14]
9344 0G	Electrically tunable fiber-integrated Yb-doped laser covering 74 nm based on a fiber Bragg grating array [9344-15]
9344 0H	Fiber laser pumping devices based on directional coupling via fused silica ridge waveguide arrays [9344-16]
Superluminescent diode versus Fabry-Perot laser diode seeding in pulsed MOPA fiber laser systems for SBS suppression [9344-17]

CHARACTERIZATION

Recent progress in the understanding of mode instabilities (Invited Paper) [9344-18]
Influence of signal bandwidth on mode instability thresholds of fiber amplifiers [9344-21]

NOVEL FIBERS AND DESIGNS II

Picosecond Yb-doped single-trench fiber amplifier with diffraction limited output [9344-27]
Monolithic sub-MW peak power tapered ytterbium-doped fiber amplifier [9344-28]
High peak power amplification in large-core all-solid Yb fibers with an index-elevated pump clad and a low numerical aperture core [9344-29]

FREQUENCY CONVERSION

Power scaling of Raman fiber lasers (Invited Paper) [9344-30]
Optical system design of a speckle-free ultrafast Red-Green-Blue (RGB) source based on angularly multiplexed second harmonic generation from a TZDW source [9344-32]
White light 50 W supercontinuum: roadmap to kW truly white lasers [9344-33]
Ultraviolet enhanced supercontinuum generation in uniform photonic crystal fiber pumped by giant-chirped fiber lasers [9344-34]
High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber pumped by amplified picosecond and noise-like pulses at 2 µm [9344-35]
Yellow laser light generation by frequency doubling of the output from a master oscillator fiber power amplifier system [9344-36]

MATERIALS AND FABRICATIONS

Erbium nanoparticle doped fibers for efficient, resonantly-pumped Er-doped fiber lasers [9344-38]
A double clad ytterbium fibre laser operating at 400°C [9344-40]
Long-term optical reliability and lifetime predictability of double clad fibers [9344-41]
ULTRASHORT PULSE LASERS I

9344 19 Experimental demonstration of multidimensional amplification of ultrashort pulses (Best Student Paper Award) [9344-44]

ULTRASHORT PULSE LASERS II

9344 1A 22GW peak power femtosecond fiber CPA system [9344-45]
9344 1C Chirped and divided-pulse Sagnac fiber amplifier [9344-47]
9344 1D Phase stabilization of multidimensional amplification architectures for ultrashort pulses [9344-48]
9344 1E Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification [9344-49]

HIGH POWER

9344 1F High power performance limits of fiber components (Invited Paper) [9344-50]
9344 1G 2.1 kW single mode continuous wave monolithic fiber laser [9344-51]
9344 1H 6.8 kW peak power quasi-continuous wave tandem-pumped Ytterbium amplifier at 1071nm [9344-52]

2 µM FIBER LASERS I

9344 1K Sub-700fs pulses at 152 W average power from a Tm-doped fiber CPA system [9344-55]
9344 1L Sub-100 fs passively mode-locked holmium-doped fiber oscillator operating at 2.06 µm [9344-56]
9344 1M High-power linearly polarized thulium-doped all-fiber picosecond master-oscillator power-amplifier [9344-57]
9344 1N Peak power scaling of thulium-doped ultrafast fiber laser systems [9344-58]

2 µM FIBER LASERS II

9344 1O 160 W average power single-polarization, nanosecond pulses generation from diode-seeded thulium-doped all fiber MOPA system [9344-59]
9344 1Q Self-efficiency improvement and cooling in thulium-doped fibers [9344-61]
9344 1R Resonantly pumped amplification in a Tm-doped large mode-area photonic crystal fiber [9344-62]
Coherent combining of fiber-laser-pumped frequency converters using all fiber electro-optic modulator for active phase control [9344-63]

Interferometric phase measurement techniques for coherent beam combining [9344-64]

Beam combining and SBS suppression in white noise and pseudo-random modulated amplifiers [9344-65]

A higher-order mode fiber amplifier with an axicon for output mode conversion [9344-66]

Brightness enhancement of a multi-mode ribbon fiber using transmitting Bragg gratings [9344-67]

Wavelength dependence of maximal diffraction-limited output power of fiber lasers [9344-69]

Sb$_2$Te$_3$ topological insulator based saturable absorber for Er-doped mode-locked fiber lasers [9344-70]

Polarization-maintaining amplifier based on 3C fiber structures [9344-71]

Impact of chromatic dispersion and spectral filtering in an all-fiber mode-locked ytterbium laser [9344-72]

Transient-fiber-Bragg grating spectra in self-swept Fabry-Perot fiber lasers [9344-74]

A high energy green fiber laser in the ns regime for advanced material processing applications [9344-75]

