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ABSTRACT

From the early days of many-body physics, it was realized that the self-energy governs the relaxation or lifetime
of the retarded Green’s function. So it seems reasonable to directly extend those results into the nonequilibrium
domain. But experiments and calculations of the response of quantum materials to a pump show that the
relationship between the relaxation and the self-energy only holds in special cases. Experimentally, the decay
time for a population to relax back to equilibrium and the linewidth measured in a linear-response angle-resolved
photoemission spectroscopy differ by large amounts. Theoretically, aside from the weak-coupling regime where
the relationship holds, one also finds deviations and additionally one sees violations of Mathiessen’s rule. In this
work, we examine whether looking at an effective transport relaxation time helps to analyze the decay times of
excited populations as they relax back to equilibrium. We conclude that it may do a little better, but it has a
fitting parameter for the overall scale which must be determined.

Keywords: Many-body relaxation, Nonequilibrium dynamical mean-field theory, Electron-phonon coupling,
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1. INTRODUCTION

Back when many-body physics and Green’s function methods were being established, it was noticed that the
self-energy provides the lifetime for the equilibrium Green’s function.1 In particular, it is the imaginary part of
the self-energy evaluated at the pole of the Green’s function that lies closest to the real axis in the lower half plane
that determines this relaxation rate. This result leads one to infer that for small deviations from equilibrium,
the imaginary part of the self energy should continue to provide the relaxation rate for the electrons. But trying
to make this work immediately leads to a complication. Namely, in equilibrium there is only one time, while
in nonequilibrium there are two times associated with the Green’s function. The decay rate determined from
the linear-response analysis governs decay in the relative time direction, but the change in the population of the
electrons in a given momentum state is governed by decay in the average time direction. While those decay rates
might be related to one another, it is by no means obvious that they must be the same, and indeed, we often
find they are not.

Hence, there is a need to re-evaluate how relaxation occurs in nonequilibrium, since it is not governed by the
same behavior that drives lifetimes for equilibrium systems.

One thing that is always relevant for relaxation is the constraints provided by the phase space for scattering
and the Pauli exclusion principle. This leads to the so-called “phonon window effect,”2,3 where scattering by an
optical phonon is sharply reduced as one gets to energies that lie below the phonon frequency. In particular, the
relaxation outside the phonon window ω > Ω is quite rapid, but within the window ω < Ω, it becomes slow. As
the system is excited, the Pauli blocking is reduced within the window and enhanced outside the window, so the
relaxation rates move closer to each other, but, speaking quantitatively, they rarely become too similar.

These effects have already been seen in experiment. A direct comparison of the relaxation time for a pop-
ulation and the lifetime, as measured in linear-response angle-resolved photoemission spectroscopy (ARPES),
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Figure 1. Kadanoff-Baym-Keldysh time contour, which runs from a minimum time to a maximum time along the real
time axis, then backwards to the minimum time, and then parallel to the imaginary axis for a length given by the inverse
of the initial equilibrium temperature.

showed large differences, sometimes more than an order of magnitude difference in the relaxation rates.4 The
phonon window effect and its change with pump fluence have also been observed.7 Theory has started to examine
these effects too. In particular, an equation of motion technique was used to determine the initial contributions
to the relaxation rate at long times, and comparison with the imaginary part of the self-energy also showed
significant differences, but not yet as large as seen in experiment.5,6

In this work, we approach the problem from a different perspective. It is well known from linear-response
theory, that the relaxation of the current comes from the transport relaxation time, which is related to the
imaginary part of the self-energy, but is clearly different as well. Here, we compute the generalization of that
relaxation time to see whether it gives a relaxation rate that is closer to the relaxation rate that can be extracted
directly from the time dependence of the populations. While we find some improvement, it is not significant, and
it requires us to adjust an overall scaling factor for the rate, so it is not a complete determination of the relaxation
rate. These results are intimately related to a breakdown of Mathiessen’s rule. That rule says that when we have
multiple scattering mechanisms, the relaxation rates for each mechanism add together to create a net relaxation
rate. But in nonequilibrium relaxation, we often see multiple rates arise in different time ranges due to different
relaxation processes and bottlenecks to energy transfer; we do not go into full detail of that phenomenon here,
as we instead focus on trying to identify the primary relaxation mechanism for the electron-phonon interaction.

