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ABSTRACT 
The principle of superposition plays critical roles in both classical and quantum physics. This 
paper will underscore the conceptual continuities and divergences in the process of 
successfully using Fourier transforms as a classical superposition tool to quantify Fraunhofer 
diffractions, far-field space and temporal coherence, Fourier transform spectroscopy and 
dispersive broadening of a short pulse. 

INTRODUCTION 
In physics, the principle of superposition in a linear domain and the Fourier mathematics 
have become synonymous by virtue of their great success in explaining old physics, 
predicting new physics and paving the way for a wide variety of technological break through 
(practical instrumentation).  This article will focus on application of Fourier transform (& 
series) in Optics and establish a conceptual continuity between the various phenomena that 
successfully use Fourier math. 

1. FRAUNHOFER DIFFRACTION

 This is one of the earliest example of identifying a mathematical representation of a physical 
phenomena based on a physical hypothesis to facilitate the understanding of the optical 
diffraction phenomenon. Huygens-Fresnel principle (or, HF integral) treats wave propagation 
as a superposition of secondary, spherical wavelets emanating out of every point on the wave 
front. This integral transforms into a superposition of plane waves in the far-field. Then the 
far-field integral resembles exactly like the Fourier transform integral of the near field 
illumination. This has given birth to the field of Fourier Optics for image processing. The 
detectable spatial energy distribution continuously evolves as the wave front propagates. 

1.1. Heuristic formulation of diffraction theory based on Huygens-Fresnel (HF) 
Principle. 

Every point on a wave front emits a new spherical wavelet, the “forward direction being 
normal to the original wave front point. The resulted new wave front due to propagation is 
the superposition of all the HF wavelet amplitudes at the target plane. In the case of our 
incoherent extended source, one only sums the intensities due to HF wavelets from every 
point of the incoherent source (Fig.1). A spherical wavelet originating at O, has the phase 
delay (in radian) on the (one dimensional) X-plane given by (2�/�).(x2/2r). The exponential 
representation is exp(+ikx2/2r)  (+  sign convention for the point of divergence on the left).  
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Figure 1. Heuristic derivation of Far-field diffraction pattern using simple 
geometrical and physical optics. 

Figure 2.  A spherical wave front, at small angle approximation, gives a phase front 
exp(+ikx2/2r) on the planar X-axis. 

Figure 3. A lens introduces a phase factor exp[-ikx2/2f]. This causes a plane wave to 
converge at its back focal plane. 
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 x2 + f2 = (f + �f)2 = f2 + �f2 + 2f �f  �  f2+ 2f �f (neglecting small �f2)  (1) 

 Or,   �f = (x2/2f)  (2) 

A lens creates a Fourier transform in its focal plane: 

We want to find out the complex amplitude  U(x) on the x-plane (back focal plane) when 
an object U(�) is illuminated by a uniform, continuous wave (CW), monochromatic 
(single carrier frequency), plane wave at the front focal plane (� -plane). We will use the 
concepts of ray optics, wave optics, and Huygens-Fresnel principle along with the built-in 
principle of linear (amplitude) superposition of coherent waves. 

Consider a general point, �, on the �-plane. It emanates a spherical HF wavelet & arrives 
at the lens- (�-) plane with a curvature exp[+ik�2/2f]. This quadratic curvature gets 
flattened by the reverse quadratic phase factor of the lens exp[[-ik�2/2f] and a  
plane wave-let emanates toward the focal plane. The plane wavelet intersects the x-plane 
at an angle � = sin-1(�/x) � tan-1(�/f), where � is the relative delay of the plane wavelet at 
the x-point on the X-plane and � is a small angle. So, the path delay is, � = �x/f.. Or, the 
titled plane wave representation is exp[ik�x/f].       

If the complex amplitude at the point of origin of the HF wavelet at the �-point is 
U�(�), then the complex amplitude at the x point is  CU�(�)exp[ik�x/f],  where C is a 
propagation constant including amplitude reduction due to spherical divergence.  

The total contribution of complex amplitude at the x point, Ux(x), is the linear 
superposition (sum, or integral) of all the contributing points from the �-plane, so the 
integration should cover the entire “open aperture”:  

 Ux (x) = C � U� (�) exp[ik�x/f] d�  (3) 

 Or,   Ux (x) = C’ � U� (�’) exp[2�i�’x] d�’  (4) 

Where we have substituted �’= �/�f. This last integral equation is the mathematical 
definition of the Fourier transform relation between Ux(x) and  U�(�’).  