Measuring bend losses in large-mode-area fibers [9344-76]

Continuously one-dimensional steering of coherently combined beam utilizing phased array of liquid crystal optical phased arrays (PALCOPA) [9344-77]

Pulse shaping in fiber lasers for high energy micromachining applications [9344-78]

High-average-output mode-locked figure-eight all-fibre Yb master oscillator [9344-79]

Binary phase shaping for mitigating self-phase modulation [9344-80]

MW-level, kHz-repetition rate femtosecond fiber-CPA system operating at 1555 nm [9344-81]

Self-injection locking of the DFB laser through ring fiber optic resonator [9344-82]
9344 2C Characterization of mode-locking in an all-fiber, all normal dispersion ytterbium based fiber oscillator [9344-83]

9344 2E Phase stabilization of an actively mode-locked ring laser [9344-85]

9344 2F Genetic algorithm based optimization of pulse profile for MOPA based high power fiber lasers [9344-86]

9344 2G Bi-directional pump configuration for increasing thermal modal instabilities threshold in high power fiber amplifiers [9344-87]

9344 2I Optimized mode-field adapter for low-loss fused fiber bundle signal and pump combiners [9344-89]

9344 2J A loss-compensated fiber loop available for short-pulse lasers and its application in water detection [9344-90]

9344 2K Double-looped Mach-Zehnder interferometry for achieving simultaneous spectral ring-down information [9344-91]

9344 2L Thermal stability of multi-longitudinal mode laser beating frequencies in hybrid semiconductor-fiber ring lasers [9344-92]

9344 2M Bidirectional single-longitudinal mode SOA-fiber ring laser based on optical filter assisted gain starvation [9344-93]

9344 2O Compression of chirp pulses from a femtosecond fiber based amplifier [9344-95]

9344 2P Group-velocity dispersion analysis of large mode-area doped fibers implemented in a laser cavity during operation [9344-96]

9344 2S Generation of stable high order harmonic noise-like pulses in a passively mode-locked double clad fiber ring laser [9344-99]

9344 2T Experimental study of backscattering pulses and broadband generation in a Q-switched MOPA [9344-100]

9344 2U Reduction of self-phase-modulation induced phase jitter in multiplexing repetition rate of actively mode-locked laser for photonic analog-to-digital converters [9344-101]

9344 2W Linear cavity all-fiber dual wavelength actively Q-switched fiber laser with a Sagnac interferometer [9344-104]

