Clinical and Translational Neurophotonics; Neural Imaging and Sensing; and Optogenetics and Optical Manipulation

Steen J. Madsen
Victor X. D. Yang
E. Duco Jansen
Qingming Luo
Jun Ding
Anna W. Roe
Samarendra K. Mohanty
Nitish V. Thakor
Editors

13–16 February 2016
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 9690

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

Clinical and Translational Neurophotonics; Neural Imaging and Sensing; and Optogenetics and Optical Manipulation, edited by Steen J. Madsen, et. al., Proc. of SPIE Vol. 9690, 969001
© 2016 SPIE · CCC code: 1605-7422/16/$18 · doi: 10.1117/12.2229198
Contents

Authors
- ix

Conference Committee
- vii

Part A Clinical and Translational Neurophotonics

OPTICAL SPECTROSCOPY AND TOMOGRAPHY I

<table>
<thead>
<tr>
<th>9690 02</th>
<th>Assessing the feasibility of time-resolved fNIRS to detect brain activity during motor imagery [9690-1]</th>
</tr>
</thead>
</table>

MICROSCOPI

<table>
<thead>
<tr>
<th>9690 08</th>
<th>Adaptive optics microscopy enhances image quality in deep layers of CLARITY processed brains of YFP-H mice [9690-7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9690 09</td>
<td>Effect of cranial window type on monitoring neurovasculature using laser speckle contrast imaging [9690-8]</td>
</tr>
</tbody>
</table>

OPERATIVE AND POSTOP THERAPY I

<table>
<thead>
<tr>
<th>9690 0A</th>
<th>First multiphoton tomography of brain in man [9690-9]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9690 0B</td>
<td>Neural networks improve brain cancer detection with Raman spectroscopy in the presence of light artifacts [9690-10]</td>
</tr>
<tr>
<td>9690 0D</td>
<td>Increasing the efficacy of antitumor glioma vaccines by photodynamic therapy and local injection of allogeneic glioma cells [9690-12]</td>
</tr>
</tbody>
</table>

OCT

<table>
<thead>
<tr>
<th>9690 0J</th>
<th>Application of optical coherence tomography based microangiography for cerebral imaging [9690-18]</th>
</tr>
</thead>
</table>

OPTICAL SPECTROSCOPY AND TOMOGRAPHY II

<table>
<thead>
<tr>
<th>9690 0P</th>
<th>Study the efficacy of neuroprotective drugs on brain physiological properties during focal head injury using optical spectroscopy data analysis [9690-24]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9690 0Q</td>
<td>In vivo imaging of cerebral hemodynamics and regional oxygen saturation in rats with a digital red-green-blue camera [9690-25]</td>
</tr>
</tbody>
</table>

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 28 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Part B Neural Imaging and Sensing

NEURAL IMAGING I

9690 OS Non-invasive assessment of cerebral microcirculation with diffuse optics and coherent hemodynamics spectroscopy (Invited Paper) [9690-27]

9690 OU Elucidation of the role of biological factors and device design in cerebral NIRS using an in vivo hematoma model based on high-intensity focused ultrasound [9690-29]

9690 OW NIRS-based noninvasive cerebrovascular regulation assessment [9690-31]

NEURAL IMAGING II

9690 OZ Evaluation of time-resolved multi-distance methods to retrieve absorption and reduced scattering coefficients of adult heads in vivo: Optical parameters dependences on geometrical structures of the models used to calculate reflectance [9690-34]

9690 10 Chronic monitoring of cortical hemodynamics in behaving, freely-moving rats using a miniaturized head-mounted optical microscope [9690-35]

9690 11 Multi-modal in vivo imaging of brain blood oxygenation, blood flow and neural calcium dynamics during acute seizures [9690-36]

NEURAL IMAGING IV

9690 18 Applications of phosphorescent materials for in-vivo imaging of brain structure and function [9690-44]

NEURAL IMAGING V

9690 1B Acute changes associated with electrode insertion measured with optical coherence microscopy [9690-47]

9690 1D Real time imaging of peripheral nerve vasculature using optical coherence angiography [9690-49]

9690 1F Optical coherence tomography for detection of compound action potential in Xenopus Laevis sciatic nerve [9690-51]

NEURAL IMAGING VI

9690 1I Optical microangiography enabling visualization of change in meninges after traumatic brain injury in mice in vivo [9690-54]
OPTICAL MANIPULATION

9690 1L	Short infrared (IR) laser pulses can induce nanoporation [9690-57]
9690 1M	Studying the mechanism of neurostimulation by infrared laser light using GCaMP6s and Rhodamine B imaging [9690-58]
9690 1O	Modeling the effects of elevated temperatures on action potential propagation in unmyelinated axons [9690-60]
9690 1P	All optical experimental design for neuron excitation, inhibition, and action potential detection [9690-61]
9690 1Q	Analysis of optical neural stimulation effects on neural networks affected by neurodegenerative diseases [9690-62]

