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ABSTRACT 
In undergraduate optics laboratory, one thing that is not easily achieved is quantitative measurement of optical 
phase. The reason is that optical phase measurement usually requires expensive interferometers. We 
demonstrate measurement of relative optical phase shift upon total internal reflection. Total internal reflection, 
though known by every student of optics, is remembered by 100% reflection at an interface when angle of 
incidence is greater than the critical angle, that is, it seems all the same beyond the critical angle. This is not 
entirely true if one considers the optical phase, which keeps changing upon total internal reflection as the angle 
of incidence is varied. Furthermore, for linear polarization states perpendicular to or in the plane of incidence (s- 
and p- polarization), optical phase changes differently upon total internal reflection. Therefore, a linearly 
polarized beam composed of both s- and p- polarization undergoing total internal reflection becomes elliptically 
polarized. We show how to determine relative optical phase change between s- and p- polarization states 
through analysis of the outgoing elliptically polarized beam. Such optical phase change can also be theoretically 
calculated using Fresnel equations.  

1. INTRODUCTION

For any harmonic signal, amplitude and phase information are both essential. For example, in communication 
applications, amplitude, frequency, and phase modulation schemes are all well established methods. In optical 
communications, however, intensity modulation is mostly used. Although phase modulation at optical 
frequencies is straightforward, it has never become a preferred method. The main reason for this is that direct 
phase detection at optical frequencies is extremely difficult, whereas intensity detection through photodiodes is 
straightforward. The difficulty for direct phase detection stems from the fact that one optical cycle is a few 
femtoseconds (10-15 second). Photodetectors that can respond in such a short amount of time have not yet been 
invented. Furthermore, in a typical optical communication system phase may constantly vary. Consider, for 
example, a semiconductor laser, a piece of optical fiber, and a photodetector. Unless the optical fiber is in an 
ultrastable condition, that is, neither temperature fluctuations nor vibrations occur in the environment, phase will 
constantly fluctuate due to temperature and stress induced changes in refractive index and length of the optical 
fiber. Consequently, detection of absolute phase at optical frequencies is impractical. 

Although measurement of absolute optical phase is both very difficult and impractical, there are many optical 
devices that work based on optical phase changes, that is, relative optical phase. There are many 
interferometric devices that can measure relative optical phase through interference of two beams that are 
originally split after being emitted from a source. Among many types of optical sensors, those utilizing phase 
change as their working principle are usually superior to sensors based on optical intensity measurement.  

In optics curriculum, numerous qualitative demonstrations of interference phenomena can be performed. 
Students, including those taking only introductory physics classes, can be easily shown the interference pattern 
through a double slit arrangement. Typically, a laser beam impinging on two narrow slits that are separated by a 
fraction of a millimeter results in an interference pattern on a screen. In optics laboratory classes, more 
advanced experiments, such as Michelson interferometer or Fabry-Perot interferometer are possible. In all these 
cases, most of the time, the student experience is limited to fringe counting, that is, more of a qualitative 
approach is utilized rather than a quantitative description of optical phase.  
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An important phenomenon where optical phase manifests itself is total internal reflection. There are, for 
example, sensors dependent on relative phase shift upon reflection from an interface.1 Fresnel rhomb is an 
optical component that works based on optical phase shift upon total internal reflection.2,3 In typical experiments 
involving total internal reflection, students are asked to send a laser beam to a prism, and observe the reflected 
and refracted beams as the angle of incidence is varied. Of course, beyond the critical angle, one observes total 
internal reflection, which is simply 100% reflection, and the transmitted beam disappears. If the prism angles are 
known and measurement of the angle of incidence is carried out, then the critical angle can be determined. If the 
reflectance---ratio of the reflected to the incident optical power---at, for example, glass-air interface is measured, 
one can verify Fresnel equations.2,4-8 In all such experiments, however, one merely deals with optical power 
measurements, and optical phase changes are omitted. Students may leave the lab thinking that beyond the 
critical angle, total internal reflection is nothing but 100% reflection. This is not true. In fact, total internal 
reflection is a very interesting phenomenon with many subtle aspects.9 One of these subtleties is continuous 
change of optical phase upon total internal reflection. To study the optical phase change upon total internal 
reflection, one needs to perform a complete analysis using Fresnel equations. 

