Contents

vii Authors
ix Conference Committee
xi Introduction
xiii Nano-bio-optomechanics: nanoaperture tweezers probe single nanoparticles, proteins, and their interactions (Plenary Paper) [9544-501]

ADVANCES IN MODELING OF ELECTRONIC PROCESSES IN NANOMATERIALS I

9549 0D Modeling electric field-induced quenching in conjugated polymers and oligomers [9549-13]

CARRIER TRANSPORT IN COMPLEX NANOSTRUCTURED SYSTEMS

9549 0E Singlet, triplet, electron and hole transport along single polymer chains (Invited Paper) [9549-15]

PHYSICAL PROCESSES IN SOLAR ENERGY CONVERSION II

9549 0J Using the Stark effect to understand charge generation in organic solar cells [9549-20]

9549 0L Fluorescence and UV/VIS absorption spectroscopy studies on polymer blend films for photovoltaics [9549-22]

ELECTRON TRANSFER MECHANISMS AT INTERFACES

9549 0M Ultrafast excited-state dynamics at interfaces: fluorescent DNA probes at the dodecane/water interface (Invited Paper) [9549-23]

9549 0N Absolute polaron yield of donor-acceptor P3HT:fullerene bulk heterojunction composites (Invited Paper) [9549-24]

9549 0O Photo-induced carrier generation and recombination dynamics probed by combining time-resolved microwave conductivity and transient absorption spectroscopy [9549-25]

9549 0P Cause of absorption band shift of disperse red-13 attached on silica spheres [9549-26]
MULTIDIMENSIONAL SPECTROSCOPIES

<table>
<thead>
<tr>
<th>9549 0S</th>
<th>Surface-enhanced, multi-dimensional attenuated total reflectance spectroscopy (Invited Paper) [9549-28]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9549 0U</td>
<td>Controlling electron transfer in condensed phase with bond-specific infrared excitation (Invited Paper) [9549-30]</td>
</tr>
</tbody>
</table>

STRUCTURE-PROPERTY RELATIONS IN NANOMATERIALS

<table>
<thead>
<tr>
<th>9549 0V</th>
<th>Exciton and polaron interactions in self-assembled conjugated polymer aggregates (Invited Paper) [9549-31]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9549 0X</td>
<td>Characterization of nano-sized iron particle layers spin coated on glass substrate [9549-33]</td>
</tr>
<tr>
<td>9549 0Y</td>
<td>Influence of the molecular orientation on the optical properties and photomodification of cyanine thin film [9549-34]</td>
</tr>
<tr>
<td>9549 0Z</td>
<td>SHG techniques to investigate the surface and the bulk of aqueous solutions [9549-60]</td>
</tr>
</tbody>
</table>

ADVANCED IMAGING TECHNIQUES

| 9549 12 | Super-resolution imaging with mid-IR photothermal microscopy on the single particle level [9549-37] |

SINGLE PARTICLE TRACKING OF (BIO-)NANOMATERIALS

<table>
<thead>
<tr>
<th>9549 14</th>
<th>Transient absorption microscopy studies of single metal and semiconductor nanostructures (Invited Paper) [9549-39]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9549 16</td>
<td>Stability studies on Promethazine unexposed and exposed to UV laser radiation [9549-42]</td>
</tr>
</tbody>
</table>

EMERGING EXPERIMENTAL TOOLS TO STUDY INTERFACES

| 9549 18 | Coherent and incoherent second harmonic generation in liquids (Invited Paper) [9549-44] |

CONFINEMENT EFFECTS IN NANOSTRUCTURES AND NANOWIRES

| 9549 1D | Dynamic features of rod-shaped Au nanoclusters [9549-49] |

ADVANCES IN MODELING OF ELECTRONIC PROCESSES IN NANOMATERIALS II

| 9549 1I | Developing coarse-grained site models for excited electronic states of conjugated polymers (Invited Paper) [9549-54] |
Size-dependent Hamaker constants for silver and gold nanoparticles [9549-55]

Multiscale molecular modeling of tertiary supported lipid bilayers (Invited Paper) [9549-57]

POSTER SESSION

Electronic and optical properties of novel carbazole-based donor-acceptor compounds for applications in blue-emitting organic light-emitting diodes [9549-58]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B..0Z, followed by 10-1Z, 20-2Z, etc.

