Front Matter: Volume 9516
Integrated Optics: Physics and Simulations II

Pavel Cheben
Jiří Čtyroký
Iñigo Molina-Fernández
Editors

13–15 April 2015
Prague, Czech Republic

Sponsored by
SPIE

Cooperating Organisations
HIPEX Project (United Kingdom)
ELI Beamlines (Czech Republic)
Laserlab Europe

Published by
SPIE
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN: 0277-786X
ISBN: 9781628416374

Published by

SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2015, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/15/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print. Papers are published as they are submitted and meet publication criteria. A unique citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online, print, and electronic versions of the publication. SPIE uses a six-digit CID article numbering system in which:

- The first four digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 02, followed by 10-1Z, 20-2Z, etc.

The CID Number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
Contents

vii Authors
ix Conference Committee

SESSION 1 PHOTONIC INTEGRATION

9516 02 Towards an automated design framework for large-scale photonic integrated circuits (Invited Paper) [9516-1]
9516 03 Passive and electro-optic polymer photonics and InP electronics integration (Invited Paper) [9516-2]
9516 04 Rethinking the surface of optical waveguides (Invited Paper) [9516-3]
9516 05 Simulation of self-organized waveguides for self-aligned coupling between micro- and nano-scale devices [9516-4]

SESSION 2 DEVICES AND CIRCUITS I

9516 06 Nonlinear optical signal processing in high figure of merit CMOS compatible platforms (Invited Paper) [9516-5]
9516 07 High-speed and low-power silicon-organic hybrid modulators for advanced modulation formats (Invited Paper) [9516-6]
9516 08 A numerical investigation of silicon-based optical sampling [9516-7]

SESSION 3 DEVICES AND CIRCUITS II

9516 09 Silicon nanophotonic integrated devices enabling multiplexed on-chip optical interconnects (Invited Paper) [9516-8]
9516 0B Expanding sampling in a SWIFTS-Lippmann spectrometer using an electro-optic Mach-Zehnder modulator [9516-10]
9516 0C High resolution TE&TM near infrared compact spectrometer based on waveguide grating structures [9516-11]
9516 0D Photovoltaic maximum power point search method using a light sensor [9516-12]
<table>
<thead>
<tr>
<th>SESSION 4</th>
<th>PHOTONIC CRYSTALS AND PLASMONIC DEVICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9516 0H</td>
<td>Plasmonic nanoantenna coherent absorption switches for integrated photonics (Invited Paper) [9516-16]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 5</th>
<th>SUBWAVELENGTH STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>9516 0I</td>
<td>High-efficiency fully etched fiber-chip grating couplers with subwavelength structures for datacom and telecom applications [9516-17]</td>
</tr>
<tr>
<td>9516 0J</td>
<td>High efficiency blazed fiber-chip grating coupler with interleaved trenches [9516-18]</td>
</tr>
<tr>
<td>9516 0K</td>
<td>Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides [9516-19]</td>
</tr>
<tr>
<td>9516 0L</td>
<td>A subwavelength structured multimode interference coupler for the 3-4 μm mid-infrared band (Best Student Paper Award) [9516-20]</td>
</tr>
<tr>
<td>9516 0M</td>
<td>Simulations of waveguide Bragg grating filters based on subwavelength grating waveguide [9516-21]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>THEORY, SIMULATION, AND DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>9516 0N</td>
<td>Circuit modeling based optimization of high speed carrier depletion silicon modulators [9516-22]</td>
</tr>
<tr>
<td>9516 0O</td>
<td>Modeling of anisotropic grating structures with active dipole layers [9516-23]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>MATERIALS AND FABRICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9516 0T</td>
<td>Epitaxially grown vertical junction phase shifters for improved modulation efficiency in silicon depletion-type modulators [9516-29]</td>
</tr>
<tr>
<td>9516 0V</td>
<td>Photoluminescence of graphene oxide integrated with silicon substrates [9516-31]</td>
</tr>
<tr>
<td>9516 0W</td>
<td>Pixel isolation in Type-II InAs/GaSb superlattice photodiodes by femto-second laser annealing [9516-32]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTER SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9516 0X</td>
</tr>
<tr>
<td>9516 0Z</td>
</tr>
<tr>
<td>9516 10</td>
</tr>
</tbody>
</table>
Electro-optic 1x2 switch based on proton-exchanged channel waveguides in LiNbO$_3$ [9516-40]

Estimation of the sinusoidal oscillation parameters in the adaptive optics system based on the example of the photovoltaic system [9516-42]

Terahertz material characterization for nonreciprocal integrated optics [9516-44]

Magnetoplasmonic waveguiding structure with nonreciprocal dispersion of guided TM modes [9516-45]

Light trap with reactive sun tracking for high-efficiency spectrum splitting photovoltaic conversion [9516-46]

Transparency-switching optical element for sun tracking applications [9516-47]

Side band suppression for wide band optical RoF systems [9516-48]