We work with the Holstein model, which involves a single band of uncorrelated electrons that interact with
an optical phonon (Einstein mode) via a density-coordinate coupling. The Hamiltonian is

H = −
∑
ijσ

tijc
†
iσcjσ − µ

∑
iσ

c†iσciσ − g
∑
i

c†iσciσ

(
b†i + bi

)
+Ω

∑
i

b†i bi (1)

where ciσ (c†iσ) destroys (creates) an electron with spin σ at lattice site i, bi (b†i ) are the phonon lowering
(raising) operators for the optical phonon at site i, −tij is the hopping integral that connects site i with site
j, µ is the electron chemical potential, g is the electron-phonon coupling, and Ω is the phonon frequency. The
dimensionless electron-phonon coupling λ is given by the slope of the real part of the self-energy in equilibrium;
here we have g2 = 0.02 eV, Ω = 0.1 eV and λ ≈ 0.34. We work on a square lattice with only a nearest neighbor
hopping of 0.25 eV. The system is at half-filling, which results when we choose µ = 0 and ignore the Hartree
term in the perturbation theory (which we do because the Hartree term only shifts the chemical potential). The
initial temperature is chosen to be T = 0.025 eV (room temperature). The electric field is described in the
Hamiltonian gauge, where E(t) = −dA(t)/dt, where we set ~ = c = 1. Then, we use the Peierls’ substitution in
the bandstructure to incorporate the field into the Hamiltonian. If we write

ϵ(k) = −
∑
j

tije
ik·Rj − µ (2)

with k the momentum and Rj the position vector for the lattice site j. Then the Peierls substitution is ϵ(k) →
ϵ(k−A(t)). We start the system off in equilibrium at a temperature T , and then turn on an electric field, which
we assume to be spatially uniform. We ignore all magnetic field effects. The vector potential is a sinusoidal
oscillating wave with a Gaussian envelope. The amplitude of the vector potential is 0.5, the standard deviation
of the Gaussian is 10 eV−1 and the oscillation frequency of the sinusoidal wave is 0.5 eV. This wave has 4-5
visible periods and is visibly nonzero over a total range of about 50 eV−1.

Proc. of SPIE Vol. 10193  1019303-2



The contour-ordered Green’s functions depend on two times, each lying on the Kadanoff-Baym-Keldysh
contour shown in Fig. 1. The local Green’s function is defined via

Gc
ijσ(t, t

′) = −i⟨Tcciσ(t)c
†
jσ(t

′)⟩ (3)

where the angle brackets denote an average with respect to the initial equilibrium distribution

⟨O(t)⟩ = Tre−βH(t→−∞)O(t)
1

Z
, (4)

β = 1/T is the inverse temperature of the initial equilibrium distribution, and Z = Tr exp[−βH(t → −∞)] is
the partition function for the initial equilibrium state. The time-dependence of the operators is expressed in
the Heisenberg picture. The symbol Tc is the time-ordering operator on the contour, which places later objects,
according to where they sit on the contour, to the left.

We employ Migdal-Eliashberg theory as the impurity solver for the nonequilibrium version of dynamical mean-
field theory (DMFT)8,9 to solve this problem by employing the Kadanoff-Baym-Keldysh formalism.10,11 The
strategy is briefly summarized in the next section, where we discuss the perturbation theory and the techniques
employed to solve Dyson’s equation. We also show the explicit formulas used for the data analysis.

2. FORMALISM

Migdal-Eliashberg theory is employed to determine the local self-energy because the phonon energy scale is
much smaller than the electron energy scale, implying we can neglect vertex corrections. Instead of how Migdal-
Eliashberg theory is employed for linear-response and equilibrium calculations, where the phonons are the dressed
phonons, so they are not renormalized, we self-consistently dress the phonons for the Holstein model by solving
for the electron and phonon self-energies from a common conserving approximation. We simultaneously perform
a self-consistent perturbation theory for the electronic Green’s function; this approach allows us to take into
account the finite heat capacity of the phonons and have their properties transiently change as they absorb
energy. Since Migdal-Eliashberg theory involves a local self-energy, it is a form of DMFT, and we employ
the NEDMFT approach to solving the problem. Note that all objects are contour-ordered continuous matrix
operators, which depend on two times, each lying on the Kadanoff-Baym-Keldysh contour.

