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ABSTRACT

This paper describes ongoing work at the University of Edinburgh’s Humanoid Robotics Project. University of
Edinburgh have formed a collaboration with the United States’ National Aeronautics and Space Administration
(NASA) around their R5 humanoid robot commonly known as Valkyrie. Also involved are MIT, Northeastern
University and the Florida Institute for Human and Machine Cognition (IHMC) as part of NASA’s Space Robotics
Challenge. We will outline the development of state estimation and localization algorithms being developed for
Valkyrie.
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1. INTRODUCTION

Legged robot locomotion is an active research problem and in the recent decades many research laboratories
have developed prototypes — from quadrupeds operating outdoors (such as the Boston Dynamics BigDog) to
experimental running bipedal robots. The motivation for humanoid robots, specifically, is the simple observation
that such a form factor is useful in enabling robots to use human–centric infrastructure and tools — in particular
in areas which are inaccessable to wheeled or tracked robots.

This paper describes ongoing work at the University of Edinburgh’s Humanoid Robotics Project. University of
Edinburgh have formed a collaboration with the United States’ National Aeronautics and Space Administration
(NASA) around their R5 humanoid robot commonly known as Valkyrie. Also involved are MIT, Northeastern
University and the Florida Institute for Human and Machine Cognition (IHMC) as part of NASA’s Space
Robotics Challenge.

We will outline the design and development of our humanoid state estimation algorithms and well as progress
towards highly reliable LIDAR localization. Many of algorithms and tools discussed here were initially developed
for the Boston Dynamics (BDI) Atlas during the DARPA Robotics Challenge (DRC) before being redesigned or
improved for the NASA Valkyrie.

2. OVERVIEW OF NASA VALKYRIE AND COMPARISON TO BDI ATLAS

The NASA Valkyrie is one of the most advanced humanoid robots in the world. The original robot was developed
by NASA-JSC in 2013 during the DRC. It weighs 125 kg and stands 1.8m tall. The robot’s primary joints are
controlled by electric motors and has a joint configuration similar to previous robots: namely 6 Degree-of-Freedom
(DOF legs, 7 DOF arms, 3 DOF back as well as an actuated neck and fingers. As our focus here is primarily on
the algorithms below presents, we direct the interested reader to the full system overview of the presented in.1

Aside from the obvious difference in actuation source (hydraulics versus electric motors with series elastic
actuators) there are many simularities between Valkyrie and the Boston Dynamics Atlas. Both contain 6 degree
of freedom legs, with a primary inertial measurement unit located at the pelvis link and with a force-torque
sensor in each ankle. More comparative details are presented in Figure 1.
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Figure 1. The algorithm described in this paper have been extensively tested with both the Boston Dynamics Atlas and
NASA Valkyrie humanoid robots.

Sensor or Property BDI Atlas NASA Valkyrie

Actuation Hydraulic Electric SEA Motors
Leg Degrees of Freedom 6 (2 Angle, 1 Knee, 3 Hip) 6 (2 Angle, 1 Knee, 3 Hip)

Pelvis IMU KVH 1750 Microstrain 3DM-GX4-15
- Rotation Rate Fiber Optic MEMS
- Acceleration MEMS MEMS
Motor Side Joint Sensing Yes Yes
Transmission Joint Sens-
ing

No Yes, 13 bit

Foot Force-Torque 3 Axis (ATI) 6 Axis (ATI)

Table 1. Sensor and Actuation Comparison between the Boston Dynamics Atlas (all models) and the NASA Valkyrie.

Joint Sensing: Atlas robot’s (leg) joint sensing is provided using linear position encoders located within
the hydraulic actuator. By comparison, Valkyrie has significantly more joint level sensing. 13-bit encoders
located directly on the joint transmission are the primary source of position measurements. Low latency velocity
measurements (intended for control purposes) are computed by combining a motor-size incremental encoder with
a contribution from the rate of change of SEA deflection. In practice we do not use this velocity measurement
in state estimation and prefer to difference

As a side observation, this 13-bit resolution, equivalent to one bit per 1/20 degree, causes velocity measure-
ments to be effected quantisation noise. In effect this means that velocity sensing is least accurate during slow
motion, with velocities below 0.1 rad/sec being unobservable.