Femtosecond writing of depressed cladding waveguides in strongly cumulative regime [9516-49]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Alonso-Ramos, Carlos A., 0J, 0L
Annoni, A., 04
Apostoleris, Harry, 17, 18
Arellano, Cristina, 02
Avramopoulos, H., 03
Bach, H.-G., 03
Bai, Liang, 0Z
Ben Abid, Samir, 19
Benech, Pierre, 0B, 0C
Benedikovic, Daniel, 0I, 0J, 0K
Beretta, A., 03
Bolten, J., 07
Bonneville, Christophe, 0B
Borriello, A., 0V
Bruck, Roman, 0H
Buca, D., 0T
Bukharin, Mikhail A., 1A
Cangini, G., 03
Casalino, M., 0V
Chang, Li-Jen, 10
Cheben, Pavel, 0I, 0J, 0K, 0L
Chen, Lawrence, 0M
Chen, Sitao, 09
Chiesa, Matteo, 17, 18
Choi, J. H., 03
Coppola, G., 0V
Courjal, N., 0C
Čtyroký, Jiří, 0M
Dado, Milan, 0I, 0J
Dagens, B., 16
Dai, Daoxin, 09
Dalton, L. R., 07
Dardano, P., 0V
Das, Sonal, 0W
Das, Utpal, 0W
de Mengin, Mikhaël, 0B, 0C
De Stefano, L., 0V
dede, Alberto, 03
Delage, André, 0K
Dinu, R., 03
Drouhin, H.-J., 0O
Dupuy, J. Y., 03
Eder, D. L., 07
Fan, Shuwei, 0Z
Fédéli, J.-M., 0J
Fedorov, V. A., 12
Felipe, D., 03
Fördős, Tibor, 0O
Freude, W., 07
Gautam, Nutan, 0W
Gießecke, A. L., 07
Giordano, M., 0V
Glesk, Ivan, 0M
Gonthiez, Thierry, 0B
Grillanda, S., 04
Groumas, P., 03
Halagačka, Lukas, 0O, 16
Harati, P., 03
Heidmann, Samuel, 0B, 0C
Horák, Tomáš, 15
Hosseini, Seyyedreza, 0N
Hraghi, Abir, 19
Jaffrès, Henri, 0O
Jamshidi, Kambiz, 0B, 0N
Jazayerifar, M., 08
Jia, Shenli, 0Z
Jorge, F., 03
Kania, Dariusz, 14
Katopodis, V., 03
Kell, N., 03
Kern, P., 0C
Khudyakov, Dmitriy V., 1A
Koeber, S., 07
Koenigsmann, M., 07
Kohler, M., 07
Koltchanov, Igor, 02
Konczykowska, A., 03
Koos, C., 07
Korkishko, Yu. N., 12
Kostrikskii, S. M., 12
Kouloumentas, Ch., 03
Krishna, Sanjay, 0W
Kwiecien, Pavel, 0M
Lampin, Jean-François, 15
Lapointe, Jean, 0I
Lauermann, M., 07
Le Coarer, Etienne, 0B, 0C
Leuthold, J., 07
Liliu, Samuele, 18
Liu, Cheng-Yang, 10
Loridat, Joran, 0B
Maese-Novo, A., 03
Mashanovich, Goran Z., 0L
Melati, D., 04
Melati, D., 04
Conference Committee

Symposium Chairs

Jiri Homola, Institute of Photonics and Electronics of the ASCR, v.v.i. (Czech Republic)
Chris Edwards, Central Laser Facility, Science and Technology Facilities Council (United Kingdom)
Mike Dunne, SLAC National Accelerator Laboratory (United States) and Linac Coherent Light Source (United States)
Ivo Rendina, Istituto per la Microelettronica e Microsistemi (Italy)

Honorary Symposium Chair

Miroslav Miller, Institute of Photonics and Electronics of the ASCR, v.v.i. (Czech Republic)

Conference Chairs

Pavel Cheben, National Research Council Canada (Canada)
Jiří Čtyroký, Institute of Photonics and Electronics of the ASCR, v.v.i. (Czech Republic)
Iñigo Molina-Fernández, Universidad de Málaga (Spain)

Conference Programme Committee

Roel G. Baets, Universiteit Gent (Belgium)
Trevor Mark Benson, The University of Nottingham (United Kingdom)
Hung-Chun Chang, National Taiwan University (Taiwan)
Christopher R. Doerr, Acacia Communications Inc. (United States)
Romuald Houdré, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Raman Kashyap, Ecole Polytechnique de Montréal (Canada)
Christophe Kazmierski, III-V Laboratoire (France)
Philippe Lalanne, Institut d’Optique Graduate School (France)
Xaveer J. M. Leijtens, Technische Universiteit Eindhoven (Netherlands)
Goran Z. Mashanovich, University of Southampton (United Kingdom)
Andrea I. Melloni, Politecnico di Milano (Italy)
Jarmila Müllerová, University of Žilina (Slovakia)
Martin Schell, Fraunhofer-Institut für Nachrichtentechnik Heinrich-Hertz-Institut (Germany)
Laurent Vivien, Institut d’Électronique Fondamentale (France)
Lech Wosinski, KTH Royal Institute of Technology (Sweden)
Dan-Xia Xu, National Research Council Canada (Canada)
Session Chairs

1 Photonic Integration
 Jiří Čtyroký, Institute of Photonics and Electronics of the ASCR, v.v.i.
 (Czech Republic)

2 Devices and Circuits I
 Jiří Čtyroký, Institute of Photonics and Electronics of the ASCR, v.v.i.
 (Czech Republic)

3 Devices and Circuits II
 David J. Moss, The University of Sydney (Australia)

4 Photonic Crystals and Plasmonic Devices
 Andrea I. Melloni, Politecnico di Milano (Italy)

5 Subwavelength Structures
 Iñigo Molina-Fernández, Universidad de Málaga (Spain)

6 Theory, Simulation, and Design
 Min Qiu, KTH Royal Institute of Technology (Sweden)

7 Materials and Fabrication
 Toshihiko Baba, Yokohama National University (Japan)