PROCEEDINGS OF SPIE

Optifab 2017

Julie L. Bentley Sebastian Stoebenau Editors

16–20 October 2017 Rochester, New York, United States

Sponsored by SPIE

Cosponsored by The American Precision Optics Manufacturers Association (United States)

Published by SPIE

Volume 10448

Proceedings of SPIE 0277-786X, V. 10448

SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

Optifab 2017, edited by Julie L. Bentley, Sebastian Stoebenau, Proc. of SPIE Vol. 10448, 1044801 · © 2017 SPIE · CCC code: 0277-786X/17/\$18 · doi: 10.1117/12.2305130

The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in *Optifab 2017*, edited by Julie L. Bentley, Sebastian Stoebenau, Proceedings of SPIE Vol. 10448 (SPIE, Bellingham, WA, 2017) Seven-digit Article CID Number.

ISSN: 0277-786X

ISSN: 1996-756X (electronic)

ISBN: 9781510613645

ISBN: 9781510613652 (electronic)

Published by

SPIE

P.O. Box 10, Bellingham, Washington 98227-0010 USA Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445

SPIE.org

Copyright © 2017, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is \$18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/17/\$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.

Contents

ix	Authors
xiii	Conference Committee
	PLENARY SESSION
10448 02	Freeform Optics: current challenges for future serial production (Plenary Paper) [10448-25]
10448 03	Concept for a new approach to realize complex optical systems in high volume (Plenary Paper) [10448-26]
	GRINDING AND POLISHING PROCESSES I
10448 04	Analysis and optimization of surface profile correcting mechanism of the pitch lap in large-
	aperfure annular polishing [10448-1]
10448 05	APS 3D: a new benchmark in aspherical polishing [10448-2]
10448 06	Novel high-NA MRF toolpath supports production of concave hemispheres [10448-3]
10448 07	Ultrasonic grinding of optical materials [10448-4]
10448 09	Etching hard brittle optical materials by masked ion beam [10448-6]
	GRINDING AND POLISHING PROCESSES II
10448 0A	New surface smoothing technologies for manufacturing of complex shaped glass components [10448-7]
10448 OE	The broad utility of Trizact diamond tile [10448-11]
10448 OF	Impact of slurry pH on material removal rate and surface quality of polished fused silica [10448-12]
	GRINDING AND POLISHING PROCESSES III
10448 OH	New high-precision deep concave optical surface manufacturing capability [10448-14]
10448 OI	Precision production: enabling deterministic throughput for precision aspheres with MRF [10448-15]
10448 OJ	Evolving rocket optics applications drive manufacturing advances [10448-16]

10448 OK	Applying MRF to errors caused by optical and opto-mechanical assembly [10448-17]
10448 OL	Novel process for production of micro lenses with increased centering accuracy and imaging performance $[10448\text{-}18]$
	ADDITIVE MANUFACTURING
10448 0N	Simple scattering analysis and simulation of optical components created by additive manufacturing [10448-20]
10448 OP	Current use and potential of additive manufacturing for optical applications [10448-22]
	OPTICAL DESIGN AND ENGINEERING
10448 OR	Tolerancing aspheres based on manufacturing knowledge [10448-28]
10448 OS	The importance of understanding manufacturing distributions in simulating manufactured performance of optical systems [10448-29]
10448 OT	Integrating optical, mechanical, and test software (with applications to freeform optics) [10448-30]
10448 OV	Twyman effects in thin curved optics [10448-32]
	DIAMOND TURNING
10448 0W	DIAMOND TURNING Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance [10448-33]
10448 0W 10448 0X	Analysis of the application of poly-nanocrystalline diamond tools for ultra precision
	Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance [10448-33]
10448 0X	Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance [10448-33] Micro-laser assisted machining: the future of manufacturing silicon optics [10448-34] UPC 300 ultra precise fast tool freeform machining system with integrated metrology for
10448 0X	Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance [10448-33] Micro-laser assisted machining: the future of manufacturing silicon optics [10448-34] UPC 300 ultra precise fast tool freeform machining system with integrated metrology for corrective machining [10448-35]
10448 0X 10448 0Y	Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance [10448-33] Micro-laser assisted machining: the future of manufacturing silicon optics [10448-34] UPC 300 ultra precise fast tool freeform machining system with integrated metrology for corrective machining [10448-35] FREEFORM FABRICATION AND TESTING Fabrication and correction of freeform surface based on Zernike polynomials by slow tool
10448 0X 10448 0Y 10448 13	Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance [10448-33] Micro-laser assisted machining: the future of manufacturing silicon optics [10448-34] UPC 300 ultra precise fast tool freeform machining system with integrated metrology for corrective machining [10448-35] FREEFORM FABRICATION AND TESTING Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo [10448-42] Precision asphere and freeform optics manufacturing using plasma jet machining
10448 0X 10448 0Y 10448 13 10448 14	Analysis of the application of poly-nanocrystalline diamond tools for ultra precision machining of steel with ultrasonic assistance [10448-33] Micro-laser assisted machining: the future of manufacturing silicon optics [10448-34] UPC 300 ultra precise fast tool freeform machining system with integrated metrology for corrective machining [10448-35] FREEFORM FABRICATION AND TESTING Fabrication and correction of freeform surface based on Zernike polynomials by slow tool servo [10448-42] Precision asphere and freeform optics manufacturing using plasma jet machining technology [10448-43]

