Front Matter: Volume 9371
The papers included in this volume were part of the technical conference cited on the cover and
title page. Papers were selected and subject to review by the editors and conference program
committee. Some conference presentations may not be available for publication. The papers
published in these proceedings reflect the work and thoughts of the authors and are published
herein as submitted. The publisher is not responsible for the validity of the information or for any
outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:
Author(s), "Title of Paper," in Photonic and Phononic Properties of Engineered Nanostructures V,
WA, 2015) Article CID Number.

ISSN: 0277-786X
ISBN: 9781628414615

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2015, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of
specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by
SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this
volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright
Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made
electronically through CCC Online at copyright.com. Other copying for republication, resale,
advertising or promotion, or any form of systematic or multiple reproduction of any material in this
book is prohibited except with permission in writing from the publisher. The CCC fee code is
0277-786X/15/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published
first online and then in print. Papers are published as they are submitted and meet publication
criteria. A unique citation identifier (CID) number is assigned to each article at the time of the first
publication. Utilization of CIDs allows articles to be fully citable as soon as they are published
online, and connects the same identifier to all online, print, and electronic versions of the
publication. SPIE uses a six-digit CID article numbering system in which:
- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering
 system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04,
 05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-12, 20-22, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the
first page, and an abbreviated version on subsequent pages.
Contents

vii Authors
ix Conference Committee

NOVEL NANOPHOTONIC MATERIALS AND DEVICES II

9371 0D Strategies for optical integration of single-photon sources (Invited Paper) [9371-11]

PHOTONIC CRYSTAL STRUCTURES

9371 0I Polarization sensitive beam bending using a spatially variant photonic crystal [9371-16]
9371 0J The circular Bragg phenomenon for oblique incidence [9371-17]
9371 0L Introducing high-quality planar defects into colloidal crystals via self-assembly at the air/water interface [9371-19]

PROPERTIES AND APPLICATIONS OF ENGINEERED METASURFACES

9371 0O L-shaped metallic antenna for linear polarization conversion in reflection [9371-22]

PLASMONIC METAMATERIALS

9371 0S Genetic algorithm for true negative index in plasmonic metamaterials [9371-26]
9371 0T Quality-factor enhancement of Fano resonance in asymmetric-double-bar metamaterials by alternately arranging inversed unit cells in the optical region [9371-27]

PHOTONIC METAMATERIALS

9371 0Y Epsilon near zero metamaterials for ultra-low power nonlinear applications [9371-31]
9371 0Z Advanced application of flexible metamaterials at visible frequencies [9371-32]
9371 10 Paraxial ray optics cloaking [9371-81]

PLASMONIC NANOSTRUCTURES I

9371 17 Sub-wavelength confinement of the orbital angular momentum of light probed by plasmonic nanoantennae resonances [9371-39]
PLASMONIC NANOSTRUCTURES II

9371 1A Controlling surface plasmon propagation by tilted optical beams incident on a 1D grating [9371-42]

9371 1C Dispersion analysis and engineering in TiN 2D plasmonic waveguides [9371-44]

NOVEL PHENOMENA IN PLASMONIC STRUCTURES

9371 1D Linear and non-linear response of lithographically defined plasmonic nanoantennas [9371-45]

9371 1F Shaping plasmonic light beams with near-field plasmonic holograms [9371-47]

9371 1G Extremely high near field enhancement in a novel plasmonic nano material used for photovoltage generation [9371-48]

PHONONIC CRYSTAL STRUCTURES

9371 1O Control of the magnetization dynamics in patterned nanostructures with magnetoelastic coupling (Invited Paper) [9371-57]

MODELING AND SIMULATION OF NANOPHOTONIC STRUCTURES I

9371 1R Cylindrical and spherical space equivalents to the plane wave expansion technique of Maxwell's wave equations [9371-60]

9371 1S Spherical space Bessel-Legendre-Fourier mode solver for Maxwell's wave equations [9371-61]

9371 1T Cross-slot waveguide Bragg grating [9371-62]

9371 1U Optical biosensor based on silicon nanowire ridge waveguide [9371-63]

MODELING AND SIMULATION OF NANOPHOTONIC STRUCTURES II

9371 1W Application of Fourier-Bessel technique for computing eigen-states in a Bragg cylindrical space slot channel waveguide [9371-65]
Determination of the enhanced excitation rate of quantum dots mediated by Bloch-like surface plasmon polaritons [9371-71]

Optical structure based on the acoustic Helmholtz resonator [9371-72]

Nonlinear light interaction in an array of dielectric subwavelength waveguides [9371-74]

Numerical and experimental investigation of plasmonic properties of silver nanocrescent structures for sensing applications [9371-77]