Force Contact Sensing: Both robots contain similar force-torque sensing, albeit 3 axis for Atlas versus
6 axis for Valkyrie. As the estimation algorithm uses vertical axis force sensing to decide upon contact, this
difference is not particularly important.

Inertial Sensing: The primary difference between the robots is in the quality of the IMU sensors. While the
Atlas carries a Fiber Optic Gyroscope with tactical grade performance, the Valkyrie uses a MEMS grade IMU
which is an order of magnitude cheaper. The reason difference for this different is largely the large physical size
of the KVH sensor. Because of this difference there was significant uncertainty as to the quality of orientation
estimation that can be achieved with Valkyrie.
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3. CONTROL

Control of a humanoid robot is one of the most complex yet well explored domains of robotics research. It
is out of the scope of this work to overview the control strategies used on Valkyrie in depth. In brief, the
Valkyrie robot is currently controlled by momentum-based control algorithm described in.2 The approach uses
convex optimization to calculate the control output of the robot given constraints regarding interfaction forces
(between the ground and the robot’s feet), torque limitations and walking pattern trajectories. The approach
was originally developed for the Atlas robot before being adapted to the Valkyrie in 2014.

4. STATE ESTIMATION

In this section we describe the EKF state estimation algorithm developed for the BDI Atlas and now adapted
for Valkyire.

4.1 Signal preprocessing

Some preprocessing is required to obtain useful measurement data. For Valkyrie, the angle of each leg joint is
sensed by measuring the travel of its hydraulic actuator with an LVDT, and then computing a transformation
through the joint linkage. This mapping does not account for flexion of the joint linkage when loaded or backlash
when a joint changes direction. To account for these effects, we preprocess the joint angle measurements using
the correction model, previously introduced by Koolen et al.2 The model assumes linear compliance at the joint
level,

qpreproci = qrawi − τi/Ki (1)

where qrawi is the raw joint angle measurement, τi is the measured joint torque, and Ki is the joint-level stiffness.
In practice, we limit the magnitude of the modification term, |τi/Ki|, to 0.1 rad. We used Ki = 10000 Nm/rad
for all joints except the hip yaw joints, where we used Ki = 7000.2

For Valkyrie similar preprocessing carried out, with different correction terms which are a function of the
mass properties of the robot.

4.2 Process model

The state of the floating base of the robot is described by

xbase =
(
bωb,

b vb,
wRb,

w pb
)
, (2)

where bωb ∈ R3 and bvb ∈ R3 are the angular and linear velocities, wRb is the floating-base rotation matrix,
and wpb = [px, py, pz]

T is the base position. The angular and linear velocities are expressed in the base (pelvis)
frame b, while the position and orientation of the pelvis are expressed in a fixed world frame w (as indicated by
the leading superscripts above).

As the IMU provides accurate measurements of the angular velocity bωb, we use the measured values directly
and do not incorporate bωb in the EKF state. In addition to the floating-base state, the EKF also estimates gyro
and acceleration biases, denoted bω and ba respectively. This leads us to define the global state of the EKF as
the tuple

xbase =
(
bvb,

wRb,
w pb,bω,ba

)
(3)

The fact that the rotation matrix wRb is an overparameterization of orientation leads to constraints on
the global state that cannot be handled in a standard EKF setting. To overcome this problem, we maintain
orientation uncertainty in terms of a perturbation rotation in body frame represented by a minimal set of
coordinates.