10448 18 Enhanced resolution and accuracy of freeform metrology through Subaperture Stitching Interferometry [10448-47] **METROLOGY I** 10448 19 From optics testing to micro optics testing [10448-48] 10448 1A Asphere cross testing: an exercise in uncertainty estimation [10448-49] 10448 1B Advancements in non-contact metrology of asphere and diffractive optics [10448-50] 10448 1C Spectrally controlled interferometry for measurements of flat and spherical optics [10448-51] 10448 1D Surface characterization protocol for precision aspheric optics [10448-52] **METROLOGY II** 10448 1E SUN: A fully automated interferometric test bench aimed at measuring photolithographic grade lenses with a sub nanometer accuracy [10448-53] 10448 1G Centering steep aspheric surfaces [10448-55] 10448 1H Automated asphere centration testing with AspheroCheck UP [10448-56] **METROLOGY III** 10448 11 Tailored complex degree of mutual coherence for plane-of-interest interferometry with reduced measurement uncertainty [10448-57] 10448 1J Absolute surface form measurement of large flat optics based on oblique incidence method [10448-58] **OPTICAL MATERIALS** 10448 1L Stability requirements for two-beam interference lithography diffraction grating manufacturing [10448-60] 10448 1M Thermal instability of BK7 and how it affects the manufacturing of large high precision **surfaces** [10448-61] 10448 1N Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications [10448-62] 10448 10 **UV-cured polymer optics** [10448-63]

10448 1P	Brilluoin spectroscopy application for express, non-contact testing of glass and polymer products [10448-64]
10448 1Q	Application of speckle shearing interferometry to the evaluation of creep strain in elastomers [10448-65]
	COATING AND CLEANING
10448 1S	Rare earth-based low-index films for IR and multispectral thin film solutions [10448-67]
10448 1T	Prospects for the enhancement of PIAD processes by plasma diagnostics [10448-69]
10448 1V	Multilayer coating of optical substrates by ion beam sputtering [10448-71]
	POSTER SESSION
10448 1W	Non-conventional optomechanical choppers: analysis and design of novel prototypes [10448-72]
10448 1Y	High precision processing CaF ₂ application research based on the magnetorheological finishing (MRF) technology [10448-75]
10448 1Z	An optimized method to calculate error correction capability of tool influence function in frequency domain [10448-76]
10448 21	Precision lens assembly with alignment turning system [10448-78]
10448 22	Cheap and fast measuring roughness on big surfaces with an imprint method [10448-79]
10448 23	The study of sub-surface damage distributions during grinding process on different abrasion materials [10448-80]
10448 24	Manufacturing of three dimensional silicate moldings by selective laser beam sintering [10448-81]
10448 25	Optical characterisation of hydroxide catalysed bonds applied to phosphate glass [10448-82]
10448 28	Newly patented process enables low-cost solution for increasing white light spectrum of LEDs [10448-85]
10448 29	Enhanced measuring range with aspheric transmission spheres [10448-86]
10448 2B	Glass molding of 3mm diameter aspheric plano-convex lens [10448-88]
10448 2D	Measurement of strongly curved surfaces by multi-beam experimental ray tracing [10448-90]
10448 2F	Freeform optics manufacturing [10448-92]

