Optics history as effective instrument for education in optics and photonics

Stafeef, S. K., Tomilin, M.

Event: Eleventh International Topical Meeting on Education and Training in Optics and Photonics, 2009, St. Asaph, United Kingdom
Optics history as effective instrument for education in optics and photonics

S.K. Stafeef and M.G. Tomilin

St.-Petersburg University of Information Technologies, Mechanics and Optics, St.-Petersburg, 197101, Kronverksky Pr. 49, Russia

ABSTRACT

The education problem in optics and photonics is to draw young generation on the side of light, optical science and technology. The main goal is to prove the slogan that “physics is a small part of optics”: during the thousand years optics formulated the clear worldview for humanity. In fact optics is itself presents multidisciplinary collection of independent scientific arias from one hand and was a generator of new fields of knowledge from the other hand. Optics and photonics are the regions where the fundamental problems of our reality have to be solved. The mentioned functions belonged to optics during the period of civilizations development. This is a basic idea of books serial by S. Stafeev and M. Tomilin “Five Millennium of Optics” including 3 volumes. The first volume devoted to optics prehistory was edit in 2006 in Russian. Its main chapters devoted to relations between Sun and Life, the beginnings of human intelligence, megalithic viewfinders, gnomons and ancient temples orientation, archaic optical materials and elements. It also consist the optical riddles of that period. The volume II is devoted to Greek and Roman antiquity and is in the process of publishing. It consist the chapters on the beginning of optics, mathematical fundaments and applied optics evolution. Volume III would be devoted to Medieval and Renaissance optics history. The materials are used at our university in a course “The Modern Natural Science Conceptions” for students and graduate students. In our paper the possibilities of optics history as effective instrument for education in optics and photonics are discussed.

Keywords: optics prehistory; medieval and renaissance optics; ancient images, megalithic viewfinders, gnomons and temples orientation; optical theory, materials and elements; eye and vision.

1. INTRODUCTION

Optics and photonics have exciting history closely tied with modern science. For receiving the harmonious education in this field it is necessary to trace the development of optics from early beginning up to current state. Such panorama of optics development arise deep interest of pupils to the subject of investigation and give fundamental knowledge. Sun light as main source of energy and basis of life was the most important object of investigation during the whole period of civilization evolution. Vision as the main source of information about the surrounded world determined the evolution of human intellect. The direct sky objects observation during thousand years helped to predict nature cycle changes and to fix man in time and space. Control of Sun, Moon and planets trajectories gave the calendar to many nations. Many megalithic facilities and observatories were built for this and religious purposes. Viewfinder as one of the first optical instrument was created as the result of ancient visual observations. Other ancient optical elements such as mirrors, lenses and magic spheres were the result of handicraft activity in metallurgy and jeweler’s art. Transparent crystals processing and glass-making create the basis of ancient optical materials.

During the prehistoric period optics had a syncretic stage with ancient philosophy and religion and had a magic context. Greek and Roman antiquity was characterized by serious interest to nature of light and mechanisms of vision. The famous Greek thinkers founded the basis of geometric optics, catoptrics, dioptrics and meteors. The contribution of outstanding scientists Euclid, Archimedes and Ptolemy to optics produced a strong influence on following ages. The main achievement of middle ages was the invention of glasses, while
the main achievement of Renaissance was the development of perspective theory, demonstrating the optical knowledge penetration into fine arts technology.

In our paper the general context with selected illustrations of two our books is presented to give the common impression of collected information on civilizations history seen by optician eyes.

2. FIVE MILLENIUM OF OPTICS: PREHISTORY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 1. Sun and Life</td>
<td>17</td>
</tr>
<tr>
<td>1.1. Sun messenger</td>
<td>17</td>
</tr>
<tr>
<td>1.2. Beginnings of life</td>
<td>19</td>
</tr>
<tr>
<td>1.3. Light, eye and brain</td>
<td>25</td>
</tr>
<tr>
<td>1.4. Sun-earth interconnections</td>
<td>35</td>
</tr>
<tr>
<td>Chapter 2. The cradle of intellect</td>
<td>44</td>
</tr>
<tr>
<td>2.1. Myths, legends and symbols (fig.1)</td>
<td>46</td>
</tr>
</tbody>
</table>

Fig.1. Sun symbols of different nations and times

Fig.2. Horr eye and its interpretation as fractions

2.2. Horr eye (fig.2)

2.3. Images and letters
Chapter 3. Megalithic viewfinders
3.1. Megalithic civilization and stone viewfinders (fig.4) 100
3.2. Linear backing. Menhirs, leis and stone ranges 109
3.3. Viewfinders with seculated aperture. Dolmen and dromoses 121
3.4. Cromlechs and horizon observatories 141