9344 2X Theoretical treatment of modal instability in high-power cladding-pumped Raman amplifiers [9344-105]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aallos, Ville, 25
Abdulfattah, Ali, 1R
Abedin, Kazi, 1G
Abramczyk, Jaroslaw, 15
Abramski, Krzysztof M., 1Z, 2A
Aleshkina, Svetlana S., 05, 0S
Al-Otaibi, Mohammed, 2L, 2M
Álvarez-Tamayo, R. I., 2W
Amezcue Correa, Rodrigo, 2G
Anashkina, Elena A., 0S
Anderson, Brian M., 1U, 1W
Andrianov, Alexey V., 0S
Antier, Marie, 1T
Antonio-López, Enrique, 2G
Askins, Charles G., 12
Auger, Mathieu, 1F
Baker, Colin C., 12
Bansal, L., 0F
Baravets, Yauhen, 2I
Barcelata-Pinzón, A., 2W
Barness, Doron, 27
Bartelt, H., 0G, 0T
Barwood, G. P., 0B
Baselt, T., 2P
Beier, F., 1H
Belovolov, M. I., 0B
Bierlich, J., 0T
Bobkov, Konstantin K., 0S
Boguslawski, J., 1Z
Bohata, Jan, 2I
Boivinot, S., 2I
Bourderionnet, Jérôme, 1T
Bourdon, P., 1S
Brignon, Arnaud, 1T
Bubnov, Mikhail M., 0S, 0B
Buena Escobedo, José Luis, 2B
Canat, G., 1S
Chang, Chun-Lin, 0C
Chen, Jian, 26
Chen, Shih-Hung, 0C
Chen, Si, 2U
Cheng, Kueping, 2F
Cheung, Eric, 03
Choi, Jindoo, 2K
Chojetzký, C., 0G
Clarkson, W. Andrew, 14
Clowes, John, 0X
Codemard, Christophe, 0R
Coscelli, Enrico, 04
Cserteg, András, 2C
Cucinotta, Annamaria, 04
Cunningham, Wells, 15
Dajani, Iyad, 02, 03, 06, 1U, 2X
Daniel, Jae M. O., 14
Dantzus, Marcos, 29
Das Chowdhury, Sourav, 2T
Dautermann, C., 0H
Dawson, J. W., 1W
Demmler, Stefan, 1A
Denisov, Alexander N., 0S
DeSantolo, A., 1V
Devine, Adam, 0X
DiGiovanni, D. J., 1V
Divilanski, I., 1W
Dong, Hao, 1G
Dong, LianQ, 02, 03, 06
Drachenberg, D. R., 1W
Drazdy, András, 2C
Dubinski, Mark, 12
Dunn, Christopher, 02, 03
Dupré, Michael, 0E
Durán-Sánchez, M., 2W
Durétu, A., 1S
Eberhardt, R., 1H
Ehrenreich, Thomas, 06, 1U
Eidam, Tino, 19, 1A, 1D
Enokidani, Jyun, 20, 2O
Estudillo-Ayala, J. M., 2S
Fedorov, Yuri, 2B
Feng, Yan, 0U
Filoteo-Razo, J. D., 2S
Fini, J. M., 1V
Fitzau, O., 0B
Flores, Angel, 1U
Fontana, Jake P., 12
Fortiadi, Andrei A., 21, 2B
Friebel, E. Joseph, 12
Fu, Songnian, 2F
Fuchs, Frank, 1K
Gaida, Christian, 1K, 1N
Gajdósmarty, Gábor, 2C
Gao, Shoufei, 0Y
Gebhardt, Martin, 1K, 1N
Gelszinsis, Philipp, 0E
Georges, Patrick, 1C
Giesberts, M., 0B
Gill, P., 0B
Mottay, Eric, 1C
Müller, B., 0T
Müller, M., 19, 1D
Muñoz-Lopez, A., 2S
Muravev, Sergey V., 0S
Naderi, Nader, 06
Naderi, Shadi, 2X
Nagano, Shigenori, 2E
Nguyen, Chanh D. Tr., 2J
Nicholson, J. W., 1V
Nicklaus, K., 0B
Nogueira, Rogério, 10
Nold, J., 1H
Nolte, Stefan, 0E
Oh, Euneku, 12
Oh, Seung Ryeol, 2J, 2K
Orec-Archer, Ana, 0X
Ott, D., 1W
Otto, Hans-Jürgen, 0J, 1Y
Pal, Mrinmay, 2T
Palese, Stephen P., 03
Paramonov, V. M., 08
Parsons, Joshua, 02, 03
Pattanaik, Radha K., 12
Pax, P. H., 1W
Peele, John R., 12
Peterka, Pavel, 23, 2I
Petit, Lasticia, 2S
Pisařík, Michael, 2I
Podražský, Ondrej, 23
Poli, Federica, 04
Pottiez, O., 2S, 2W
Primit, Jérôme, 1T
Pulford, Benjamin, 02, 03, 06
Raskazov, Gennady, 29
Richardson, Martin, 1R
Richter, Daniel, 0E
Rojas-Laguna, R., 2S
Romano, Valerio, 10
Rosales-García, Andrea, 1G
Rothhardt, Jan, 1A
Rothhardt, M., 0G
Rowen, Elton E., 24, 27
Ruehl, Axel, 1L
Ryabtsev, Anton, 29
Ryan, Robert, 1R
Ryser, Manuel, 10
Sabry, Yasser M., 2L, 2M
Sági, Veronika, 2C
Sahu, Jayanta K., 0R
Saika, Makoto, 2E
Saltog, Kunimasa, 02, 03
Sakurai, Tsulong, 20
Salcedo, J. R., 0I
Salganskii, Mikhail Yu, 05
Salin, Francois, 04
Sanghera, Jasbinder, 1G
Sanjib Eznaveh, Zeinab, 2G
Schreiber, T., 1H
Schulze, Christian, 0E
Selleri, Stefano, 04
Semenov, Sergey L., 0S
Sen, Ranjan, 2T
Senatorov, Andrei K., 05
Shah, Lawrence, 1R
Shalev, Nír, 27
Shebl, Ahmed, 2L
Shekhar, Nishant K., 2T
Shi, Hongxing, 0Z, 1M, 1O
Shi, Jun, 2F
Shum, Ping, 2F
Simakov, Nikita, 14
Sinaí, Doron, 24
Sincere, Alex, 1R
Smith, Arlee V., 0L
Smith, Jesse J., 0L
Sobon, Gregor, 1Z, 2A
Soto, Jarroslaw, 1Z, 2A
Souza, J. M., 0I
Spirlin, Vasiliy V., 2B
Streekker, M., 1H
Stutzi, Fabian, 1K, 1N, 1Q
Sullivan, Sean, 0F, 1G
Sumida, Shin, 20, 2O
Sun, Ruoyu, 0Y
Supradeepa, V. R., 0F
Szabó, Áron, 1G
Takada, Akira, 2E
Takuchi, Ken-ichi, 2O
Tai, Eran, 24
Tan, Fangzhou, 0Z, 1M, 1O
Tang, Ming, 2F
Tankala, Kanishka, 15
Tarka, Jan, 1Z, 2A
Tassano, J. B., 1W
Tei, Kazuyoku, 20, 2O
Theobald, C., 0H
Thomas, Jens U., 0E
Tian, Cuiping, 0Y
Tiss, T., 0G
Tobioka, Hideaki, 1G
Tünnermann, Andreas, 0J, 19, 1A, 1D, 1H, 1K, 1N, 1Q, 1Y
Váralyay, Zoltán, 1G, 2C
Venus, G., 1W
Vergien, Christopher, 06
Voigtländer, Christian, 0E
Wandt, Dieter, 1K
Wang, Pu, 0Y, 0Z, 1M, 1O
Wang, Xiangru, 26
Wang, Yingying, 0Y
Weigand, B., 0H
Westbrook, P. S., 1V
Wienke, Andreas, 1K
Williams, R. A., 0B
Windeler, R. S., 1V
Wolff, S., 0H
Wulfpart, M., 21
Conference Committee

