Compressive Sensing IV

Fauzia Ahmad
Editor

22–24 April 2015
Baltimore, Maryland, United States

Sponsored and Published by
SPIE
Contents

SESSION 1 COMPRESSIVE SENSING FOR RADAR

<table>
<thead>
<tr>
<th>No.</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9484 02</td>
<td>Compressive sensing for a general SAR imaging model based on Maxwell’s equations</td>
<td>[9484-1]</td>
</tr>
<tr>
<td>9484 03</td>
<td>Sparsity-based moving target localization using multiple dual-frequency radars under phase errors</td>
<td>[9484-2]</td>
</tr>
<tr>
<td>9484 04</td>
<td>Cross-term free based bistatic radar system using sparse least squares</td>
<td>[9484-3]</td>
</tr>
<tr>
<td>9484 05</td>
<td>Multi-view TWRI scene reconstruction using a joint Bayesian sparse approximation model</td>
<td>[9484-4]</td>
</tr>
</tbody>
</table>

SESSION 2 COMPRESSIVE SENSING FOR SPECTRAL IMAGING

<table>
<thead>
<tr>
<th>No.</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9484 07</td>
<td>Computational imaging in a multiplexed imager with static multispectral encoding</td>
<td>[9484-6]</td>
</tr>
<tr>
<td>9484 08</td>
<td>Compressive and classical hyperspectral systems: a fundamental comparison</td>
<td>[9484-7]</td>
</tr>
<tr>
<td>9484 09</td>
<td>Compressive spectral polarization imaging with coded micropolarizer array</td>
<td>[9484-8]</td>
</tr>
</tbody>
</table>

SESSION 3 CS FOR OPTICAL IMAGING, MOTION IMAGERY, AND VIDEO I

<table>
<thead>
<tr>
<th>No.</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9484 0A</td>
<td>Recent results in single-pixel compressive imaging using selective measurement strategies (Invited Paper)</td>
<td>[9484-9]</td>
</tr>
<tr>
<td>9484 0B</td>
<td>Compressed-sensed-domain l_1-PCA video surveillance</td>
<td>[9484-10]</td>
</tr>
<tr>
<td>9484 0C</td>
<td>Compressive sensing for noisy video reconstruction</td>
<td>[9484-11]</td>
</tr>
</tbody>
</table>