Optical phase change can be measured interferometrically.10 There are, however, multiple challenges that need 
to be faced in a typical interferometer setup. First, the setup needs to be on a sufficiently heavy optical table, 
and one needs to keep the arms of the interferometer stable. Such stringent conditions may make it difficult to 
emphasize quantitative characterization of optical phase in an undergraduate laboratory.  

We propose in this paper a simple experiment emphasizing optical phase change based on measurement and 
analysis of elliptically polarized state of light that is formed upon total internal reflection. We present the relevant 
theory on elliptically polarized light and Fresnel equations, and demonstrate both qualitative and quantitative 
experiments that demonstrate optical phase shift upon total internal reflection. 

2. THEORY

2.1. Elliptically polarized light 

If electric field vector of an electromagnetic wave sweeps an ellipse, it is said to be elliptically polarized. For a 
plane wave traveling in the z direction, and if x and y axes represent horizontal and vertical directions, 
respectively, the electric field vector of an elliptically polarized beam can be written as: 

(1)

Elliptical polarization is the most general expression of polarization state. Linear and circular polarization states 
are special cases. If φx = φy, we obtain linear polarization. If φx − φy = π 2  and E0x = E0y  then we obtain
circularly polarized light. More information on polarization can be found in any standard text in optics, such as 
ref. 2. Elliptically polarized light can be analyzed with various methods.11 

2.2. Fresnel equations and optical phase shift 

Fresnel equations result from Maxwell's equations solved at an interface. Reflectance depends on both the 
angle of incidence and the polarization state of the incident beam. A well-known effect illustrating the 
polarization dependence is of Brewster angle: For a light beam linearly polarized parallel to the plane of 
incidence---p-polarized or TM (transverse magnetic)---the reflected beam diminishes at a certain angle 
(Brewster angle or polarization angle);12 for a light beam linearly polarized perpendicular to the plane of 
incidence---s-polarized or TE (transverse electric)---there is always some reflection as the angle of incidence is 
varied.  
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The reflection amplitude coefficients---ratio of reflected electric field to incident electric field---are needed to 
describe the amplitude and phase changes upon reflection at a dielectric interface. The reflection amplitude 
coefficients rs and rp for s- and p-polarized light, respectively, can be expressed as:2

(2)

(3)

where θi  is the angle of incidence, nti = nt ni , and ni and nt  are the refractive indices of the incident and the
transmitted media, respectively. Using reflection amplitude coefficients, we can calculate reflectance by simply 
the product of an amplitude coefficient and its complex conjugate. Reflectance at air-glass interface for both 
external ( ni < nt ) and internal ( ni > nt ) reflection cases are shown in Fig. 1. Note that for internal reflection, the
reflectance is constant at 100% beyond the critical angle. 

As a light beam is reflected at a dielectric interface, not only does the reflectance depend on its state of 
polarization and the angle of incidence but also does the phase of the reflected beam.2,13-14 If ni < nt , reflection
amplitude coefficients are real, and amplitude phase shift is either 0 or π .  If, on the other hand, ni > nt , phase
shift is 0 or π , or it varies continuously between 0 and π  in the case of total internal reflection, where reflection 
amplitude coefficients are complex.  (Fig. 1) In order to calculate the phase shift upon reflection we can simply 
calculate the argument of the amplitude coefficients. The relative phase shift Δφ  can be written as a function of 
θi  and nti as:

 . (4)

Fig. 2 shows the relative phase shift for total internal reflection at air-glass interface. This figure summarizes the 
goal of the experiments to be presented in this paper, that is, we will experimentally demonstrate the validity of 
the curve in Fig. 2, which shows that relative phase shift Δφ  varies between 0 and about 45° giving rise to 
elliptical polarization. 