Asaoka, Sadayuki, 0E
Banerji, Natalie, 0J
Bang, Byeong-Gyu, 0P
Berichou, E., 0Z, 18
Bird, Matthew, 0E
Bradforth, Stephen E., 0N
Brevet, P. F., 0Z, 18
Buchaca-Domingo, Ester, 0J
Byun, Hee Young, 1D
Canto, F., 0Z
Causa’, Martina, 0J
Chen, Hung-Cheng, 0E
Cheung, Tak D., 0X
Cook, Andrew R., 0E
Coustan, L., 0Z
Dahanayake, Rasika, 0X
Das, Anindita, 1D
Das, Saptaparna, 0N
De Jonghe-Risse, Jelissa, 0J
Dehipawala, Sunil, 0X
Delor, Milan, 0U
Diat, O., 0Z
Ericsson, Leif, 0L
Faller, Roland, 1L
Fossum, Eric, 1M
Gafney, Harry D., 0X
Gao, Jian, 0V
Greetham, Gregory M., 0U
Grey, John K., 0V
Hamm, Peter, 0S
Hansson, Rickard, 0L
Hartland, Gregory V., 12, 14
Heeney, Martin, 0J
Jiang, Ke, 1J
Jin, Rongchao, 1D
Johns, Paul, 14
Kaliteevskaya, Elena, 0Y
Kang, Kwang-Sun, 0P
Karten, Brianne, 0E
Keane, Theo, 0U
Kemboi, Abraham, 1M
Kim, Byoung-Ju, 0P
Kim, Kyung-Deok, 0P
Kim, Na-Rae, 0P
Kraack, Jan Philip, 0S
Kruttyakova, Valentina, 0Y
Kumar, Santosh, 1D
Kuno, Masaru, 12
Latif, Aliia A., 0N
Lee, Dana, 1D
Legaspi, Christian M., 0D, 1M
Li, Xiang, 0E
Li, Zhongming, 12
Licari, Giuseppe, 0M
Lindqvist, Camilla, 0L
Lotti, Davide, 0S
Ma, Q., 0Z
Maurice, A., 0Z, 18
Mauro, Gina, 0E
Mejier, Anthony J. H., 0U
Miller, John R., 0E
Moons, Ellen, 0L
Moser, Jacques-E., 0J
Nastasa, Viorel, 16
Park, Eun-Hye, 0P
Park, Jaehong, 0O
Parker, Anthony W., 0U
Pascu, Mihail Lucian, 16
Peteanu, Linda A., 0O, 1D, 1M
Picker, Jesse, 1M
Pinchuk, Pavlo, 1J
Ranz, Holden T., 1L
Razumova, Tatiana, 0Y
Reid, Obadiah G., 0E, 0O
Rumbles, Garry, 0E, 0O
Sajini Devadas, Mary, 14
Samarasekara, Pubudu, 0X
Sazanovich, Igor V., 0U
Scattergood, Paul A., 0U
Steir, Matthew Y., 1M
Simon, Agota, 16
Smarandache, Adriana, 16
So, Woong Young, 1D
Starovoytov, Anton A., 0Y
Stingelin, Natalie, 0J
Stubbs, Regan E., 1M
Thomas, Alan K., 0V
Thompson, Barry C., 0N
Thornbury, William, 0N
Towrie, Michael, 0U
Tozar, Tatiana, 16
Tremberger, George, Jr., 0X
van Stam, Jan, 0L
Vauthhey, Eric, 0M
Wang, Shuxin, 1D
Weinstein, Julia A., 0U
Yaron, David J., 0D, 1I, 1M
Zaikowski, Lori, 0E
Zhao, Shuo, 1D
Conference Committee

Symposium Chairs
 Satoshi Kawata, Osaka University (Japan)
 Manijeh Razeghi, Northwestern University (United States)