SESSION 4 CS SIGNAL PROCESSING

<table>
<thead>
<tr>
<th>No.</th>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>9484 0E</td>
<td>Sparsity-based DOA estimation of coherent and uncorrelated targets using transmit/receive co-prime arrays</td>
<td>[9484-13]</td>
</tr>
<tr>
<td>9484 0F</td>
<td>See-through obscurants via compressive sensing in degraded visual environment</td>
<td>[9484-14]</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5</td>
<td>SESSION 5 CS FOR OPTICAL IMAGING, MOTION IMAGERY, AND VIDEO II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>An analysis of spectral transformation techniques on graphs [9484-15]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time-frequency signature sparse reconstruction using chirp dictionary [9484-16]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SESSION 6 CS FOR ACOUSTICS, ULTRASOUND, AND HEALTH MONITORING OF STRUCTURES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Near-infrared compressive line sensing imaging system using individually addressable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>laser diode array [9484-17]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Compressive power spectrum sensing for vibration-based output-only system identification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>of structural systems in the presence of noise [9484-19]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multimodal exploitation and sparse reconstruction for guided-wave structural health</td>
<td></td>
</tr>
<tr>
<td></td>
<td>monitoring [9484-20]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seismic full waveform inversion from compressive measurements [9484-21]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Group sparsity based spectrum estimation of harmonic speech signals [9484-22]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>SESSION 7 CS FOR HEALTHCARE AND BIOMEDICAL APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biomedical sensor design using analog compressed sensing [9484-23]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conflict-cost based random sampling design for parallel MRI with low rank constraints</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[9484-24]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Long-term surface EMG monitoring using K-means clustering and compressive sensing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[9484-25]</td>
<td></td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Ahmad, Fauzia, 03, 0E, 0L
Al Kadry, Khodour, 03
Al Kadry, Khodour, 03
Amin, Moeness G., 03, 0E, 0H, 0L
Arce, Gonzalo R., 09, 0M
Arguello, Henry, 09
August, Isaac Y., 08
Balouchestani, Mohammadreza, 00, 0Q
BouDaher, Elie, 0E
Bouzerdoum, A., 05
Britton, Walter, 01
Bulatović, Nikola, 0G
Caimi, Frank M., 01
Cetin, A. Enis, 04
Chen, Jianbo, 0A
Dalgleish, Fraser R., 01
Djurović, Igor, 0G
Fu, Chen, 09
Ghagho, Mounir, 0H
Giaralis, Agathoklis, 0K
Gkotksi, Kyriaki, 0K
Golato, Andrew, 0L
Gong, Sue, 01
Gu, Haicheng, 02
Herman, Matthew A., 0A
Hines, Kevin, 07
Hou, Weilin, 0I
Hu, Mengqi, 02
Kelly, Kevin F., 0A
Kim, Wan, 0P
Krishnan, Sridhar, 00, 0Q
Lau, Richard C., 0F
Li, Shuxia, 0C
Li, Yun, 0A
Liu, Ying, 0B
Lyu, Jingyuan, 0P
Mahalanobis, Abhijit, 07
McLernon, Des, 0H
McMackin, Lenore, 0A
Montalbo, John, 0C
Müse, Robert, 07
Neifeld, Mark, 07
Nguyen, Yen T., 0H
Ouyang, Bing, 0L
Pados, Dimitris A., 0B
Phung, S. L., 05
Qiao, Zhijun, 02, 0C
Ramirez, Ana, 0M
Sadler, Brian M., 09
Santhanam, Sridhar, 0L
Sejdić, Ervin, 0G
Sevimli, R. Akin, 04
Shay, Adi, 08
Simeunović, Marko, 0G
Stern, Adrian, 08
Sun, Bing, 02
Sun, Yaqi, 0C
Tang, V. H., 05
Tau Siesakul, Bamrung, 0K
Tivive, F. H. C., 05
Veras, Johann, 07
Vuorenkoski, Anni K., 01
Wang, Ben, 0N
Weston, Tyler, 0A
Woodward, T. K., 0F
Ying, Leslie, 0P
Zhang, Yimin D., 0N
Zhao, Huihuang, 0C
Zhou, Yihang, 0P
Conference Committee

Symposium Chair

Wolfgang Schade, Clausthal University of Technology and Fraunhofer Heinrich-Hertz Institute (Germany)

Symposium Co-chair

Ming C. Wu, University of California, Berkeley (United States)

Conference Chair

Fauzia Ahmad, Villanova University (United States)

Conference Program Committee

Moeness G. Amin, Villanova University (United States)
Gonzalo R. Arce, University of Delaware (United States)
Abdesselam Salim Bouzerdoum, University of Wollongong (Australia)
Michael J. DeWeert, BAE Systems (United States)
Matthew A. Herman, InView Technology Corporation (United States)
Ram M. Narayanan, The Pennsylvania State University (United States)
Dimitris A. Pados, University at Buffalo (United States)
Athina P. Petropulu, Rutgers, The State University of New Jersey (United States)
Zhijun G. Qiao, The University of Texas-Pan American (United States)
Ervin Sejdic, University of Pittsburgh (United States)
Lei (Leslie) Ying, University at Buffalo (United States)

Session Chairs

1 Compressive Sensing for Radar
 Eric L. Mokole, U.S. Naval Research Laboratory, Retired (United States)

2 Compressive Sensing for Spectral Imaging
 Gonzalo R. Arce, University of Delaware (United States)

3 CS for Optical Imaging, Motion Imagery, and Video I
 Michael J. DeWeert, BAE Systems (United States)

4 CS Signal Processing
 Ervin Sejdic, University of Pittsburgh (United States)
5 CS for Optical Imaging, Motion Imagery, and Video II
 Matthew A. Herman, InView Technology Corporation (United States)

6 CS for Acoustics, Ultrasound, and Health Monitoring of Structures
 Dimitris A. Pados, University at Buffalo (United States)

7 CS for Healthcare and Biomedical Applications
 Eric L. Mokole, U.S. Naval Research Laboratory, Retired (United States)