10448 2G	Fabrication of advanced glass light pipes for solar concentrators (Best Student Paper Award) [10448-93]
10448 2H	Study on a magneto-rheological removal process of periodic turning marks [10448-95]
10448 21	Material of LAPAN's thermal IR camera equipped with two microbolometers in one aperture [10448-96]
10448 2J	Design of a solar concentrator considering arbitrary surfaces (Runner-Up Best Student Paper Award) [10448-97]
10448 2L	Laser scattering technique to characterize turbulent liquid [10448-100]
10448 2M	Spectroscopic enhancement study in Yb³+/Er³+ doped ferroelectric SrTiO₃ ceramics [10448-101]
10448 2N	An efficient way to fabricate micro transmission grating inside quartz and PDMS material by femtosecond laser micromachining [10448-102]
10448 2Q	Design of an ultra-precision CNC chemical mechanical polishing machine and its implementation [10448-105]
10448 2R	Optical designs for MWIR and four quadrant detectors by using beam steering methods in missile applications [10448-106]
10448 2S	Four and eight faceted domes effects on drag force and image in missile application [10448-107]

Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

A., Bustanul, 2l Arnold, Thomas, 14 Atkins, R., 2G

Avendaño-Alejo, Maximino, 2J

Bai, Yunbo, 1J Ban, Xinxing, 2Q

Barragán-Pérez, Omar, 1Q

Bartlett, Kevin, OJ Bechtold, Michael, 07 Bechtold, Rob, 07 Binkele, T., 16 Blalock, Todd, 17 Bliedtner, Jens, OA, 24 Boehm, Georg, 14 Bouafia, Mohamed, 2L Bourgois, R., 1E Brinkmann, Ralf P., 1T Brock, Christian, 19 Bruder, A., 24

Brunelle, Matthew, OP, 17, 1M

Bulla, B., 0W Cahill, Michael, 07 Chang, Keng-Shou, 23 Chen, Fong-Zhi, 21 Cheng, Yuan-Chieh, 13 Cira, Octavian, 1W Cramer, Neil, 10

Csukas, Eduard Sebastian, 1W

Dambon, O., 0W Daniel, M. V., 1V Das, U., 2N

Davenport, Amelia, 10 DeFisher, Scott, 1B

DeGroote Nelson, Jessica, 0J

DeMarco, Mike, OK Demian, Dorin, 1W Demmler, M., 1V Díaz-Uribe, Rufino, 2J Doetz, M., 0W Dogan, Y., 2G Donohue, Keith, OH Doodala, Somaiah, 1D

Dorn, Ralf, 19

Duma, Virgil-Florin, 1W Dumas, Paul, 06, 0H, 0I, 18 Entezarian, Navid, 0I

Fan, Bin, 1Y Ferralli, Ian, 0P, 17 Fess, Edward, 07, 15 Fleischmann, F., 16, 2D Foest, Rüdiger, 1T Foundos, Greg, 1N Franke, Christian, 1T Frisch, Greg, 1M Fu, Taotao, 09 Fuchs, U., OR, 29 Fuhr, Michael, 0A Fütterer, G., 11 Gagliardi, John I., 0E García-Díaz, Reyes, 2J Gauch, Daniel, 05, 0Y Gemballa, Jake, 2F Genberg, Victor, 0T Gerhardt, Martin, 0A Ghar, Amar, 2N Glaser, Tilman, 1L Götze, Kerstin, 0A, 24 Gregory, Michael, 1M Grüger, Heinrich, 03 Gu, Yawen, 2Q Hahne, F., 1H

Hall, Christopher, 0K Hamy, A. L., 1E Han, Jeong-Yeol, 2H Harhausen, Jens, 1T Heinrich, A., 0N Henkel, Sebastian, 0A Henning, T., 16, 2D Hilbig, David, 16, 2D Ho, Cheng-Fang, 21 Horsak, A., 0N

Hou, Xi, 1Z Hough, James, 25 Hsu, Ming-Ying, 13

Hsu, Wei-Yao, 13, 21, 23 Hu, C., 2G Huana, Chien-Yao, 21, 23

Hue, Myung sang, 2B Huttenhuis, Stephan, 0Y Hyman, Michael, 1M Hyun, Sang-Won, 2H Jeon, Min-Woo, 2H Jeong, Byeong-Joon, 2H