Symposium Co-chairs
 David L. Andrews, University of East Anglia (United Kingdom)
 James G. Grote, Air Force Research Laboratory (United States)

Conference Chairs
 Sophia C. Hayes, University of Cyprus (Cyprus)
 Eric R. Bittner, University of Houston (United States)

Conference Co-chair
 Natalie Banerji, Universite de Fribourg (Switzerland)

Conference Program Committee
 John B. Asbury, The Pennsylvania State University (United States)
 Artem A. Bakulin, University of Cambridge (United Kingdom)
 Jenny Clark, The University of Sheffield (United Kingdom)
 Gitti Frey, Technion-Israel Institute of Technology (Israel)
 Alexandre Fürstenberg, Université de Genève (Switzerland)
 David S. Ginger, University of Washington (United States)
 Naomi S. Ginsberg, University of California, Berkeley (United States)
 Jeanne L. McHale, Washington State University (United States)
 Linda A. Peteanu, Carnegie Mellon University (United States)
 Sergei Tretiak, Los Alamos National Laboratory (United States)
 Lauren Webb, The University of Texas at Austin (United States)

Session Chairs
 1 Physical Processes in Solar Energy Conversion I
 Paul Meredith, The University of Queensland (Australia)
 2 Photophysics of Novel Perovskite-Based Nanomaterials
 Eric R. Bittner, University of Houston (United States)
 3 Advances in Modeling of Electronic Processes in Nanomaterials I
 David J. Yaron, Carnegie Mellon University (United States)
4 Carrier Transport in Complex Nanostructured Systems
Garry Rumbles, National Renewable Energy Laboratory (United States)

5 Physical Processes in Solar Energy Conversion II
Eric R. Bittner, University of Houston (United States)

6 Electron Transfer Mechanisms at Interfaces
Natalie Banerji, Université de Fribourg (Switzerland)

7 Multidimensional Spectroscopies
Stephen E. Bradforth, The University of Southern California (United States)

8 Structure-Property Relations in Nanomaterials
Annamaria Petroza, Istituto Italiano di Tecnologia (Italy)

9 Advanced Imaging Techniques
Jan Philip Kraack, Universität Zürich (Switzerland)

10 Single Particle Tracking of (Bio-)Nanomaterials
Sarah A. Burke, The University of British Columbia (Canada)

11 Emerging Experimental Tools to Study Interfaces
Matt Law, University of California, Irvine (United States)

12 Confinement Effects in Nanostructures and Nanowires
Pierre-François Brevet, Institut Lumière Matière (France)

13 Perovskite Solar Cells: Joint Session with Conferences 9549 and 9567
David G. Lidzey, The University of Sheffield (United Kingdom)
Sophia C. Hayes, University of Cyprus (Cyprus)

14 Advances in Modeling of Electronic Processes in Nanomaterials II
Eric R. Bittner, University of Houston (United States)
Introduction

Interfaces play a key role in the function of a plethora of chemical systems spanning the range from biological membranes, solid state materials, catalysts, all the way to organic bulk heterojunction materials for photovoltaics. The “Physical Chemistry of Interfaces and Nanomaterials” conference provides a venue for the intermixing of physical chemists, physicists, biophysicists and chemical engineers that can foster new ideas which can advance each other’s field.

This year’s fourteenth edition of the conference moved along the spirit of previous years including sessions on charge generation at organic interfaces, charge transfer across device interfaces, photophysics of hybrid photovoltaic systems, and hybrid and inorganic nanomaterials. A central feature this year were sessions dedicated to the theory, development, and application of novel multi-dimensional non-linear optical probes of interfacial phenomena and structural dynamics. Sessions focused upon solar energy conversion, modeling electronic processes in nano-scale materials, carrier transport in nanostructured systems, electron transfer at interfaces, advanced imaging techniques focusing at the atomistic scale, as well as sessions focusing on novel and nascent experimental techniques that probe interfacial structure.

The science was diverse and exciting, representing some of the best physical chemistry groups from around the world. We are grateful to SPIE, the Organizing Committee and most of all to the speakers that contributed to the success of this meeting.

Sophia C. Hayes
Eric R. Bittner
Natalie Banerji