Although the above derivation is carried out heuristically, without going through the 
rigorous (Raylength-Sommerfeld or other similar) formulation, it preserves all the 
fundamental concepts accurately except some constants that give the exact numerical value 
for the complex amplitude. The key point to note here is that the exponential factor within 
the integral looks like the mathematical Fourier transform kernel. Thus the far-field 
diffraction pattern is the Fourier transform of the diffracting aperture function. This fortunate 
mathematical coincidence paved the way for the development of a major field, optical signal 
processing, where Fourier mathematics and related theorems serve as major mathematical 
tools. One should note two important points here: 
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(i) First, the appearance of the Fourier transform-like structure of the Eqns. 2 & 3 is an 
evolutionary consequence of the physical hypothesis (Huygens-Fresnel Principle) that 
a propagating wave front can be represented as a superposition of an infinite number 
of spherical wavelets. 

(ii) Second, the Eqns. 3 & 4 represent real physical propagation of light waves from one 
physical plane to another, allowing us the opportunity for optical signal processing by 
real physical manipulation of the diffracting wave fronts with different physical 
apertures. 

1.2 Rigorous Diffraction Theory. 
The rigorous Rayleigh-Sommerfeld formulation of diffraction theory based on Huygens-
Fresnel principle is given by the Eq.1 [Goodman, Eq.4-8]: 

U(P0) = (1/i�) � U(P1) [exp(ikr01)/r01] cos� ds  (5) 

For a rectangular diffracting aperture, the far-field (or, Fraunhofer) diffraction pattern, with 
small angle approximation, the Eq.1 simplifies into a summation (integral) of plane waves:  

U(x,y) = [exp(ikz). exp{ik(x2+y2)/2z}/iz�] � U(�, 	) exp{-2�i (x� + y	)/�z}d�d	     (6) 

For conceptual simplicity, let us consider the one dimensional case of an infinitely long 
diffracting slit. Ignoring some constants and phase factors outside the integral, and after 
substituting (�/�z) = �’, one can write: 

 U(x) =  C” � U(�’) exp{-2�i x �’} d�’  (7) 

The Eqns. (3), (4) and (6), (7) are equivalent. 

2. Fourier Transform Spectroscopy: When radiated electromagnetic field (EMF) is split
into two beams and is superposed again with a relative delay between them, one can record 
the detectable energy as sinusoidally varying intensity fringes, which we call interferograms. 
The spatial variation of these periodic fringes is exactly related to the carrier frequency of the 
EMF. When one has many such CW carrier frequencies, each frequency forms its own 
periodic fringes, because interferogram materials do not record time varying mutual 
interference between different carrier frequencies. It only records the time averaged, self-
interference (light beams of different frequencies do not interfere with each other). The 
resultant interferogram now has a variable visibility function, multiplied by an average 
cosine oscillatory component. Fourier mathematics also uses sinusoidal functions in its 
transformational relation. Thus, the oscillatory part of the interferogram can be “Fourier 
transformed” to extract the spectral energy distribution of the original complex EMF. This is 
at the foundation of the successful field of Fourier transform spectroscopy applied in 
understanding fundamental physics and chemistry of atoms and molecules.  Thos field was 
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developed by A. Michelson in late 1800’s, which earned him a Nobel Prize, the first for a US 
physicist. 

When a collimated monochromatic wave (CW or continuous wave carrying single 
frequency) passes through a Michelson interferometer with an asymmetric beam splitter (not 
a 50/50 one), the superposed amplitudes on the beam splitter can be represented by, 

 Er (t,
0,�) = A1 cos (2�
0t – �1) + A2 cos (2�
0t – �2),  (8) 

Figure 3. …………………… 
Er indicates real representation of E-field, instead of complex representation, used later. The 
relative phase delay between the two wave front is (�2 – �1) = 2�
0�, � being the relative time 
delay (total path delay � divided by c). We cannot detect the amplitude of light. We can only 
infer the presence of light by carefully observing light induced changes in material properties 
as it absorbs energy from the electromagnetic field. The light induced reaction (photo-
chemical, photo-electric or photo-conductive), I, is proportional to time average of the square 
of the light amplitude [Klein]: 

Id (
0,�) = (1/T) �Er 2(t,
0,�) dt
 �  I1 + I2 + 2 (I1I2) cos 2�
�  = I0 + I0 x cos 2�
0� ),  (9) 

 where,   I0 = (I1 + I2),   and  x = 2 (I1I2) / (I1 + I2),  (10) 

 and,     Iosc= I0 x cos 2�
0�  =   I0 x cos 2�m.  (11) 

In the last step, we have used the order of interference, m = (�/�) = 
0�. This m is a very 
important parameter in all interferometry. In the linear domain, the source frequency remains 
unaltered, or a constant, so the location of the repeated, fringes for the same source 
frequency, is determined by �, given by m = 
0�. So, the variable component of the recorded 
fringe, I0 x cos2�
0�, that is of importance for us. If 
0 is unknown, and the unequal beam 
amplitude factor, x is fixed for a given beam splitter, then by counting the fringe (m) with 
measured value of �, will give us the value of the carrier frequency, 
0, if the beam is 
monochromatic. But, we have a very complex interpretational problem if x is a variable and, 
especially, if it varies with time, either due to changing reflectivity of the beam splitter with 
time, or due to amplitude variation of the incident beam with time as produced by the source.  