2.3. Calculating transmission of an elliptically polarized beam through a linear polarizer 

A linear polarizer in Jones calculus15 can be described as follows: 

(5)

where α  is the angle between the horizontal (parallel to plane of incidence) and the polarization transmission 
axis. As shown in Fig. [exp1], if we send a linearly polarized beam  

r 
P 0  to the prism, then it becomes elliptically

polarized (  
r 
P 1) upon total internal reflection. We can express  

r 
P 0  and  

r 
P 1 as follows:

(6)

(7)
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If the elliptically polarized light   
r 
P 1, then, goes through a linear polarizer, the polarization vector out of the

polarizer 
r 
P 2  can be obtained by applying the linear polarization matrix (Eq. 5) on 

r 
P 1 (Eq. 7):

(8)

If one measures the intensity through the polarizer as the polarization axis is turned between   α = 0o and 
  α = 360o , the intensity of the transmitted beam will be given by: 

(9)

3. EXPERIMENT

3.1.  Qualitative demonstration of optical phase change upon total internal reflection 

Before any quantitative measurement, we can qualitatively show that there is indeed some optical phase 
change upon total internal reflection, which is revealed by modification of the polarization state. One can send a 
laser beam to a prism such that light is polarized at 45° with the horizontal. If we place and rotate a polarizer in 
the path of the beam right before the beam enters into the prism, we can reduce transmission to almost zero, 
which occurs when polarization axis of the polarizer makes 90° with the polarization direction of the beam. If we 
now take the polarizer—without modifying its polarization axis direction—and place it in the path of the beam 
after it exits the prism (Fig. 3), we notice that light is no longer totally blocked indicating modification of the 
polarization state. Rotating the polarizer axis will further reveal that the beam is not linearly polarized. Rather, it 
is now elliptically polarized. 

Which event causes the polarization change? Entering the prism, exiting the prism, traveling in the prism, or total 
internal reflection? We will now discuss each of them and suggest simple experiments to investigate how each 
of these events can cause a polarization change. 

As the beam enters and exits the prism it goes through glass-air interface, and it partially reflects. From Fig. 1, 
we know that reflectance and transmittance are both different functions of angle of incidence for s- and p-
polarizations. Therefore, if we send a beam that has equal s- and p-polarization components, then we might 
have some polarization change depending on the angle of incidence. We should also consider phase shifts. 
Except for total internal reflection we see from Fig. 1 that phase shift for reflection is 0 or 180 degrees. For 
transmitted beam there is no phase shift.2 Therefore, variation of reflectance based on polarization and phase 
shifts might cause a polarization change, but cannot result in elliptically polarization, but they can change the 
polarization direction of the linearly polarized light. For close to normal incidence, however, both polarizations 
have equal reflectance and transmittance for external and internal reflection cases, and consequently no 
polarization change is expected upon entry to and exit our of the prism.  

For an ideal non-crystalline material, such as glass, one expects no birefringence. Therefore, it is unlikely that 
the polarization be modified while the beam is traveling in the prism. For crystals, such as calcite, depending on 
the polarization axis relative to the crystal axis, we can expect polarization modification. If there is any stress 
frozen-in during fabrication of the prism, however, then we can expect some stress-induced birefringence. We 
can check whether the prism has any stress-induced birefringence by sending a beam so that it goes through 
the prism without any total internal reflection. If we know the angles of incidence at each interface, then we can 
estimate the outgoing polarization, which should still be in a linear polarization state. If the polarization is not 
linear, we can conclude that the prism might have some stress-induced birefringence.  
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If all the above tests show that there is no polarization modification that makes the outgoing polarization 
elliptically polarized, then the remaining option is that total internal reflection makes it happen, as expected from 
the Fresnel theory at interfaces. As displayed in Fig. 1, when light undergoes total internal reflection at glass-air 
interface, s- and p- polarization components will incur different phase shifts, which will result in elliptically 
polarized light. 

3.2. Determining phase shift difference by a polarizer and a photodetector 

Experimental setup is shown in Fig. 3. A single polarizer and a photodetector---with no quarter-wave plate--- can 
be enough to determine the relative phase shift. We used a silicon PIN photodiode (Thorlabs FDS100) with a 
load resistor, and read its voltage output with a digital voltmeter.  

The best way to determine Δφ  is to use nonlinear least squares fitting algorithm, which is readily available in 
commercial data analysis software, such as Igor Pro or Origin. After taking data for the transmitted intensity 
through the polarizer as a function of the angle α , a nonlinear least squares fit to Eq. 9 with Δφ  as a free 
parameter can be carried out. There is, however, a subtle point. First, Imax  needs to be determined. Secondly,
α = 0  corresponding to transmission axis being perfectly horizontal needs to be identified.  