Omitting superscripts and subscripts and summarizing,3 the true orientation of the floating base is represented
by the rotation matrix R. The estimated orientation, R̂, is related to it through

R = R̂R(χ), (4)

where χ ∈ R3 is the rotation error in exponential coordinates relative to the body frame and R(χ) = eχ̂ is the
corresponding perturbation rotation matrix. Here, ·̂ denotes the skew-symmetric matrix such that ·̂x = · ×x for
any x ∈ R3, so that eχ̂ is the rotation matrix corresponding to a rotation of |χ| about the axis defined by χ.
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Quantity Pos Orient Velocity Ang Rate Accel
wpb

wRb
bvb

bωb
wv̇b

Accelerometers 3
Gyroscopes 3
Leg sensing 7 7 3 7
LIDAR 3 3
Visual Odometry 3 3

Table 2. Contribution of various sensors to the filtered state estimate. Modes of integration found to be useful are marked
3and those not used here (for a variety of reasons) are indicated 7.

4.2.1 Inputs

Similar to angular velocity, the acceleration bab is measured accurately by the IMU. We treat both bωb and bab
as inputs to the process model rather than measurements in the EKF – a common approach. Hence, the input
vector for the EKF can be written as

ubase =

[
bωb
bab

]
. (5)

Following the linearization derivations from,3 Euler integration is used to produce the a priori state and
covariance.

4.3 Leg Kinematic Measurement model

As with many floating base state estimation algorithms,4,5 our approach to using the leg kinematics assumes that
the robot’s stance foot maintains stationary contact with the ground during part of the gait. This allows instan-
taneous velocity and position measurements of the robot’s floating base to be inferred via forward kinematics.
Given the accuracy of the IMU orientation sensors, we choose to use joint sensing to measure only the position
and velocity of the pelvis. Of course, perfectly clean and stable ground contact is seldom achieved in practice.
However, we assert that for short periods (on the order of the sample time of our sensors) these assumptions are
reasonable.

An estimate wp̂b [k] of the position of the floating base at time step k can be computed using the current float-
ing base orientation estimate in the world frame, wRb [k], and the previous estimated position of the stationary
foot, wpf [k − 1],

wp̂b [k] = wpf [k − 1] + wpb/f [k] , (6)

where wpb/f [k] denotes the position of the floating base with respect to the foot, which can be computed using
the filtered leg joint positions and the floating base orientation estimate, wθb [k].

Two types of filter measurement could be formulated using this position estimate. The simplest approach
would be to directly apply (6) as a position measurement within the EKF. However, because of the inaccuracy
in joint sensing and because the robot’s foot does not always remain motionless after initial contact, we use the
difference between consecutive position estimates over a short period of time to create a velocity measurement
of the pelvis frame,

wv̂b [k] =
wpb [k]− wpb [k − 1]

h
, (7)

where h = 3 msec is the time step duration. This approach is more attractive because each resultant observation
is a separate measurement of the robot’s velocity and does not accumulate a history of, for example, the effects
of non-ideal ground contact or the footplate rolling or sliding. The influence of an erroneous velocity is transient
and quickly corrected by subsequent observations. Using both measurement types together has been explored
in related work,6 but we avoid doing so as it raises the possibility of creating inconsistencies, particularly when
combined with position measurements derived from the LIDAR module (presented in the following section).

To use the leg kinematics for state estimation, it is necessary to determine which of the feet is most likely to
be in stationary contact with the ground. We use a Schmitt trigger with a threshold of 575 N to classify contact
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Figure 2. Left: Evolution of foot force signals for the left (green) and right (red) foot during two steps. Lower plots
show raw velocity, filter output, ground truth and error relative to VICON. Right: Localization accuracy for a variety of
walking experiments. Position drift on left scale (in meters), yaw drift on right (in degrees). Error (versus ground truth)
of the BDI state estimator (blue), our kinematic-only EKF (green), and LIDAR (red) estimators are shown.

forces sensed by the robot’s 3-axis foot force-torque sensors and detect whether either foot is in contact. A simple
state machine then decides which foot is most reliably in contact and thus will provide the basis for kinematic
measurements. The output of the foot contact classifier is demonstrated in the upper plot in Figure 2.

