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I. INTRODUCTION 

 

In recent years, Type-II InAs/GaSb superlattice (T2SL) has emerged as a new material technology 

suitable for high performance infrared (IR) detectors operating from Near InfraRed  (NIR, 2-3µm) to Very 

Long Wavelength InfraRed (LWIR, λ > 15µm) wavelength domains.  

To compare their performances with well-established IR technologies such as MCT, InSb or QWIP cooled 

detectors, specific electrical and radiometric characterizations are needed: dark current, spectral response, 

quantum efficiency, temporal and spatial noises, stability… 

In this paper, we first present quantum efficiency measurements performed on T2SL MWIR (3-5µm) 

photodiodes and on one focal plane array (320x256 pixels with 30µm pitch, realized in the scope of a french 

collaboration ). Different T2SL structures (InAs-rich versus GaSb-rich) with the same cutoff wavelength (λc= 

5µm at 80K) were studied. Results are analysed in term of carrier diffusion length in order to define the 

optimum thickness and type of doping of the absorbing zone. 

We then focus on the stability over time of a commercial T2SL FPA (320x256 pixels with 30µm pitch), 

measuring the commonly used residual fixed pattern noise (RFPN) figure of merit. Results are excellent, with 

a very stable behaviour over more than 3 weeks, and less than 10 flickering pixels, possibly giving access to 

long-term stability of IR absolute calibration. 

 

II. InAs/GaSb T2SL QUANTUM STRUCTURE  
 

A superlattice (SL) is a periodic stack of thin heterostructures, ie interfaces between two layers of 

different semiconductors. The InAs/GaSb heterointerface features a specific type-III band alignment, where 

the valence band of the GaSb layer is higher than the conduction band of the InAs layer, as shown in Fig 1a.  

Each GaSb/InAs/GaSb block acts as a quantum well, thus this structure can be viewed as a system of coupled 

multi quantum wells. Electrons are then confined in minibands of energy instead of discrete levels. 

The bandgap of this periodic structure is defined by the energy difference between the first electron miniband 

C1 and the first heavy hole miniband V1 as illustrated in Fig 1, and depends on the thicknesses of the InAs 

and GaSb layers.  

 
Fig 1 Schematic InAs/GaSb SL structure displaying the fundamental electron C1 and heavy hole V1 minibands. The 

absorption of infrared photons occurs between these two minibands.   

 

The SL can absorb a wide range of IR wavelengths by engineering the bandgap (3µm to 30 µm 

wavelengths) without changing the fabrication process. Fig 2 shows the photoresponse spectra of symmetric 
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InAs/GaSb T2SL, ie with the same number of InAs and GaSb monolayers (ML) in a period. It proves that 

T2SL can properly address the MWIR domain. 

 

 
Fig 2 Normalized photoresponse spectra of InAs (N) /GaSb (N) symmetrical SL MWIR detector structures with  

N = 3, 5, 8, 10 and 15 MLs (1ML is 3Å thick). The spectra are recorded at 80 K. 

 

III.QUANTUM EFFICIENCY MEASUREMENTS 
 

A. Comparisons of several T2SL structure designs 

 

Comparisons are first made with 3 monoelement structures that have the same active zone thickness of 

1µm, as seen in Fig. 3. They were made by Molecular Beam Epitaxy (MBE) using GaSb as substrate and 

were designed in order to have the same wavelength cutoff (λc=5µm). Sample A is GaSb-rich, with a period 

made of 10ML of InAs and 19 ML of GaSb (10/19). Sample B is symmetric (10/10). Sample C is InAs-rich 

(7/4). Quantum Efficiency (QE) measurements have been performed at 0V bias voltage on these 3 structures. 

First the relative photoresponse was measured using a FTIR spectrometer and then the absolute QE was 

calibrated using a SR200 blackbody [1].  

