
31.
ente Biarritz, Franceon Space Optics

18-21 October
www.icso2016.com

 

ICSO 2016 

International Conference on Space Optics 

Biarritz, France 

18–21 October 2016 
 

Edited by Bruno Cugny, Nikos Karafolas and Zoran Sodnik 

 

 

 

Toward optimum efficiency in a quantum receiver  for coded 
ppm 

D. M. Boroson 

International Conference on Space Optics — ICSO 2016, edited by Bruno Cugny, Nikos Karafolas, 
Zoran Sodnik, Proc. of SPIE Vol. 10562, 105623M · © 2016 ESA and CNES

CCC code: 0277-786X/17/$18 · doi: 10.1117/12.2296040

Proc. of SPIE Vol. 10562  105623M-1



ICSO  2016                                  Biarritz, France 
International Conference on Space Optics                                                                        18 - 21 October 2016  

TOWARD OPTIMUM EFFICIENCY IN A QUANTUM RECEIVER 
FOR CODED PPM 

 
D. M. Boroson 

USA
 
 
I. INTRODUCTION 
 

Communications systems builders continue to search for signal formats and receiver architectures that can 
provide the most efficient utilization of their subsystems, which include power amplifiers as well as transmit 
and receive apertures.  Receivers requiring very small amounts of received power are of particular interest in 
communications links where transmission distances are very long and losses are large, such as from Deep 
Space. 

 
Helstrom and others ([1],[2],[3]) initiated the study of optimum signal reception using quantum mechanical 

signal models.  They derived the mathematical description and predicted performance of receivers that optimize 
certain criteria, such as Minimum Probability of Error (MPE).  Unfortunately, practical implementation of their 
proposed receivers has still not been achieved. 

 
In parallel, technology has advanced to where noiseless photon counters can be used to achieve quite good 

performance ([4]). We show here that, when an end-to-end error correction code is added, in fact such a system 
can out-perform the “optimum” MPE system at low signal powers. 

 
In this report, we derive the formulation of a quantum receiver that is shown to be uniformly better than either 

the MPE or photon-counting receiver.   
 
 

II. PPM SIGNAL DESCRIPTION 
 

We will examine the set of signals known as Pulse Position Modulation (PPM), although the results we will 
show are valid for any set of signals that are classically orthogonal.  Source bits are grouped into K-bit symbols.  
(An example is shown in Figure 1.)  The time duration of the K bits is then divided into M=2K  shorter time 
slots, and the laser is turned on only in that slot corresponding to the particular K bits.  When a transmitter has 
the property that it is average power limited (such as in doped-fiber optical amplifiers) then the power in the 
single “on” slot is M times higher than the average.   

 
This signal is transmitted and received, after much loss, at the distant receiver. Thus, the PPM signal’s 

quantum description is a set of pure states,  
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each the tensor product of M pure, coherent states ([5]).  Some examples from an M=8 signal set are shown 
here: 
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Figure 1. 8-ary PPM example;  data =100 = 4 

 
where each coherent state is infinite-dimensional, 
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   , SN2  is the average number of photons per symbol. 

(3.) 

 
We assume the highly simplified model with no extraneous noises.  We can note that these M states 

are linearly independent and span only an M-dimensional subspace of the much larger Hilbert space.  It 
can be shown that this signal set has a high degree of symmetry, known as “geometrically uniform” 
symmetry, ([6], [7]) and we assume equal prior probabilities.  

 

 
II. KNOWN RECEIVERS  
A. Minimum Probability of Error Receiver 
 
The basics of quantum-optimum receiver structures were pioneered by Helstrom, Yuen, Holevo, and others 

([1],[2],[3]). The first metric they used for optimization was Minimum Probability of Error (MPE), when 
receiving a symbol.  It was shown that the receiver was a Positive Operator-Valued Measure (POVM) and that, 
when the M signals were pure, it had the particularly simple form of a set of M orthonormal projectors.  We 
denote these projectors 
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and note that the outputs have probabilities according to 
 

2
]|[ mkmkP   (5.) 

Optimization can thus be performed by finding the set of inner products,  mk   between the state vectors 

and the projectors, making sure to preserve both the known inner products of the various signal states and the 
orthonormality of the projectors. 
 
A geometric view of signals and projectors is shown in Figure 2 for M=3.  
 
It has also been shown ([6], [7]) that the MPE optimization is achieved in geometrically uniform systems with 

the so-called Square Root Measurement, which has a closed form for the projectors and the performance.  (We 
will not reproduce that material here.)    

 
 

Figure 2.  Geometric view of 3-ary PPM signals with the POVM. 

1       0       0
PPM
(M=8)

LSB at right

First pulse at left

Proc. of SPIE Vol. 10562  105623M-3



ICSO  2016                                  Biarritz, France 
International Conference on Space Optics                                                                        18 - 21 October 2016 

 
For our (classically) orthogonal and geometrically uniform signal set, Helstrom ([8]) showed that one can also 
find the MPE solution by parameterizing the solution with an MxM matrix X where  
 
 

mkkmX  . (6.) 