We start with a guess for the self-energy and then determine the local Green’s function by solving the Dyson
equation via

Gc
loc(t, t

′) =
∑
k

[
(Gc

loc,non)
−1(k)− Σc

]−1
(t, t′) (5)

where the Green’s function and self-energy are continuous matrix operators in time, and we take the (t, t′) matrix
elements after the inverse. This equation is solved by discretizing it on the contour and employing the method
of solving the equation of motion differential equation via direct integration.12 When properly formulated, the
algorithm for doing this is highly efficient. Eq. (5) includes the noninteracting nonequilibrium Green’s function
on the lattice, which can be found analytically.13 Once we have the local Green’s function, we are ready to solve
the impurity problem. In this case, we do not need to determine the effective medium and solve the full impurity
problem because the expression for the self-energy depends only on the local Green’s function, hence we have

Σc(t, t′) = ig2Dc(t, t′)Gc
loc(t, t

′) (6)

which has to be solved self-consistently because the local Green’s function depends on Σc, and the dressed
phonon propagator depends on the Green’s function. The dressed phonon propagator is constructed from the
initial equilibrium propagator, which given by

Dc
0(t, t

′) = −i[nB(Ω) + 1− θc(t, t
′)]eiΩ(t−t′) − i[nB(Ω) + θc(t, t

′)]e−iΩ(t−t′). (7)

Here, nB(Ω) = 1/[exp(βΩ) − 1] is the Bose distribution function and θc(t, t
′) is equal to one if t is ahead of t′

on the contour and is zero otherwise. We employ a conserving approximation where the electron and phonon
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self-energies are derived from a single functional. This results, in addition to the Dyson equation for the electrons,
in one for the phonon:

Dc(t, t′) = Dc
0(t, t

′) +

∫ ∫
dt1dt2D

c
0(t, t1)Π

c(t1, t2)D
c(t2, t

′). (8)

The phonon self-energy Πc(t, t′) is obtained from the electron Green’s functions through:

Πc(t, t′) = −iGc(t, t′)Gc(t′, t) (9)

where the product is to be evaluated through the Langreth rules. More details can be found elsewhere.2,3

To summarize how the Green’s functions are calculated, we do the following: (i) we decide what the initial
temperature T is of the system before the field is turned on; (ii) we incorporate the field via a spatially uniform
vector potential that is oriented along the diagonal direction; and (iii) we iterate the nonequilibrium Migdal-
Eliashberg theory (or equivalently, the NEDMFT) until both self-energies converge. At this stage, we have both
the contour-ordered self-energy and the contour-ordered Green’s function for both the electrons and the phonons.
Note that we work with the full local Green’s function here, summing over all momenta in the Brillouin zone.

We extract the data in a similar fashion to what would be done in experiment. We first construct the time-
resolved photoemission spectroscopy signal, neglecting matrix element effects,14 which is formed from the lesser
Green’s function and the envelope of the probe pulse, s(t) = exp[−(t− t0)

2/2σ2
pr]/(

√
2πσpr), centered at t0, with

a spread (standard deviation) given by σpr (we use σpr = 25 eV−1 in this work). The formula is

P (ω; t0) ∝ Im

∫
dt

∫
dt′s(t)s(t′)G<

loc(t, t
′)eiω(t−t′). (10)

There is a small subtlety in what we do to determine the PES signal, and we do this to match results closer to how
some experiments have been performed.15 Namely, we first construct the gauge-invariant Green’s function and
then we perform a partial summation over momentum, by summing only over the diagonal direction for k. This
is then used to approximate the TR-PES signal, which should be a good approximation because any anisotropy
is washed out by the electron-phonon scattering, as in low-temperature superconductors. After computing the
TR-PES signal, the frequency axis is divided into contiguous bins (with a width of 0.01) and we integrate the
total signal within each bin and plot as a function of the probe time t0. These populations then decay as a
function of time, with a typical exponential decay. To find the exponent, we either fit the tail of the curve to an
exponentially decaying curve, or we extract the time-constant for the decay directly by numerically calculating
the derivative and dividing the derivative by the function to give the decay rate (under the assumption that the
system is decaying exponentially). As we will see below, both methods give similar results for the decay rate at
a given time.

We end this section with a discussion about linear response. Within DMFT, the optical conductivity has no
vertex corrections for the linear-response regime.16 Hence, we can evaluate the dc conductivity in terms of a
many-body transport relaxation time17,18

σdc ∝
∫

dω

(
−df(ω)

dω

)
τ(ω) (11)

where f(ω) = 1/[1 + exp(βω)] is the Fermi-Dirac distribution function and in two-dimensions, we have

τ(ω) =
1

2π2

[
ImGR

trans(ω)

ImΣR(ω)
+

1

8
− 1

8
Re[{w + µ− ΣR(ω)}GR(ω)]

]
, (12)

where the R superscript means retarded, and the transport Green’s function is defined with an extra v2 (square
of the band velocity) in its definition, so that

GR
trans(ω) =

∑
k

v2(k)
1

ω − ϵ(k)− ΣR(ω)
. (13)
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Here v = ∇kϵ(k) is the band velocity.