POSTER SESSION

9690 1S	Optical topography guided semi-three-dimensional diffuse optical tomography for a multi-layer model of occipital cortex: a pilot methodological study [9690-64]
9690 1T	Shed a light in fatigue detection with near-infrared spectroscopy during long-lasting driving [9690-65]
9690 1U	Hemodynamic responses can modulate the brain oscillations in low frequency [9690-66]
9690 1V	The hemodynamic changes in the human prefrontal cortex during the Flanker and Simon tasks: a fNIRS study [9690-67]

Part C Optogenetics and Optical Manipulation

OPTOGENETICS AND OPTICAL CONTROL I

| 9690 25 | Design considerations for miniaturized optical neural probes [9690-77] |
| 9690 28 | Targeted illumination and tracking using optical fiber probe for optogenetics application [9690-80] |

OPTOGENETICS AND OPTICAL CONTROL II

| 9690 2C | Optogenetic stimulation of multiwell MEA plates for neural and cardiac applications [9690-84] |

OPTOGENETICS AND OPTICAL CONTROL III

| 9690 2K | Hybrid polymer waveguide characterization for microoptical tools with integrated laser diode chips for optogenetic applications at 430 nm and 650 nm [9690-93] |
Head-mounted LED for optogenetic experiments of freely-behaving animal [9690-97]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abdalmalak, Androu, 02
Abookasis, David, 0P
Agrawal, Anant, 1B
Arce-Diego, J. L., 1Q
Baran, Utku, 0J
Bardet, Sylvia M., 1M
Barnes, Ronald A., 1L
Beier, Hope T., 1L, 1P
Bentolila, Laurent A., 0B
Blum, Richard A., 2C
Boretsky, Adam, 1B
Borgos, J., 0W
Boverman, Gregory, 1B
Carlen, Peter L., 1L
Chen, Yu, 0U
Chiel, Hillel J., 1O
Choi, Woo June, 1L
Christie, Catherine E., 0D
Clements, Isaac P., 2C
Constandinou, Timothy G., 1F
Cotero, Victoria E., 18
Desroches, Joannie, 0B
Ding, Hao, 1S
Diop, Mamadou, 02
Ermini, Florian, 08
Fanjul-Vélez, F., 1Q
Fantini, Sergio, 0S
Filkins, Robert J., 1B
Gad, Raanan, 1D
Ganguly, Mohit, 1O
Gao, Feng, 1S
Gao, Yuan, 1T
Giese, Alf, 0A
Glickman, Randolph D., 1L
Gnade, Andrew G., 2O
Godshalk, S. E., 08
Grier, Robert, 2C
Griot, Marie-Christine, 0B
Hall, Diana, 2C
Hammer, Daniel X., 1B, 1D
Harasaki, Yoshika, 0Q
He, Jie, 1S
Heckerling, Andrew, 2C
Hirschberg, Henry, 0D
Hossain, Syed, 09
Huang, Stanley, 0U
Ibey, Bennett L., 1L, 1P
Ishaque, A. Nadeem, 18
Jansen, E. Duco, 1O
Jeffrey, Melanie A., 11
Jenkins, Michael W., 1O
Jermyn, Michael, 0B
Kainerstorfer, Jana M., 0S
Kalasauskas, Darius, 0A
Kantelhardt, Sven R., 0A
Kawauchi, Satoaka, 0Q
Kim, Ella, 0A
Kokubo, Yasuaki, 0Q
Koletar, Margaret, 10
König, Karsten, 0A
Kubby, Joel, 08
Kumsa, Doe, 1D
Kwon, Ki Yong, 2O
Leblond, Frederic, 08
Lefort, Claire, 1M
Levi, Ofir, 10, 11
Li, Kai, 1T
Li, Ting, 1T
Lin, Xiaohong, 1V
Lorraine, Peter W., 18
Lozzi, Andrea, 1B
Lu, Feng-Mei, 1U
Lu, Yi-Fan, 2C
MacKenzie-Graham, Allan, 0B
Madsen, Steen J., 0D
Martens, Stacey, 1P
Matham, Murukeshaw Vadakke, 28
McSweeney, K. Melodi, 2C
Mercier, Jeanne, 0B
Milej, Daniel, 02
Millard, Daniel C., 2C
Miller, S., 0W
Mitra, K., 0W
Moreau, David, 1M
Myers, Matthew, 0U
Naci, Lorina, 02
Neculaes, Vasile B., 18
Nehlich, Julian, 2K
Nicolini, Anthony M., 2C
Nikolic, Konstantin, 1F
Nishidate, Izumi, 0Q
Novack, Samuel W., 08
O’Connor, Rodney P., 1M
Ordonez, Juan S., 25
Ortega-Quijano, N., 1Q
Owen, Adrian M., 02
Pan, Boan, 1T
Pathak, Arvind P., 09
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard School of Medicine (United States)

