Integrated Modeling of Complex Optomechanical Systems II

Marco Riva
Editor

7–9 October 2015
Milan, Italy

Sponsored by
INAF - National Institute for Astrophysics (Italy)
ESO - European Southern Observatory (Germany)
OPTICON – Supported by the European Commission’s FP7 Capacities Program

Organized by
INAF – Astronomical Observatory of Brera (Italy)

Published by
SPIE

Volume 10012
Contents

v Authors

vii Conference Committee

ix Introduction

INTEGRATED MODELING OF COMPLEX OPTOMECHANICAL SYSTEMS II

<table>
<thead>
<tr>
<th>10012 02</th>
<th>E-ELT vibration modeling, simulation, and budgeting [10012-7]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10012 03</td>
<td>The opto-mechanical performance prediction of thin mirror segments for E-ELT [10012-9]</td>
</tr>
<tr>
<td>10012 04</td>
<td>Science cases in the integrated modeling of Chinese Giant Solar Telescope [10012-5]</td>
</tr>
<tr>
<td>10012 05</td>
<td>Polarization modeling for the main optics of Chinese Giant Solar Telescope [100122-6]</td>
</tr>
<tr>
<td>10012 06</td>
<td>The BlackGEM array in search of black hole mergers: integrated performance modelling [10012-18]</td>
</tr>
<tr>
<td>10012 07</td>
<td>Models for the active optics system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array [10012-19]</td>
</tr>
<tr>
<td>10012 08</td>
<td>An integrated thermo-structural model to design a polarimeter for the GTC (Gran Telescopio Canarias) [10012-4]</td>
</tr>
<tr>
<td>10012 09</td>
<td>Instrument physical model for the SOXS (Son Of X-Shooter) spectrograph [10012-20]</td>
</tr>
<tr>
<td>10012 0A</td>
<td>Extracting the scalloping error from closed loop AO data [10012-13]</td>
</tr>
<tr>
<td>10012 0B</td>
<td>Integrate modelling of smart structures for astronomy: design future technologies [10012-15]</td>
</tr>
<tr>
<td>10012 0C</td>
<td>Strategies for the dynamical-optical simulation of high-performance optics [10012-3]</td>
</tr>
<tr>
<td>10012 0D</td>
<td>Integrated optomechanical structural optimization through coupling of sensitivity matrixes [10012-14]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Balster, Harry, 06
Bettonvil, Felix, 06
Bloemen, Steven, 06
Bonnet, Henri, 0A
Braam, Ben, 03
de Haan, Menno, 06
Deng, Yuan Yong, 04
Di Varano, I., 08
Dolron, Peter, 06
Eberhard, Peter, 0C
Engels, Arno, 06
Esselborn, Michael, 0A
Fu, Yu, 05
Gardiol, Daniele, 07, 09
Giro, Enrico, 07
Groot, Paul, 06
Hamelink, Roger, 03
Jakob, G., 02
Ji, Haisheng, 04
Jin, Zhenyu, 04, 05
Klein Wolf, Marc, 06
Kragt, Jan, 06
Laux, U., 08
Le Louarn, Miska, 0A
Lessio, Luigi, 07
Lin, Jun, 04
Liu, Zhong, 04
Loreggia, Davide, 07, 09
Madec, Pierre-Yves, 0A
Marchetti, Enrico, 0A
Moschetti, M., 0B, 0D
Müller, M., 02
Navarro, Ramon, 06
Nelemans, Gijs, 06
Nijenhuis, Jan, 03
Paalberends, Willem Jelle, 06
Pal, Sari, 06
Raskin, Gert, 06
Riva, M., 0B, 0D
Rodeghiero, Gabriele, 07
Roelfsema, Ronald, 06
Russo, Federico, 07
Rutten, Harrie, 06
Scheers, Bart, 06
Schuij, Menno, 06
Sedghi, B., 02
Störlke, Johannes, 0C
Strassmeier, K. G., 08
Sybilski, Piotr, 06

ter Horst, Rik, 06
van Elteren, Arjen, 06
Woche, M., 08
Yuan, Shu, 05
Conference Committee