The QE results were compared in Fig. 3. At =4.5µm, better QE values were obtained by the symmetric and 

GaSb-rich SL structures while the absorption is higher in the InAs-rich design because of its large electron–

holes wave-function overlap. 

 To explain why the QE of the InAs-rich structure is unexpectedly much lower than the other two, 

measurements at λ=4.5µm were analysed as a function of the bias voltage. Results are also shown in Fig 3. 

Increasing the bias voltage improves QE for the InAs-rich structure. It increases linearly from 6% to 17% by 

changing the bias voltage from 0V to -1V and then saturates. On the contrary, the QE of the GaSb-rich 

structures is independent of the bias voltage 

 

The photocurrent is created in two steps: photon absorption (which creates the electron/hole pair) and 

collection of those carriers. The fact that increasing the bias voltage also improves the QE means that there is 

a problem of transport in the InAs-rich structure.  
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Fig 3 Right :Comparison of quantum efficiency of 3 different T2SL photodiodes at 77K. Left : QE as a function of the 

wavelength, for Vbias=0V ; right : QE as a function of the bias, for λ=4.5µm. 

 
Simulations using Hovel equations [2][3] have been performed in order to determine the minority carrier 

diffusion length. QE is the sum of the contributions of three zones:  the quasi neutral zone N (QEn), the 

depletion zone (QEzce) and the quasi neutral zone P (QEp).  
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Where α is the absorption coefficient, set equal to 2200 cm
-1

 [4]; Le and Lh are the electron and hole diffusion 

lengths respectively, with Le set equal to 6µm [5]. R is the reflectance at the air/T2SL interface and set equal 

to 0.3. x1 and xmax-x2 the thickness of the quasi neutral zone N and the quasi neutral zone P and depend on the 

bias voltage. 

The InAs-rich SL structure is n-type residual with hole minority carriers [6]. We determined the hole diffusion 

length Lh by fitting the equation with the measured QE, using Lh as the only adjustable parameter. Fig 4 

shows the QE simulation at Vbias=0 and T =77K for three InAs-rich samples with three different active zone 

thicknesses equal to 500nm, 1µm and 4µm. The best agreement of the measured QE curves with Hovel 

equations was obtained with Lh=80nm. This poor value in diffusion length does not allow the hole minority 

carrirs to reach the collection zone and then penalizes the QE. 
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Fig 4 Left : comparison between QE measurements and predictions from Hovel equations for three InAs-rich 

photodiodes with different active zone thicknesses (500 µm, 1 µm and 4 µm), at 77K and 0V bias voltage; Right : 

schematic view of the front-side illuminated InAs-rich photodiode. 

 

 

B. Conclusions 
 

In the InAs-rich structure, the active zone features a residual N-type doping, meaning that the minority 

carriers are holes. As holes have a short diffusion length, the collection process is not optimal. One solution 

would be to change the minority carriers into electrons, which have a better diffusion length [6]. This can be 

done by slightly P-doping the active zone, leading to a P
+
P

-
N junction as used in [7] to optimize LWIR 

structures. Fig 5 displays the QE comparison between intentionally P doped and non intentionally doped (nid) 

N-type residual InAs-rich photodiodes (7/4, 4µm active zone thickness, front side illuminated). We note that 

the measured QE is enhanced by up to 10 times by P-doping the InAs-rich T2SL (40% QE efficiency at 

λ=4.5µm for the P doped structure). To complete the comparison, QE measurements as a function of bias 

voltage are also plotted. In the P doped structure, we can see that the QE does not vary with the bias voltage, 

staying at 40% for λ=4.5µm, highlighting an optimised collection of electron minority carriers in p-doped 

InAs-rich T2SL structure.  
 

 

 

 
Fig 5 Left : QE measurements on InAs-rich T2SL photodiodes with non intentionally doped or P doped active zone at 

77K and Vbias=0V ; Right : schematic view of the front-side illuminated InAs-rich photodiode (the p-n junction is now 

at the i/n interface, allowing a good overlap between the absorption and the collection zones).  