In the specific case of walking up stairs, the controller needs to use the toe of the trailing foot to push the
robot forward and upward while the foot is not in stationary contact. While the design of the state estimator
is almost entirely independent of the walking controller, as we increased the speed of locomotion we needed to
feedback the active contact points from the controller to the state estimator in this situation.

We also classify other events in the gait cycle. Striking contact is determined when a force of 20–30 N is
maintained for more than 5 msec. Breaking contact is determined when force falls below 275 N. Because these
impacts create unrealistic measurements, the EKF integrates these measurements with higher measurement
covariance. We note that when the robot is in a double support stance, information from both legs could be
leveraged to provide additional kinematic measurements. For simplicity we currently neglect this information.

Figure 2 contains a number of plots comparing (1) the raw pelvis velocity measurements inferred from
kinematics with (2) the output of our integrating filter and (3) the velocity estimated from VICON motion
capture. Using only raw leg position signals, the typical pelvis velocity standard deviation measured while
standing stationary was 7.6 cm/sec. Adding joint-level filters reduced this to 2.3 cm/sec. Integrating filtered leg
joint position into the EKF further reduced the error standard deviation to 1.4 cm/sec.

Finally, as mentioned in Section 4.3 the revolute joints states are filtered separately. The compliance model
mentioned above is again used in preprocessing, before extended Kalman Filtering.

4.4 Yaw Bias Measurement Model

An additional challenge when developing a system for autonomy is Yaw Bias drift. The IMU gyroscopes contain
bias resulting in an inability to directly measure rotation drift without directly sensing it.

To detect this bias we introducted a detector which used occasional observations of the robot being stationary
to capture the orientation and to infer that all subsequent rotation is dur to the rotation bias. By slowly evolving
this estimate, an accurate and stable rotation bias can be directly estimated and removed.

However, inherently this bias is much lower for the Atlas robot (with a tactical grade IMU) versus the MEMS
IMU on the Valkyrie robot. We estimate that the former drifts at a rate 10 times less than the MEMS IMU.
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5. STATE ESTIMATION EVALUATION

We evaluate performance in a variety of experiments. In the following our localization estimate system sequen-
tially updated a set of desired footstep locations that were individually passed to the BDI controller during
locomotion. Figure 2 summarizes the results of a substantial set of experiments for a variety of walking patterns
totaling 57 minutes of operation and 155 meters traveled.

We are currently capable of walking approximately 13 times faster (0.40 m/s vs 0.03 m/s) with 30 cm longer
steps (70 cm) compared with the quasi-static walking controller provided with the robot while maintaining equal
or better footstep placement precision. At this speed the double-support time per step is roughly 0.1 sec and
the gait is fully dynamic (the COM is outside of the support polygon). Although this is still a slow gait by
human standards, we point out that our primary development goal to this point has been to achieve accurate
and robust walking control in environments related to the DRC (cinder blocks, ramps, gaps, etc.) and we have
not yet invested considerable effort improving the speed and efficiency of the robot’s walking motions.

For traversing ramps and cinder blocks, raising the heel of the trailing foot while walking improves kinematic
reachability. The controller actively monitors the knee angle and breaks heel contact when the trailing leg
is nearly fully extended, resulting in a heel-raising behavior. In our implementation, the controller and state
estimator are separate processes that independently estimate foot contacts (the controller uses both sensed and
desired contact information to classify a foot as in contact). We therefore had to tune the contact classifier in
the estimator to handle the slightly different contact behaviors encountered in flat ground, steps, and ramps.

A variety of experiments to test both the controller and the state estimator are described in7 including
climbing narrow stairs with partial foot contacts, traversing irregular terrain and applying pushes to imbalance
the robot.