Program Track Chair

Rafael Yuste, Columbia University (United States)

Part A Clinical and Translational Neurophotonics

Conference Chairs

Steen J. Madsen, University of Nevada, Las Vegas (United States)
Victor X. D. Yang, Ryerson University (Canada)

Conference Program Committee

David Abookasis, Ariel University of Samaria (Israel)
Frederic Leblond, Ecole Polytechnique de Montréal (Canada)
Herbert Stepp, Ludwig-Maximilians-Universität München (Germany)
Pablo A. Valdes, Harvard Medical School (United States)

Session Chairs

1 Optical Spectroscopy and Tomography I
 Steen J. Madsen, University of Nevada, Las Vegas (United States)

2 Microscopy
 Steen J. Madsen, University of Nevada, Las Vegas (United States)

3 Operative and Postop Therapy I
 Pablo A. Valdes, Harvard Medical School (United States)

4 Operative and Postop Therapy II
 Pablo A. Valdes, Harvard Medical School (United States)
Part B Neural Imaging and Sensing

Conference Chairs

E. Duco Jansen, Vanderbilt University (United States)
Qingming Luo, Huazhong University of Science and Technology (China)

Conference Co-chairs

Jun Ding, Stanford School of Medicine (United States)
Anna W. Roe, Vanderbilt University (United States)

Conference Program Committee

David A. Boas, Massachusetts General Hospital (United States)
Yu Chen, University of Maryland, College Park (United States)
Javier DeFelipe, Universidad Politécnica de Madrid (Spain)
Hongwei Dong, University of California, Los Angeles (United States)
Congwu Du, Stony Brook University (United States)
Beop-Min Kim, Korea University (Korea, Republic of)
Vesa Kiviniemi, University of Oulu (Finland)
Pengcheng Li, Britton Chance Center for Biomedical Photonics (China)
Anita Mahadevan-Jansen, Vanderbilt University (United States)
Francesco Saverio Pavone, European Laboratory for Non-linear Spectroscopy (Italy)
Kambiz Pourrezaei, Drexel University (United States)
Claus-Peter Richter, Northwestern University (United States)
Shy Shoham, Technion-Israel Institute of Technology (Israel)
Vladislav Toronov, Ryerson University (Canada)
Shaoqun Zeng, Britton Chance Center for Biomedical Photonics (China)
Session Chairs

8 Neural Imaging I
Qingming Luo, Huazhong University of Science and Technology (China)

9 Neural Imaging II
David A. Boas, Massachusetts General Hospital (United States)

10 Neural Imaging III
Jun Ding, Stanford University Medical Center (United States)

11 Neural Imaging IV
Mykyta Chernov, Oregon Health & Science University (United States)

12 Neural Imaging V
Beop-Min Kim, Korea University Medical Library (Korea, Republic of)

13 Neural Imaging VI
Qingming Luo, Huazhong University of Science and Technology (China)

14 Optical Manipulation
E. Duco Jansen, Vanderbilt University (United States)
Shy Shoham, Technion-Israel Institute of Technology (Israel)

Part C Optogenetics and Optical Manipulation

Conference Chairs
Samarendra K. Mohanty, NanoScope Technologies, LLC (United States)
Nitish V. Thakor, Johns Hopkins University (United States)

Conference Program Committee
Antoine Adamantidis, McGill University (Canada)
George J. Augustine, Duke-NUS Graduate Medical School (Singapore)
Klaus B. Gerwert, Ruhr-Universität Bochum (Germany)
Xue Han, Boston University (United States)
Elizabeth M. Hillman, Columbia University (United States)
Richard Kramer, University of California, Berkeley (United States)
Alfred L. Nuttall, Oregon Health & Science University (United States)
Anna W. Roe, Vanderbilt University (United States)
Session Chairs

15 Optogenetics and Optical Control I
 Samarendra K. Mohanty, NanoScope Technologies, LLC (United States)

16 Optogenetics and Optical Control II
 Nitish V. Thakor, Johns Hopkins University (United States)

17 Optogenetics and Optical Control III
 Nitish V. Thakor, Johns Hopkins University (United States)

18 Optogenetics and Optical Control IV
 Ulrich T. Schwarz, Fraunhofer IAF (Germany) and IMTEK, Universität Freiburg (Germany)