Symposium Chairs

- Guido Hennig, Daetwyler Graphics AG (Switzerland)
- Yongfeng Lu, University of Nebraska-Lincoln (United States)

Symposium Co-chairs

- Bo Gu, Bos Photonics (United States)
- Andreas Tünnermann, Fraunhofer-Institut für Angewandte Optik und Feinmechanik (Germany) and Friedrich-Schiller-Universität Jena (Germany)

Program Track Chair

- Gregory J. Quarles, Optoelectronics Management Network (United States)

Conference Chair

- L. Brandon Shaw, U.S. Naval Research Laboratory (United States)

Conference Co-chair

- John Ballato, Clemson University (United States)

Conference Program Committee

- Thomas Tanggaard Alkeskjold, NKT Photonics A/S (Denmark)
- Paulo Almeida, Fianium Ltd. (United Kingdom)
- Adrian L. Carter, Nufern (United States)
- Fabio Di Teodoro, The Aerospace Corporation (United States)
- Ingmar Hartl, Deutsches Elektronen-Synchrotron (Germany)
- Clifford Headley III, OFS Laboratories (United States)
- Sami T. Hendow, Adaptive Laser Processing (United States)
- Stuart D. Jackson, Macquarie University (Australia)
- Jens Limpert, Friedrich-Schiller-Universität Jena (Germany)
- Jian Liu, PolarOnyx (United States)
- John D. Minelly, Coherent, Inc. (United States)
- Peter F. Moulton, Q-Peak, Inc. (United States)
- Martin H. Muendel, JDSU (United States)
- Siddharth Ramachandran, Boston University (United States)
- Craig Robin, Lockheed Martin Aculight (United States)
- Akira Shirakawa, The University of Electro-Communications (Japan)
Ji Wang, Corning Incorporated (United States)
Pu Wang, Beijing University of Technology (China)
Yoann Zaouter, Amplitude Systèmes (France)
Michalis N. Zervas, University of Southampton (United Kingdom)

Session Chairs

1 Novel Fibers and Designs I
 Thomas Tanggaard Alkeskjold, NKT Photonics A/S (Denmark)

2 Narrow Linewidth
 L. Brandon Shaw, U.S. Naval Research Laboratory (United States)

3 Applications
 Sami T. Hendow, Adaptive Laser Processing (United States)

4 Fiber Components and Novel Architectures
 Clifford Headley III, OFS Fitel LLC (United States)

5 Characterization
 John D. Minelly, Coherent, Inc. (United States)

6 15 Years of Fiber Supercontinuum
 L. Brandon Shaw, U.S. Naval Research Laboratory (United States)

7 Novel Fibers and Designs II
 John Ballato, Clemson University (United States)

8 Frequency Conversion
 Jian Liu, PolarOnyx, Inc. (United States)

9 Materials and Fabrications
 Adrian L. Carter, Nufern (United States)

10 Ultrashort Pulse Lasers I
 Yoann Zaouter, Amplitude Systèmes (France)

11 Ultrashort Pulse Lasers II
 Ingmar Hartl, Deutsches Elekronen-Synchrotron (Germany)

12 High Power
 Jens Limpert, Friedrich-Schiller-Universität Jena (Germany)

13 2 µm Fiber Lasers I
 Peter F. Moulton, Q-Peak, Inc. (United States)
14 2 µm Fiber Lasers II
Stuart D. Jackson, Macquarie University (Australia)

15 Beam Combining and Mode Conversion
Craig A. Robin, Lockheed Martin Aculight (United States)