Let us consider the case of a time varying amplitude, or a pulsed source. Let us assume that 
we have cut out a Gaussian pulse from the above single frequency, CW laser, oscillating with 
a frequency, 
0. It actually could be a quite long pulse of width �t, as long as the moving 

Laser Beam Splitter Mirror 

Mirror 

Proc. of SPIE Vol. 9663  96632N-5



mirror of the Michelson interferometer can be moved by � > �t. Now, we have a situation 
even when the beam splitter is a 50/50 divider, instead of x being unity, it still remains as an 
unequal beam amplitude factor, x(t). Now the fringe visibility varies with time due to the 
unequal amplitudes incident on the beam splitter (and the detector) at different times, except 
when the delay, �, between the two mirror paths is exactly zero. By repeating the experiment 
with the same pulse but with varying values of the delay, �, we can obtain the variation of the 
fringe visibility with delay, as shown below. For each experiment with one pulse, one must 
integrate the interference signal for the entire duration of the two pulses (replicated, delayed 
and superposed by the Michelson interferometer). Note that we have only one source 
frequency, but a changing fringe visibility with �. One can mathematically show that the 
Fourier transform of the fringe visibility function (conjugate variables, 
f and �) is equal to 
the normalized, square modulus of the Fourier transform of the pulse amplitude function, 
a(
0, t) (conjugate variables being 
f and �). This is also called the Wiener-Khintchine 
theorem or the autocorrelation theorem [Klein]. We will come to it later again. We are 
underscoring the suffix of 
f as it represents mathematical variable “Fourier frequencies”, in 
contrast to the frequency of the electric vector originating at the emitting source. Our point is 
that turning on a simple mechanical shutter to create amplitude pulse from a CW, 
monochromatic source, does not create any new electric vector frequencies. This is a linear 
process. The fringe visibility varies for a pulsed light because of superposition of unequal 
amplitudes, and not due to new optical spectrum. 

Figure 4. Variation of long-time integrated, fringe visibility in a simple Michelson 
interferometer as the delay between the mirrors are varied. 

The situation is even more complex when the incident beam contains many unknown carrier 
(or source) frequencies. Let us now consider the case of a CW beam with two carrier 
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frequencies, 
1 and 
2, and the narrow reflectivity coatings of the beam splitter gives different 
values for the unequal beam amplitude factor x as x1 and x2. Under this situation, Eq.(11) can 
be re-written as: 

 Iosc= I01 x1 cos 2�
1� + I02 x2 cos 2�
2�  (12) 

There is a very simple and yet profoundly important, and experimentally validated 
assumption buried in Eq.(12), that different optical frequencies do not interfere with each 
other, as long as we use slow detector. Cross terms between different source frequencies have 
been dropped for slow detectors (see last section on beat and mode locking). If we use a 
50/50 beam splitter, the situation is a bit simpler with x1 = x2 = 1, and one gets: 

 Iosc= I01(
1) cos 2�
1� + I02(
2) cos 2�
2�  (13) 

If our goal is to determine the source frequencies, 
1 and 
2, we are still stuck with two more 
unknowns, I01 and I02. If these are equal, and let us normalize them, to unity, then we have: 

 Iosc =  cos 2�
1� +  cos 2�
2�  =  2 cos 2�
s � . cos 2�
d �  (14) 

Where,  
s = (
1+ 
2)/2  and 
d =  (
1-
2)/2 , are the mean of the sum and the mean of the 
difference of the two source frequencies. Thus, Eq.(14) describes the modulation of high 
frequency spatial fringes (m1,2 = 
1,2�) with a low frequency factor 
d =  (
1-
2)/2, also known 
as waxing and waning of fringe visibility. In early times, people used this technique to 
determine (
1-
2) of some atomic spectra, like Sodium fin structure doublet, known as D1 and 
D2 spectral lines. After the inventions of lasers and holography, people are innovating various 
techniques by exploiting this repeated oscillation of fringe visibility as a tool to accurately 
measure the depth and shape of complex 3D objects, etc. Eq.(14)  can be generalized for the 
case of continuously distributed frequencies: 