 
From the known symmetry, we can let (following Helstrom) 
 

kkXa   and kmXb  , k≠m (7.) 

 
To preserve orthonormality, we find 
 

1)1( 22  bMa . (8.) 

 
and from the known correlations of the coherent signal states,  
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we find 
 

 2)2(2 bMab . (10.) 

 
These can be solved for a and b, (still following Helstrom) 
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where the symbol error probability can be shown to be  22 )1(1 bMa  . 
 
B. Unambiguous Receiver 
 

Some authors have investigated, instead, receivers where at least one of the outputs is promised to be perfectly 
correct ([9], [10], [11], [12]).  One can achieve this (in our noiseless system) by either selecting one or more of 
the signals to favor, or, in our preferred symmetric treatment, by treating the states symmetrically similar but 
allowing an extra output corresponding to an ambiguous measurement.  Such a system has M+1 outputs and has 
been described in the general case ([13]).  Its POVM operates in an M+1-dimensional Hilbert subspace.                

 
We note that this quantum optimum (for this new metric) receiver has performance equivalent to the well-

known noiseless photon-counting receiver ([14]) where one or more photon counts correctly tells us which PPM 
pulse was sent while the lack of any photons corresponds to an ambiguous measurement.  Classically, we call 
such an ambiguous measurement an erasure.  In a photon-counted (as well as unambiguous quantum) PPM 
system, an erasure occurs with probability 

 

)exp(1 Serasure NP  . (12.) 

 
II. CODED COMMUNICATIONS 

 
One needs to decide what to do with the information that an erasure has occurred.  When sending data from 

one party to another, knowledge that some data has been erased has at least two uses: 
 
1) The receiver can request a retransmission 
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  Figure 3.  Coded communications system with semi-classical receiver architecture. 
 
 

2) The system can employ an end-to-end code, which includes redundant bits, whose decoder can use the 
knowledge of the erasure to help recreate the original bits efficiently.  (For instance, Reed-Solomon codes 
have a well-known decoding algorithm for Errors and Erasures.)   
 

Such a system can be described as in the block diagram in Figure 3.  A receiver that uses a quantum system to 
make symbol decisions, but then uses the outputs in a classical decoder is sometimes called “semi-classical.”  Its 
performance can be assessed by calculating the “accessible information” in the symbol receiver outputs, and 
then applying a near-(Shannon)-capacity-achieving code, many of which are now known.  This information is 
calculated using the well-known formula (for our equal-priors system) 
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The two channels that we have investigated can be described with the graphs shown in Figure 4.  Using the 

transition probabilities we have investigated, we can calculate and plot the accessible information.  An example 
of M=16 is shown in Figure 5a.  It is clear that the unambiguous receiver actually performs better than the 
“optimum” MPE at low signal levels.  Thus, the benefit of adding an extra output state becomes clear.  We can 
show the same results perhaps more clearly by showing the photon efficiency of our receiver assuming a 
capacity-achieving code, and plotting it versus the extra bandwidth required by the PPM signaling plus the 
capacity-achieving code.  The M=16 example is shown in Figure 5b.  Here we can see that the unambiguous 
system performs more than a dB better at very low code rates, although the MPE system is slightly better at high 
code rates. 
 

One can ask, what is the optimum symbol receiver for a semi-classical system?  Holevo ([15]) investigated 
this problem, and derived a necessary condition for a receiver to be information-optimum.   We can write his 
condition, using our X-matrix notation, as  

0log 22
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(14.) 

 
This formula does not seem to allow closed-form solution, nor even suggest the required dimensionality of the 
outputs.  We can use it, though, to check whether a proposed system at least satisfies the necessary condition.  
(As a note, the MPE satisfies this equation.) 
 
                  

               
(a)        (b) 

   Figure 4.  (a) – MPE transitions;  (b) – Unambiguous receiver transitions 
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(a)       (b) 

Figure 5.  (a) Accessible information for MPE and Unambiguous receivers for 16-PPM. (b) Same 
information plotted as photon efficiency vs bandwidth expansion when using a capacity-achieving code. 
 

 
Davies ([16]) also addressed this problem.  Although he did not find the optimum receiver (nor its 

performance), he bounded the number of measurements, k, that would be required to achieve the maximum 
information.  He showed that, when operating in a Hilbert space of finite dimension d, that 
 

2dkd     (15.) 
 
Sasaki etal ([17]) refined this result by noting that if the Hilbert space is real (as in our PPM system, although 
our coherent states have infinite dimension) that the upper bound can be reduced to be 
 

2/)1(  ddkd    (16.) 
 
In classical receivers, a measurement with more bits describing it than just the symbol hard decision is called a 
“soft decision.”  Many modern decoders can make use of such information. 
 