6. DRIFT SUPPRESSION WITH LIDAR

While the drift of the combined inertial and kinematic estimator is capable of achieving relatively low drift, it
remains unsuitable for accurate walking over tens of meters. We aim to use our exteroceptive sensors to remain
localized with the robot’s environment. In particular, we use LIDAR to continuously infer the robot’s position
relative to a prior map while walking.

6.1 Gaussian Particle Filter

We first adapted the approach originally proposed by Bry et al.3 using a Gaussian Particle Filter (GPF), which
was presented in.8

In typical operation, the robot is first commanded to stand still for about 30 seconds while it collects a full 3D
point cloud of its environment (see Figure 4). This cloud is then converted into a probabilistic occupancy grid
(OctoMap)9 against which efficient localization comparisons later performed during locomotion. While the MAV
experiments presented in3 required offline mapping with a separate sensor, our legged humanoid and actuated
LIDAR with 30 m range permit the map to be constructed immediately prior to operation and immediately
utilized while walking. Furthermore, if the robot were to approach the map boundary, on-line construction of a
new map could easily be performed during operation.

Since the LIDAR is fundamentally a planar 2D sensor, only a subset of the state vector (namely x, y and
yaw in the rotating sensor plane) is observable at any given instant. We therefore partition the full state vector
into observable and unobservable sub-states, and use a GPF to incorporate each laser measurement over the
observable variables. The particle filter samples are weighted according to the proposed sub-state likelihood,
which is computed by comparing the LIDAR measurements, projected from the sub-state, to the prior map.
From these weighted samples a mean and covariance, and in turn an equivalent Kalman measurement update
for the full state vector are calculated resulting in a correction to the base position and yaw.

Given the competition environment of the DARPA Robotics Challenge and our inability to test in precisely
the DRC conditions (outdoors with a large crowd of moving people), we typically operated without the LIDAR
localization module because:
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Figure 3. For LIDAR localization, the robot first collects a static point cloud of its environment which is used for subsequent
localization. In our experiments we could localize the robot walking backward and forward over the illustrated walking
course even though the robot had no rear facing sensors.

1. The inertial-kinematic estimator achieved a low enough drift rate such that the precision with which our
operator could plan walking goals became the primary limitation. This was demonstrated in the terrain
walking task where the robot carried out a 10 step walking plan over the block course — longer continuous
walking plans than any other team — to the point that accurate placement of footsteps became more
important.

2. Uncertainty about the layout of the final test area. The DRC Finals arena was a mock up of an industrial
plant, however it was open on one side (with no physical structures to align to) with a crowd of 1000s
watching the competition. Without systematically testing in an environment similar to this, using the
above approach was.

In Section 6.2 we discuss our future plans to improve this important module.

6.2 ICP-based Localization

So as to improve performance in dynamics situations our most recent approach uses Iterative Closest Point (ICP)
to retain localization, with a number of significant modificaitons.

We analyze the effect of overlap variations on registration performance and demonstrate that where overlap
varies, outlier filtering needs to be tuned accordingly. We define a novel parameter which gives a measure of this
overlap. In this context, we propose a strategy for robust non-incremental registration. The pre-filtering module
selects planar macro-features from the input clouds, discarding clutter. Outlier filtering is automatically tuned
at run-time to allow registration to a common reference in conditions of non-uniform overlap.

In Figure 4 initial results are presented.

7. CONCLUSION

In this work we have present recent work on state estimation and LIDAR localization developed as part of the
University of Edinburgh - NASA collaboration using the Valkyrie humanoid. Other ongoing working includes
dense visual mapping, collision free motion planning and model based control.
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Figure 4. Left: Initially the point clouds are analysed to remove clutter. Right: Subsequently the resultant point clouds
are aligned to a single reference cloud. This results in objects in the scene, such as a valve, being consistent across each
observation. These results are from data collected in the DRC Finals by the MIT team.
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