A better way to perform this nonlinear fit is to use two more free parameters: Imax and β , an angular offset for
α . Therefore, a nonlinear fit to: 

(fit)

where Imax , β and Δφ  are free parameters is more appropriate.

Note that this method is only possible since we already know that the relative phase shift upon total internal 
reflection in the prism is less than π 2 . Otherwise, there will be some ambiguity in the measurement, as phase 
shift differences of Δφ  and of Δφ + π  result in the same transmitted intensity function. Fig.  4 shows data for 
θi = 51.6o  fitted with this function revealing  Δφ = 45.7o ± 0.3o . We repeated the data collection and analysis 
for multiple angles of incidence thereby obtaining Fig. 5, which confirms excellent agreement between data and 
theoretical curve that was calculated using Fresnel theory. 

3.3. Total internal reflection in a right angle prism vs. other prism types 

No matter which method we use to determine the polarization state after the light beam comes out of the prism, 
we assume that the incoming polarization is always linear, and have equal components for each axis. In reality 
for the right angle prism shown in Fig. 1, this is strictly satisfied only when light enters and exits the prism along 
the normal---perpendicular to surface---, giving rise to an angle of incidence of of 45° at the total-internal-
reflection surface. If the angle of incidence at entry is nonzero, however, then each polarization (parallel and 
perpendicular to the plane of incidence) will reflect differently making the polarization state of the transmitted 
beam change slightly.   

An experimental solution to this problem is to use a half-cylinder prism, for which the beam always enters and 
exits along the normal, as shown in Fig.6. We know, however, that such special types of prisms are not readily 
available in most undergraduate laboratories, whereas 45°-45°-90° prism is usually very common.  

For a right-angle prism, we can adjust the initial polarization so that after the reflection at the first air-glass 
interface the desired polarization with equal components parallel and perpendicular to the plane of incidence is 
ensured. For the exit surface, the reflection needs to be accounted for in the theoretical curve, as the elliptically 
polarized light is reflected at the glass-air interface. Fortunately, this effect is not strong. We suggest the 
instructor to ask students to take data for total internal reflection with angles of incidence larger than ≈70° at the 
glass--air interface, and ask them to explain the reason for slight discrepancy. 
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4. CONCLUSION

We showed that one can teach about optical phase measurement utilizing a simple setup that measures relative 
optical phase shift upon total internal reflection. Fresnel equations can be used to calculate the relative phase 
shift. Because light that undergoes total internal reflection, analysis of elliptically polarized light enables us to 
determine the phase shift upon total internal reflection. One needs only a linear polarizer and a photodetector to 
quantitatively measure optical phase shift. In addition, within the experiment there are opportunities to use Jones 
calculus and nonlinear least squares fitting.  
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Fig. 1 Reflectance and phase shift upon reflection as a function of angle of incidence for s- and p-polarized beam at glass--
air interface (nglass=1.5 and nair=1.0). θ is the polarization angle (Brewster angle), and θc is the critical angle. When phase shift 
is constant (0° or 180°) reflectance continuously varies for both external and internal reflection; when reflectance is constant 
at 100% (total internal reflection), then phase shift continuously varies. 

Fig. 2 Relative phase shift upon total internal reflection, which is the difference between phase shifts of s- and p-polarized 
light. The plot is produced for typical glass-air interface, where we used 1.00 and 1.50 for refractive indices of air and glass, 
respectively. 
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Fig. 3 Upon total internal reflection within the prism, light that is initially linearly polarized (P0) becomes elliptically polarized 
(P1). By rotating the prism while keeping the plane of incidence unchanged, we can take data at various angles of incidence. 
With a polarizer, and a photodetector it is possible to determine the difference in optical phase change upon total internal 
reflection for s- and p- polarizations. 

Fig. 4 Data for   θi = 51.6o  fitted to function in Eq. [fit]. From this nonlinear fit:  Δφ = 45.7o ± 0.3o . There are three free
parameters for the fit: Imax , β and Δφ .
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Fig. 5 Relative phase shift data at various angles of incidence. Theoretical curve is obtained for nti =1.00 1.50 , that is,
air-glass interface. 

Fig. 6 Instead of using a right-angle prism, one can use a half-cylinder prism, for which the beam enters and exits along the 
normal if is directed towards the center. As a result, the polarization state will not be affected as the beam enters and exits 
the prism. 
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