Conference Chair
Marco Riva, INAF - Astronomical Observatory of Brera (Italy)

Program Committee
Torben Andersen, Lund University (Sweden)
Anita Enmark, Luleå University of Technology (Sweden)
Joseph M. Howard, NASA Goddard Space Flight Center (United States)
Franz Koch, European Southern Observatory (Germany)
Zhong Liu, Yunnan Observatories, Chinese Academy of Science (China)
Phil Rees, The United Kingdom Astronomy Technology Center (United Kingdom)
Marco Riva, INAF – Astronomical Observatory of Brera – Milan (Italy)
Jean-Christophe Salvignol, European Space Agency (Netherlands)
Babak Sedghi, European Southern Observatory (Germany)

Session Chairs

1 Introduction
Marco Riva, INAF - Astronomical Observatory of Brera (Italy)

2 Telescopes (I): Integrated Modeling for E-ELT
Jean-Christophe Salvignol, European Space Agency (Netherlands)

3 Telescopes (II): Integrated Modeling for CGST
Carl Blaurock, Nightsky Systems Inc. (United States)

4 Telescopes (III): Space Telescopes and Telescope Arrays
Zhong Liu, Yunnan Observatories, Chinese Academy of Science (China)

5 Instruments and AO: Integrated Modelling for Instruments and AO
Babak Sedghi, European Southern Observatory (Germany)

6 Integrated Modelling Strategies
Phil Rees, United Kingdom Astronomy Technology Center (United Kingdom)
Introduction

The importance of integrated modeling in optomechanical (also called STOP: Structural Thermal Optical) systems in design analysis has grown significantly over the last decades. This is mainly because of:

A. the increased complexity of the systems;
B. the necessity to determine early the performances of the systems in order to make budget evaluations and trade off selections; and
C. the difficulty of reproducing the operative conditions for the performance verification (space projects).

Space- and ground-based projects have different approaches and different practices.

Space projects need a detailed modeling almost from the very beginning of the project. During the development of the project itself (STM-EQM, etc.), the model is updated according to the test results in order to better predict the full performances and thus define compliances vs. requirements. As a result, the discrepancies diminish significantly throughout the development of the project. Such a procedure also helps in the modeling of future projects as it leads to the acquisition of a well-defined expertise.

The approach to ground-based projects has been slightly different up to now: the modeling contributes to the design and configuration of the system, but the test results rarely lead to the updating of the model in order to have better fidelity. It is important for all the scientists and engineers involved to understand the necessity to also fix the models of ground-based projects. Then the end-to-end models and calibration tools would be more efficient as well.

A fully detailed model is, itself, still not the complete answer. Starting with simplified models (i.e. equation-based) may require more work, but could help to better understand complex models. Complexity should be added step by step after validation and completion of previous milestones.

The aim of Integrated Modeling of Complex Optomechanical Systems II was to bring together people working in the ground- and space-based telescopes and instruments sectors to discuss ideas related to integrated modeling. Its focus was on the assessment of possible achievements obtained thanks to this approach in system engineering and design activities.
The workshop allowed the participants to share their knowledge and its positive outcome highlighted the importance of involving a wider network of engineers in the discussion.

Marco Riva

Standing, from left:
- Phil Rees
- Michael Shanley
- Ronald Roelfsema
- Zhong Liu
- Carl Blaurock
- Igor Di Varano
- Jan Nijenhuis
- Davide Loreggia
- Jean-Christophe Salvignol
- Giorgio Pariani
- Matteo Genoni
- Martino Quintavalla
- Manuele Moschetti

Kneeling, from right:
- Marco Riva
- Alessio Zanutta
- Petra Dell’Arme
- Luca Oggioni
- Fabio Tenegi
- Johannes Störkle
- Shu Yuan