It is of interest that Levitin ([18]) proved that, for M=2, two measurements suffice and that the MPE is the 

optimum form for optimizing information with pure states. 
 
III. A NEW PPM RECEIVER 
 
A. An Errors and Erasures Receiver 
 
We are motivated to find a symbol-wise receiver which has, by symmetry, either rM or rM+1 outputs for some 

integer r, where the second option would include an erasure output.  We will examine r=1.  The transition graph 
for this general case of M+1 outputs is depicted in Figure 7.  We see that we are now allowing both errors and 
erasures.   
 
 
 

                                                      
 Figure 7.  A quantum Errors and Erasures receiver with M+1 outputs for the M-ary PPM system. 
 

 

Quantum MPE

Unambiguous

Photons per symbol (dB)

S
o

u
rc

e 
b

it
s 

p
er

 s
ym

b
o

l

Unambiguous

Quantum MPE

P
h

o
to

n
s 

p
er

 s
o

u
rc

e 
b

it
 (

d
B

)

Bandwidth (PPM slots per source bit)

. . . .

0
1
2

M-1

0
1
2

M-1

Erasure

Proc. of SPIE Vol. 10562  105623M-6



Photons per symbol (dB)

ICSO  2016                                  Biarritz, France 
International Conference on Space Optics                                                                        18 - 21 October 2016 

 
 
Observing the symmetry, we can create the matrix of state/projector inner products 
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where 2ePerasure  .  The two equations to be solved are thus 

 

1)1( 222  ebMa ,    22)2(2 ebMab  (18.) 

                       
These can be solved, keeping e as a free parameter, as 
 

 2/12/12 ]1)[1(])1(1[
1   MMeM
M

a ,  2/12/12 ]1[])1(1[
1   MeM
M

b  
(19.) 

where we see that we must have  
M

M
e

)1(12 
  

We have substituted these into (13), the equation defining accessible information, and numerically optimized 
by selecting e.  In Figure 8, we show both e2, the optimized erasure probability, and (M-1)b2, the error 
probability for the M=16 case.  We note that, as expected, at low flux, the receiver looks more like the photon-
counting, unambiguous receiver.  We also see that there is a threshold flux above which the MPE is the best 
such receiver, and erasures are not needed. 
 
The accessible information using this receiver has been plotted in Figure 9a, along with that of the MPE and 

the unambiguous receiver.  We see that this Errors and Erasures receiver is better than either of the previous 
receivers, although the improvement is small, about 0.3 dB at rate ½. The improvement is more apparent when 
plotted in the photon efficiency curve of Figure 9b, where we can see that the addition of errors improves the 
unambiguous receiver at low code rates. 
 
B. The Quantum Optimum 
 
For completeness, we need to note that the truly optimum receiver for our coded system would find a quantum 

optimum receiver for the full codeword, most likely by implementing the decoder in a quantum computer.  
Unfortunately, no one has yet invented a structured format for such a receiver.  We do know the performance it 
could achieve, however ([19]) which can be shown to be 

          1log1)1()1(1log)1(1
1

)log( MMM
M

MI . 
(20.) 

  

                                             
    Figure 8.   Numerically optimized error and erasure probabilities for 16-ary quantum Errors and Erasures 
receiver. 
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(a)                                      (b) 

Figure 9.  (a) Accessible information for Errors and Erasures receiver, along with MPE and unambiguous 
receivers.  (b) Same information plotted as photon efficiency vs bandwidth expansion when using a capacity-
achieving code.  Also shown is the quantum optimum, achieved with collective quantum decoding of the full 
codeword. 
 
This has also been plotted in Figure 9b.  (See [20].)  We can see that such a fully optimum quantum receiver 

would be quite a bit better than even our improved semi-classical receiver. 
 
IV. IMPLEMENTATION POSSIBILITIES 
 

Of these several types of receivers, it is only the unambiguous one that has a straightforward implementation.  
That is, high-quality photon-counting devices are an excellent means of noiselessly detecting photons (or the 
lack of photons.)  (See [21] for an example of such a system.) 
 
Both the MPE and Errors and Erasures receivers, however, require superposition states, and are thus much 

more difficult to implement.  A means of mapping coherent signals into a quantum computer was presented in 
[22], and such an approach could be used to achieve either of these POVM systems.  For the new receiver, it 
might be possible instead to use a Quantum Non-Demolition measurement as a first stage ([23]) to deduce 
whether there were any photons at all (ie, that there was not an erasure) followed by an MPE-like POVM, 
although the QND receiver is known to randomly change the phase of the remaining signal, which may be 
found to erase any potential gains. 
 

SUMMARY 
 
For communications systems allowing quantum-optimum symbol receivers plus classical decoders, which are 

sometimes called semi-classical coded systems, we have shown how an extension of the standard MPE receiver 
to include errors as well as ambiguous (ie, erasure) outputs can increase the accessible information available 
over either MPE receivers or photon-counting receivers.  Future efforts may well find more general extensions 
to improve performance further. 
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