Depletion zone 

Absorption zone 

InAs-rich P doped active zone 

InAs-rich nid N active zone 
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Another solution to improve the QE is to ensure that the holes are created closer to the P/N junction, by 

backside illuminating the T2SL just like the FPA configuration. Fig 6 represents the QE measurement of an 

InAs-rich nid MWIR FPA (320x256) made in France [2]. The 42% average QE is due to the fact that this 

structure is double-pass and that the depletion zone is now betterr overlapping with the absorption zone, 

which allows more hole minority carriers to be collected. 

 

 

 

 
Fig 6 Left : QE measurements on InAs-rich  MWIR FPA (320x256) at 77K on 600 pixels at the center; right : 

schematic view of the back-side illuminated InAs-rich photodiode (the p-n junction is now at the p/i interface, 

allowing a good overlap between the absorption and the collection zones). 

IV. STABILITY OVER TIME AND CORRECTABILITY  

Regardless of the applications, uniformity and stability over time of FPAs have been key priorities and 

recent works on flickering pixels [8] prove that they are still relevant. The usual approach to evaluate them is 

through estimating the Residual Fixed Pattern Noise (RFPN) and the number of flickering pixels. 

 

A. Residual Fixed Pattern Noise 

 
Spatial noise is due to various physical effects that can appear in the photodiode itself, in the readout 

circuit or during the technological steps of hybridization. It results in the fact that pixels’ response is not 

absolutely identical in an FPA. By using a gain/offset correction table, it is possible to damp the impact of 

those non-uniformities. 

 

In order to obtain the gain/offset table, we used a Two Point Correction (TPC). It consists in the use of 

a blackbody at two fixed fluxes, or rather at two temperatures Tbb with radiances Lbb given by Planck’s law for 

a blackbodies: 
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where h is the Planck constant,k is the Boltzmann constant,  c is the speed of light and λ is the wavelength. 
Gain and offset for each pixel are calculated such that all the pixels deliver the same signal when exposed to 

blackbodies at T1 and T2. As the pixels’ behavior is not rigorously linear, the table calculated will not be 

absolutely correct at temperature between T1 and T2. This explains the W shape seen on measurements of 

RFPN, which is the remaining spatial noise after correction. 

RFPN has been measured on commercial IRNova T2SL MWIR FPA (320x256 FPAs with 30μm pixel pitch).  

Measurements have been done using the following routine: 

 Cooling down the FPA in the morning. 

 One measurement when the FPA reaches its operating temperature (80K). 

 One measurement at the end of the day. 

 The cooling machine is turned off, bringing the FPA back to room temperature. 
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This makes 2 measurements a day, except for the first day when more measurements were done.  

For each measurement, gain and offset corrections were applied on each pixel, using the G/O tables 

determined on day D0.  

We consider the correction is still valid as long as RFPN is lower than the temporal noise (TN) measured at a 

given day. 

In the case of the IRNova FPA, results in Fig 7 show RFPN/TN for each measurement. We can see that even 

after 3 weeks, the correction can be deemed as valid, which means that the stability over time is excellent. The 

number of flickering pixels is also very low (typically 10 pixels across the full FPA). 

This result means that a calibration can be made and does not need to be refreshed for a long time, which 

ultimately increases the IRFPA uptime (as the IR device has to be disabled during calibration phases),. In 

some cases, the IR device could even be designed without on-board calibration device, which greatly impacts 

the Size Weight and Power (SWaP) issue. 

 

 
Fig 7 RFPN/rms using the same correction on different days 

  

B. Discussion 

 

 Results in terms of RFPN and number of flickering pixels seem very promising for T2SL technology, 

potentially ensuring long-term stability of infrared instruments absolute calibration. 