Design of water molecule and its surrounding [9371-80]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abumazwed, Ahmed, 27
Alisafaee, Hossein, 0S
Alzahrani, Mohammed A., 1R, 1S
Arie, Ady, 1A, 1F
Barber, Greg D., 0J
Bar-Lev, Doron, 1A
Bartl, J., 1D
Benson, Oliver, 0D
Bera, Arijit, 1T
Bouchon, Patrick, 0O, 23
Cabirni, Stefano, 1O
Campbell, T., 1D
Cao, Z. L., 22
Carli, M., 17
Chevalier, Paul, 23
Chiles, Jeff, 0I
Choi, Joseph S., 10
Clays, Koen, 0L
Danylo, R. I., 2A
Demeyer, Pieter-Jan, 0L
Di Falco, Andrea, 0Y, 0Z
Digaum, Jennefir L., 0I
Epstein, Itai, 1A, 1F
Erten, Sema, 0J
Faccio, Daniele, 0Y
Fathpour, Sasan, 0I
Fiddy, Michael A., 0S
Finley, J. J., 1D
Fischer, Joachim, 0D
Fullager, Daniel B., 0S
Gamal, Rania, 1U
Garoli, D., 17
Gauthier, Robert C., 1R, 1S, 1W
Ghosh, Ambarish, 1G
Ghosh, Arindam, 1G
Giorgis, V., 17
Glaschagen, G., 1D
Goforth, Ian A., 0S
Haidar, Riad, 0O, 23
Hane, Kazuhiro, 0T
Harteneck, Bruce, 1O
Honkanen, Seppo, 1T
Howell, John C., 10
Ismail, Yehea, 1C, 1U
Jaech, Julien, 0O
Jafari, Seyed Hamed, 1R, 1W
Johnson Singh, Haobijam, 1G
Kaijura, Rashid, 0Y
Kanamori, Yoshiaki, 0T
Kaniber, M., 1D
Kaschke, Johannes, 0D
Kirk, A. G., 27
Kirkpatrick, Blair C., 0Z
Kruglova, Olga, 0L
Kubo, W., 27
Kuebler, Stephen M., 0I
Kulttinen, Markku, 1T
Kumar, Shishir, 1G
Lakhtakia, Akhlesh, 0J
Levesque, Quentin, 0O
Lin, M., 22
Makhsian, Mathilde, 0O
Marti-Panameño, E. A., 25
Mekawy, Hosam, 1C
Mendoza Gonzalez, G., 25
Moritake, Yuto, 0T
Moshchalkov, Victor V., 0L
Muñoz Pacheco, J. M., 25
Neumer, Tanja, 0D
Okhrimenko, B. A., 2A
Ong, H. C., 22
Pardo, Fabrice, 0O, 23
Paria, Debadrata, 1G
Paul, Somnath, 1T
Pazos, Javier, 0L
Pelouard, Jean-Luc, 0O, 23
Pietrzyk, Monika, 0Y
Raghavan, Srinivasan, 1G
Reader-Harris, Peter, 0Z
Regler, A., 1D
Romanato, F., 17
Roussey, Matthieu, 1T
Roy, Kallol, 1G
Ruffato, G., 17
Rumpf, Raymond, 0I
Schell, Andreas W., 0D
Scheuer, Jacob, 1A
Schmutz, Holger, 1O
Schräml, K., 1D
Shen, Yufang, 0Z
Shi, Qiang, 0D
Song, Kai, 0L
Stenberg, Petri, 1T
Swillam, Mohamed A., 1C, 1U
Tanaka, T., 27
Tervo, Jani, 1T
Thomas, Jeremy N., 0I
Verellen, Niels, 0L
Wegener, Martin, 0D
Wu, Jingzhi, 0Z
Yablochkova, K. S., 2A
Yahagi, Yu, 1O
Zhong, Kuo, 0L
Zhou, Xingping, 0L
Zilio, P., 17
Conference Committee

Symposium Chairs

David L. Andrews, University of East Anglia (United Kingdom)
Alexei L. Glebov, OptiGrate Corporation (United States)

Symposium Co-chairs

Jean-Emmanuel Broquin, IMEP-LAHC (France)
Shibin Jiang, AdValue Photonics, Inc. (United States)

Program Track Chair

Ali Adibi, Georgia Institute of Technology (United States)

Conference Chairs

Ali Adibi, Georgia Institute of Technology (United States)
Shawn-Yu Lin, Rensselaer Polytechnic Institute (United States)
Axel Scherer, California Institute of Technology (United States)

Conference Program Committee

Andrea Alù, The University of Texas at Austin (United States)
William L. Barnes, University of Exeter (United Kingdom)
Ali Asghar Eftekhar, Georgia Institute of Technology (United States)
Reginald K. Lee, California Institute of Technology (United States)
Marko Loncar, Harvard School of Engineering and Applied Sciences (United States)
Susumu Noda, Kyoto University (Japan)
Masaya Notomi, NTT Basic Research Laboratories (Japan)
Ekmel Özbay, Bilkent Üniversitesi (Turkey)
Yong Xu, Virginia Polytechnic Institute and State University (United States)
Eli Yablonovitch, University of California, Berkeley (United States)
Rashid Zia, Brown University (United States)

Session Chairs

1 Recent Advances in Engineered Nanostructures
 Ali Adibi, Georgia Institute of Technology (United States)
2 Novel Nanophotonic Materials and Devices I
Andrei Faraon, California Institute of Technology (United States)

3 Novel Nanophotonic Materials and Devices II
Joshua Caldwell, U.S. Naval Research Laboratory (United States)

4 Photonic Crystal Structures
Ali Adibi, Georgia Institute of Technology (United States)

5 Properties and Applications of Engineered Metasurfaces
Stephen Kuebler, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)

6 Plasmonic Metamaterials
Paul V. Braun, University of Illinois at Urbana-Champaign (United States)

7 Photonic Metamaterials
Wenshan Cai, Georgia Institute of Technology (United States)

8 Nanophotonic Structures for Sensing and Imaging
Ali Adibi, Georgia Institute of Technology (United States)

9 Plasmonic Nanostructures I
Emiliano Cortes, Imperial College London (United Kingdom)

10 Plasmonic Nanostructures II
Jared Strait, Cornell University (United States)

11 Novel Phenomena in Plasmonic Structures
Harald Giessen, Universität Stuttgart (Germany)

12 Optomechanical Structures
Ali Adibi, Georgia Institute of Technology (United States)

13 Phononic Crystal Structures
Kartik Srinivasan, National Institute of Standards and Technology (United States)

14 Modeling and Simulation of Nanophotonic Structures I
Holger Schmidt, University of California, Santa Cruz (United States)

15 Modeling and Simulation of Nanophotonic Structures II
Kevin O’Brien, University of California, Berkeley (United States)