Chapter 4. Gnomons and ancient temples orientation 164
4.1. Gnomons as elements of reversal backing (fig.5) 165
4.2. Sacred symbols of ancient viewfinders 176
4.3. Temple complexes orientation in Europe and Asia 191
4.4. Temples and complexes of New World 216

Chapter 5. Archaic optics: materials and elements 231
5.1. Bronze mirrors (fig.6) 231
5.2. Magic mirrors of China and Japan (fig.7) 241
5.3. Natural crystals and its processing 252
5.3. Lenses and spheres (fig.8) 262

Fig.8. Ancient crystalline lens from Ninevia, VIII BC.

5.4. First glass 273
Application. Ancient optical mysteries 282
1. Mystery of megaliths 282
2. Pyramids, Orion constellation and Zodiac cycles 284
3. Myths of ancient Egypt and Arcaim 286
4. Viewfinders for skies 289
5. Ancient telescope (fig.9) 290

Fig.9. Ancient telescope? Fig.10. Quartz scull illustrate HT handling

6. Quartz sculls (fig 10).
Conclusion 294
Literature (295 pos.) 296
3. FIVE MILLENIUM OF OPTICS: ANTIQUITY

Introduction 7

Part I. Principles of antique optics 26

Chapter 1. Antique mythology and light metaphysics 27
1.1. Light and vision in mythology (fig1) 29

Fig.1. Narcissus and his reflex. Fig.2. Plato Academy.

1.2. Metaphysics and natural philosophy of light 34
1.3. Color symbolism and antique chromatism 41

Chapter 2. Main stages of scientific knowledge evolution 52
2.1. Classification of scientific disciplines 54
2.2. Main stages of antique science (fig.2) 59
2.3. Optics among antique disciplines 92
2.4. Structure of antique optics 96

Chapter 3. Physical theories of visual perception 104
3.1. Extramission (fig.3) 111
3.2. Intramission 114

Fig.3. Ocular beams
3.3. Sinaugogia and sinestasis 121
3.4. Acsidensia 132
3.5. Color’s nature and color perception 136

Chapter 4. Vision physiology and psychology 148
4.1. Vision physiology. Eye models (fig.4) 150

Fig.4. Galen’s model of eye

4.2. Vision psychology. Optical illusions 165
4.3. Vision and cognition 173

Part II. Mathematical principles of optics 190

Chapter 5. Studies of direct vision 191
5.1. Optics of vision 194
5.2. Direct vision in Euclid “Optics” 201
5.3. Direct vision in Archimedes and Hero “Catoptrics” 206
5.4. Direct vision in Ptolemy “Optics” 209
5.5. Illusions of direct vision 216

Chapter 6. Catoptrics 220
6.1. Euclid’s catoptrics 222
6.2 Archimedes’ and Hero’s catoptrics 227
6.3. Catoptrics theorems in Ptolemy “Optics” 230
6.4. Multiple mirror systems and burning mirrors 241
6.5 Archimedes’ burning mirrors (fig.5) 248

Fig.5. Antique mosaic with the scene of Archimedes death
Chapter 7. Dioptrics
7.1. Ptolemy's theoretical analysis of refraction
7.2. Ptolemy experiments with light refraction
7.3 Atmosphere refraction
7.4. Localization of refractive images and their distortion

Chapter 8. Meteors
8.1. Aristotle's Meteorologica
8.2. Theory of humid meteors
8.3. Theory of circular meteors (fig.6)

Part III. The beginning of applied optics

Chapter 9. Optical materials, elements and technologies
9.1. Bronze and mirrors (fig.7)
9.2 Optical crystals and jewelry produces (Fig.8)
9.3. Crystal lenses (fig.9)
9.4. Schliemann lenses and Nero monocle
9.5. Crystal spheres. Antique telescope
9.6. Glasses and decoration produces
9.7 Mosaics from smalt

Chapter 10. First optical instruments
10.1. Gnomonic
We hope that brief review will give the common impression about the context of our books. The conference on education and training in optics and photonics at Technium OpTIC at St. Asaph is a good opportunity to discuss possible profit of translating two volumes of “FIVE MILLENIUM OF OPTICS” into English. The authors use the study of optics history for education in optics and photonics themselves and recommend other specialist to follow their practice.