Iosc =  � I(
) cos2�
� d
  (15) 

The Fourier transformed, mathematical inversion relation is then given by [see Klein]: 

I(
)  =  � Iosc (�) cos2��� d�  (16) 

As in Eqns (3), (4) or (6), (7) where the diffraction equations naturally evolves into a form 
that becomes identifiable with Fourier transform, here also the oscillatory part of an 
interferogram takes the form of a simple cosine Fourier transform. Just as in case of 
diffraction, the Fourier transform conjugate variables (�-x) for space-space diffractive 
propagation, are real and based on validated Physics hypothesis (HF Principle), here also the 
conjugate variables (
-�) are physically measurable quantities. However, the common root of 
identity of the mathematical expression of a physical phenomenon with a mathematical 
theorem arises from the linearity and the use of sinusoidal function as the basis. 
Electromagnetic field follows sinusoidal oscillation, and the basis function for Fourier 
transform theorem is also sinusoidal function. However, the Eq.(15) must still be used with 
great caution. First, it sums fringe intensities, and not field amplitudes, and ignores cross 
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products between various source frequencies. However, as mentioned before, this is a valid 
assumption for slow, time averaging light detectors. Second, we have dropped x(
,t) in 
Eq.(15) based on the assumption that all the source frequencies have sustained, CW 
amplitudes of I(
). If the atoms and molecules literally emit packets of spreading (according 
to HF Principle), classical light pulses, each carrying unique source frequencies, given by the 
quantum condition �En= h
n, then Michelson’s spectroscopy should be generalized using 
Eq.8 instead of Eq.(11), with the added attention that the superposed amplitudes are functions 
of time. This is the model that is illustrated in Fig.4. If the incident pulse is a(t)exp[i2�
0t], 
then the complex version of Eq.(8) is given by: 

 Ec(t,
0,�) = a(t)exp[i2�
0t] + a(t-�)exp[i2�
0 (t-�)]  (17) 

Fast photo-induced energy exchange is equally well given by a time average integral of Er 2, 
as in Eq.(9) when the E-field is represented by real function, or simply by  (Ec Ec

*), when Ec 
is complex. As illustrated in Fig.4, the recorded fringe intensity needs a second time 
integration to cover the entire duration of the pair of pulses: 

Id(
0,�) = � Ec(t,
0,�) Ec
*(t,
0,�) dt  (18) 

After substitution of Eq.(17) in Eq.(18) and a series of simplification, one can obtain the 
oscillatory component of the fringe variation as: 

 Iosc(
0,�) =  �(�). cos(2�
0�)  (19) 

Eq.(19) is good for single frequency, single pulse. This is the parallel of Eq.(11) for a single 
frequency, CW source. The function �(�) is the normalized auto correlation of the pulse a(t). 
The time integrated, oscillatory fringe for a Doppler broadened, thermal discharge lamp with 
atomic emitter can now be modeled as: 

IDop. osc (�) =  � Iosc(
,�) d
  = � �(�) cos2�
� d
  (20) 

One can compare this with the Eq.(15) for the CW case. The RHS of Eq.(20) represents the 
mathematical Fourier transform of the autocorrelation function. By the autocorrelation, or 
Wiener-Kintchine theorem, 

Sf (
) =  � �(�) cos2�
� d
  (21) 

Here Sf (
) is the normalized, square modulus of the original pulse, a(t). Now, the Eqns.(20) 
and (21), implies that the oscillatory interferogram, IDop. osc (�), is equivalent to the 
mathematical spectral density function,  Sf (
).       

3. BEAT SPECTROSCOPY AND MODE LOCKING

In the above two examples of experimental success, the energy of the EMF is recorded over a 
time as an average of the square of the instantaneous amplitudes. Along with the hypothesis 
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that in the time averaged recording, there is no interference between different frequencies. 
But, both beat spectroscopy and mode locking generate time varying energy “re-distribution” 
of superposed EMF of different frequencies. Then how does one reconcile the observational 
success of the time average recording of the first two phenomena (Far-field diffraction & FT 
spectroscopy)?  We have recently published a paper [Optics Express 11 (8), p.944, (2003)] 
that helps one to understand the conceptual continuity between all these phenomenon by 
simply accepting the hypothesis that the principle of superposition is manifest only in 
interacting materials, dictated by their quantum properties; EMF’s do not operate on (or, 
change) each other.  They simply pass through each other. The detailed discussions and 
experimental validations are presented in the above paper. 
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