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ABSTRACT 

To achieve high resolution and sensitivity on the nanometer scale, further development of X-ray optics is required. 
Although ex-situ metrology provides valuable information about X-ray optics, the ultimate performance of X-ray optics 
is critically dependent on the exact nature of the working conditions. Therefore, it is equally important to perform in-situ 
metrology at the optics’ operating wavelength (‘at-wavelength’ metrology) to optimize the performance of X-ray optics 
and correct and minimize the collective distortions of the upstream beamline optics, e.g. monochromator, windows, etc. 
Speckle-based technique has been implemented and further improved at Diamond Light Source. We have demonstrated 
that the angular sensitivity for measuring the slope error of an optical surface can reach an accuracy of two nanoradians. 
The recent development of the speckle-based at-wavelength metrology techniques will be presented. Representative 
examples of the applications of the speckle-based technique will also be given – including optimization of X-ray mirrors 
and characterization of compound refraction lenses. Such a high-precision metrology technique will be extremely 
beneficial for the manufacture and in-situ alignment/optimization of X-ray mirrors for next-generation synchrotron 
beamlines. 
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1. INTRODUCTION  
Over the last few decades, significant progress has been made in improving both the optical quality and metrology 
accuracy of X-ray optics. Nowadays, the state of art of the deterministic surface finishing technique, such as, Elastic 
Emission Machining (EEM) [1], has pushed the mirror slope error below 50 nrad. Nevertheless, further improvements in 
the precision of manufacturing modern optical components are often limited by the accuracy of available metrology 
techniques. Therefore, it in turn demands advanced metrology techniques to be developed to further push the 
performance and manufacturing limits of advanced optics. Modern deflectometry instruments such as the Nanometer 
Optical Measuring system (NOM) demonstrate high accuracy and have become indispensable tools for any metrology 
labs at synchrotron facilities [2, 3]. The metrological accuracy of mirror slope error measurements has been be pushed 
into tens of nrad [4]. In addition, the Hartmann wavefront sensor has been implemented into the ex-situ metrology, and 
two-dimensional mirror slope errors can be measured [5]. However, the ultimate performance of the optics is often 
affected by factors such as X-ray beam alignment, mechanical and thermal drifts, and vibrations. Therefore, the in-situ 
and at-wavelength metrology methods are considered the best pathway to overcome this limitation and surpass the 
present optics performance [6-9]. As well as optical tests in the metrology labs, it is becoming increasingly important to 
optimize and characterize X-ray optics under actual beamline operating conditions. 

Recently, many in-situ metrology methods have been developed for aligning or optimizing the X-ray mirrors [9-12]. 
Nevertheless, they inherently suffer from low spatial or angular sensitivity, slow optimization process or complicated 
setup. In contrast, the recently developed X-ray speckle-based at-wavelength metrology technique has shown great 
potential due to its simple experimental setup, high angular accuracy and moderate requirement of mechanical stability 
and transverse coherence [8, 13-18]. These techniques have been established and further developed at Diamond Light 
Source (DLS) beamline B16 and is increasingly used to characterize X-ray optics.  
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Importantly, an unprecedented angular sensitivity in the range of sub-ten nrad for measuring the slope error of an optical 
surface has been demonstrated [14, 15]. Such a super precision metrology technique will be beneficial to the 
manufacturers of polished mirrors and also in optimization of beam shaping during experiments. Here, we present an 
overview for the recent development of X-ray speckle-based techniques at DLS and show the applications of this at-
wavelength metrology method for characterizing compound refractive lenses (CRLs), optimizing X-ray mirrors, and 
measuring beam coherence length.  

2. X-RAY SPECKLE-BASED TECHNIQUE AND EXPERIMENTAL SETUP
2.1 Introduction of X-ray speckle-based technique  

The principle of speckle-based technique is to track the displacement of near-field speckles, which arise from the mutual 
interference of light generated by imperfections and the rough structure of the objects located in the coherent light path. 
In the near-field regime, the speckles can be generated by putting a diffuser (such as abrasive paper or filter membrane) 
into the X-ray beam. The average particle size of the diffuser is usually a few microns, and the generated speckles can be 
resolved using a high-resolution X-ray detector. Based on the sample under test, the technique can be simply classified 
into two modes: differential mode and self-correlation mode [14, 16].  
For weakly focusing optics, such as single CRL, the footprint of X-ray beam -in presence and absence of optics remains 
same. In the differential mode, two sets of images with and without the sample in the beam are collected. Here, each set 
of image can be single image or a stack of images based on the requirement on angular sensitivity. If only single speckle 
image is used, a surrounding area for each pixel is used for tracking the speckle displacement with a digital image 
correlation algorithm capable of subpixel accuracy [19]. Even though this method is fast, the spatial resolution and 
angular sensitivity is compromised. To overcome this issue, both two dimensional (2D) scan and one dimensional (1D) 
scan have been developed [18, 20]. Recently, the speckle vector tracking and unified modulated pattern analysis 
approaches have been proposed to reduce the number of speckle images [21, 22]. 
In contrast, for strongly focusing optics, the footprint of X-ray beam is significantly changed after the optics inserted into 
the beam. Therefore, it is difficult to perform cross-correlation between the direct reference beam and the “zoomed” 
beam, after inserting strong focusing optics. In this case, only a single stack of images are collected by scanning the 
diffuser with the optics in the beam. Once the single stack of images are acquired, the speckle patterns can be built from 
all the speckle images for the two nearby rows of pixels [8]. The speckle displacement can be retrieved from the two 
generated speckle patterns. Instead of retrieving the first derivative of wavefront phase from the differential mode, the 
secondary derivative of wavefront phase is derived from the self-correlation mode [14]. The wavefront slope is then 
calculated by 1D or 2D integrations from the derived secondary derivative of wavefront phase [16]. It should be noted 
that the measured wavefront slope error from the self-correlation mode includes both the defect from the optics under 
test and the upstream incoming wavefront error. If the incoming wavefront error is much less than the defects from the 
optics under test, the measured wavefront slope error can be used to quantify the defect of the optics. The ultimate 
accuracy for the absolute slope error is limited by the imperfection of incoming wavefront. Nevertheless, the measured 
wavefront error can still be used to evaluate quality of the X-ray beam since the optics is tested under actual beamline 
operating conditions. 

2.2 Experimental setup 

The experiment for the development of speckle-based technique was carried at the Diamond Light Source Test beamline 
B16 [23]. The monochromatic X-ray can be selected by either a Si (111) double-crystal monochromator (DCM) or a 
double multilayer monochromator (DMM). As shown in Fig. 1, an X-ray mirror under test was mounted on a motorized 
stage, located at 47 m from the source. A diffuser was mounted on a piezo stage and was placed downstream from the 
mirror. The scanning step size for the diffuser was normally sub-micron. A set of images was collected with a 2D 
detector, and the acquisition time is about a few seconds for each image depending on the experimental setup. The 
sensitivity for measuring the local wavefront radius of curvature can be increased by putting the diffuser closer to the 
focal plane. In order to resolve the speckle features and increase angular sensitivity, the detector was located at a large 
distance (such as 1000 mm) downstream from the focusing optics.  
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Figure 6. (a) R
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