Unfortunately, this formula does not easily generalize to the nonequilibrium limit. But in the spirit of this
result, we examine a relaxation time similarly constructed from the retarded transport Green’s function and the
retarded self-energy at the same average time; we neglect the second and third terms in Eq. (12) since this is
likely to only be semiquantitative result at best, and we assume the derivative of the Fermi-Dirac distribution
is so sharp it can be approximated by a delta function for each population at a given energy above the chemical
potential. Our ansatz is that we compare

τ̄(ω, tave) =
1

η(ω, tave)
∝ ImGR

trans(ω, tave)

ImΣR(ω, tave)
(14)

against the calculated decay rates extracted from analyzing the photoemission spectra, with an overall normal-
ization factor still to be determined. We call this transport-based relaxation rate η.
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Figure 2. (Color online.) Time-resolved photoemission spectra for different frequency bins as a function of time. One
can see that the higher frequencies decay much faster than the lower frequencies due to the phonon window effect (here,
Ω = 0.1 eV). The grayed region is where the field is on, which has a total width of about 50 eV−1.

3. DISCUSSION AND RESULTS

In Fig. 2, we plot the time-resolved photoemission spectra for different frequency bins as a function of time.
The grayed region is the region where the pump is on. We take the data for different frequencies and times and
extract an effective relaxation time in one of two different ways. The first way is to fit the data according to an
exponential fit for the data in a time window about the given time. The second method is to extract an effective
exponential relaxation time by computing the numerical derivative and dividing by the function at a given time;
that is, by computing the logarithmic derivative. This satisfies

1

τ(ω, tave)
= −dP (ω, tave)

dtave

1

P (ω, tave)
. (15)

The results are plotted in Fig. 3. One can see that both methods for extracting the instantaneous decay rate
agree to high accuracy, but the overall relaxation rate differs from the equilibrium self-energy result.

We next compare these relaxation rates, extracted with the two different methods, for different average times
in Fig. 4. We can see a phonon window effect for short times, which disappears at longer times, and we can see
a generic behavior that produces a fairly flat response for the relaxation rate over these frequency values.

Finally, we form the result from the transport Green’s function and compare with the relaxation rate data in
Fig. 5. The overall factor is about 6. One can immediately conclude that this transport Green’s function-based
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Figure 3. (Color online.) Relaxation rate for different frequency bins at tave = 50 eV−1. The imaginary part of the
retarded equilibrium self-energy is shown for comparison. While there is semiquantitative agreement here, they clearly
differ.
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Figure 4. (Color online.) Left: relaxation rate as determined from a fit to an exponential decay for different average times.
The phonon frequency is marked by a dashed line to help identify the phonon window effect. Right: a similar plot for the
relaxation rates as extracted from a logarithmic derivative.

relaxation time is much flatter in frequency, in agreement with the data, but it does not show the strong average
time-dependence within the phonon window, where the phonon window effect disappears for long average times.

4. CONCLUSIONS

Nonequilibrium relaxation is complicated. Indeed, the simple notions for how to determine it from the self-
energy are known to fail when the electron correlations become strong. Here, we have made an initial attempt
to remedy this problem by considering the modification of the relaxation rate due to a generalization of the
transport relaxation time to nonequilibrium. We find that while this approach does do better in modeling the
weak frequency dependence of the data outside the phonon window, it does not properly show the evolution of
this dependence inside the window, especially for long times. So, this might be a step in the right direction, but,
it unfortunately has an adjustable parameter for the overall relaxation rate, which needs to be determined for
this system, and which provides less predictive power than if we had a prediction on an absolute scale.

In the future, we hope to be able to find an even better ansatz for the nonequilibrium relaxation time in
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Figure 5. (Color online.) Transport-based relaxation rate (renormalized for best fit) compared to the relaxation rate
extracted from the TR-PES data. One can see it is much flatter outside the phonon window, in good agreement with the
data, but it does not show a disappearance of the phonon window effect at long times like the data do (compare the blue
lines for the longest times).

order to find the microscopic origin of this relaxation. The nonequilibrium behavior is far more complex than
the linear-response regime and we need more work to both have good data to compare with and to determine
the proper microscopic basis for the relaxation, including all bottleneck effects.
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