 

 In a more general manner, one may wonder whether RFPN is the most relevant figure of merit to 

faithfully depict stability over time. Indeed, RFPN highlights the nonlinearity of pixels. It may not be a major 

concern as long as the behavior is stable, thus correctable. This preliminary work shows that only using RFPN 

standards will not be enough to state on the “correctability” (or ability to be calibrated on the long-term) of the 

FPA. For example, flickering pixels (which may bias the “standard” pixel response used for corrections), may 

be overlooked as the RFPN cannot discriminate them (and apply proper correction to them). We may reach a 

scenario where RFPN is very low (if no flickering occurred during the calibration) and the resulting image 

however cannot be considered as stable. Complementary measurements are ongoing at ONERA, with the 

objective to define a measurement protocol to quantify the “correctability” of FPAs and to compare the merits 

of different competing technologies. 
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V. POTENTIAL OF THE T2SL EMERGING TECHNOLOGY TO ADDRESS THE MWIR SPECTRAL 

DOMAIN 

 

 T2SL technology has initially drawn attention in the MWIR domain since it could potentially combine 

the advantages of MCT (high operating temperature) and InSb (excellent uniformity/stability) technologies, and 

thus potentially fulfill the SWaP (size, weight and power) requirements. 

 

 The electro-optic characterizations realized so far by different laboratories [2][10][11] [12][13][14]  

allow us to conclude that MWIR photodiodes and FPA exhibit a dark current higher than initially expected, 

typically 1000 times higher than the MCT state-of-the-art given by the Rule07 [9], making High Operating 

Temperature (HOT) MWIR out of reach for the time being. This high dark current has been attributed to low 

minority carriers lifetime (in the 80-100 ns range for T2SL in the MWIR domain), which is also responsible for 

the 80nm holes diffusion length reported in this paper. However, we have shown that a proper design of the 

active zone mitigates the impact of this low lifetime on QE values. The quantum efficiency of photodiodes is in 

the range of 50%, which is a very satisfying value, even if not as high as the 80% QE published in MCT 

technology. T2SL also proved to have no excess noise and flat angular response as well [1]. We also pointed out 

that the long-term stability of T2SL technology is excellent, such that T2SL could get back into the race for high 

performance infrared detectors in the MWIR domain. 

However, we believe that it is interesting for T2SL to focus on the LWIR (8-12µm) and VLWIR 

(>12µm) spectral ranges. Indeed, there is a need for a technology that would offer good E-O performances 

(especially QE) with an excellent stability, few flickering pixels, and available in large format FPA. We believe 

that T2SL can address this need, since very promising results have been already reported with a LWIR 

megapixel T2SL FPA (λc=11µm@77K with 80% QE) [15] and a LWIR/VLWIR bispectral 320x256 FPA 

(λc=11µm@77K  with QE in the range of 40% in both bands) [16]. LWIR T2SL photodiodes are currently being 

processed at IES and should be available for E-O characterization at ONERA very soon. 

 

 

V.CONCLUSION 

 

In conclusion, we studied different T2SL MWIR photodiodes (from InAs-rich to GaSb-rich SL structures) in 

terms of quantum efficiency. Measurements pointed out a carrier collection issue as higher bias voltage 

improves the quantum efficiency in InAs-rich structure. Matching the results in the InAs-rich with Hovel 

equations, we found that the collection zone is smaller than the active zone because of low carrier diffusion 

lengths. Solutions have been proposed: 1) changing the minority carrier from hole to electrons which have better 

diffusion length, or 2) switching to backside illumination in order to match the active zone with the collection 

zone. 

Experiments on an IRNova MWIR commercial T2SL FPA show that the stability over time is excellent based 

on RFPN measurements. It potentially ensures long-term stability of infrared instruments absolute calibration. 

This demonstrates that T2SL technology is competitive for high performance MWIR photodetection. 

Finally, “Correctability” has been introduced as an alternative to RFPN measurements, aiming to depict the 

stability of FPAs over extended periods of time. 
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