Jia, Xin, 09

Jiang, Chunye, 2Q

Jiménez-Rodríguez, Martín, 2J

Johns, Dustin, 15 Killow, Christian J., 25

Kim, Dongguk, 2B Parks, Robert E., 1G Kim, Geon-Hee, 2H Pascual-Francisco, Juan Benito, 1Q Klocke, F., 0W Pavne, Alexis, 1N Knobbe, Jens, 03 Peng, Wei-Jei, 13 Koch, Felix, 1L Perdue, Jamie, 0J Kode, Sai Kumar, OX Pfund, Johannes, 19 Köhler, T., 02 Piché, François, 0H Kokot, S., OR Piñón, Victor, III, 10 Kotaria, Rajendra, 1D Poliakoff-Leriche, Karine, OF Kumar, Kaushal, 2M Pop, Nicolina, 1W Kuo, Hui-Jean, 21 Pourcelot, P., 1E Kuo, Ching-Hsiang, 21, 23 Pügner, Tino, 03 Rädlein, Edda, 0A Lacaille, Grégoire, 25 Lakhal, Malika, 2L Rank, M., 0N Lambropoulos, John C., 0V Rascher, R., 22 Langehanenberg, P., OL, 1H Ravindra, Deepak, 0X Lee, Giliae, 2B Redien, Melanie, 0F Lee, Kye-Sung, 2H Reinig, Peter, 03 Lehr, Dennis, 1L Remy, Bertrand, OF Robertson, D. J., 0W LePage, Gabriel, 15 Leuckefeld, Michael, 03 Romero, Vincent D., 0E Li, Yun, 09 Ross, James, 2F Liebl, J., 22 Roth, E., 02 Rowan, Sheila, 25 Lin, Yi-Hao, 21 Liu, Shijie, 1J Ryu, Geunman, 2B Logunov, Stephan L., 1P Sakarya, Doğan Uğur, 2R, 2S Sakthibalan, Siva, 1D Lynch, Tim, 17 MacKay, Peter E., 25 Salsbury, Chase, 1C Madsen, C. K., 2G Sanson, Mark C., OS Maloney, Chris, 06, 0H, 0I, 18 Santiago, Freddie, 10 Manallah, Aissa, 2L Sanyogita, 2N Mangano, Valentina, 25 Sarepaka, RamaGopal V., 1D Martínez-Enríquez, Arturo I., 2J Schenk, T., OL Matthews, Greg, 15, 2F Schindler, C., 02 Maunier, Cedric, 0F Schlichting, Wolfgang, 1N Medicus, Kate, OP Schluntz, Nohl, 1M Men, Shi, 1J Schopf, C., 22 Messner, Bill, OK Schottka, K., OW Meyer, Sebastian, 03 Schulze, Christian, 0A Michels, Gregory, 0T Schulze, Jan, 2D Michtchenko, Alexandre, 1Q Schwager, Anne-Marie, 0A, 24 Mikulic, Dalibor, 05 Shao, Jianda, 04, 1J Mitchell, Mike, 0X Shi, Chunyan, 1Z Möhl, A., 29 Shu, Shyu-Cheng, 23 Morrison, Don, 0X Solmaz, M., 2G Morrison, M., 2G Spanard, Jan-Marie, 28 Murphy, Paul E., 18, 1A Stenzel, Olaf, 1T Myer, Brian, OJ, OT, 17 Stephan, Thomas, 07 Neauport, Jerome, 0F Stevens, Kevin, 1N Neff, Joe, 1S Stolze, Markus, 1S Nestler, Matthias, 0K Stroshine, Chris, 0X Niehaus, Frank, 0Y Sukul, Prasenjit Prasad, 2M

Ortiz-Gonzáles, Antonio de Jesús, 1Q

P., Irwan, 21

Paetzelt, Hendrik, 14 Panigrahi, P. K., 2N Panwar, Rakesh S., 1D

Notargiacomo, Mark, 1M

Oberberg, Moritz, 1T

Olszak, Artur G., 1C

Sventek, Bruce, 0E T., Andi M., 2I Triftshauser, Jeremia

Sung, Hayeong, 2B

Triftshauser, Jeremiah, 1M van Veggel, Anna-Maria A., 25 VanKerkhove, Steve, 0H

Supranowitz, Chris, 06, 0H, 18

Susarrey-Huerta, Orlando, 1Q

Vassmer, D., 16 Veit, Christian, 05 Verduzco-Grajeda, Lidia Elizabeth, 2J Vogelsberg, Ashten, 10 Waibel, Friedrich, 1S Wan, Yongjian, 1Z Wang, Jia, 1Z Wauer, Jochen, 1T Whitsitt, Rebecca, OP Wickenhagen, S., OR, 29 Wilbrandt, Steffen, 1T Wilde, C., 0L Wolfs, Franciscus, 15 Wu, Fan, 1Y Wu, Lunzhe, 04 Xing, Tingwen, 09 Xu, Longbo, 1J Xu, Xueke, 04, 1J Yang, Minghong, 04 Yang, Suncheol, 2B Yang, Weiguang, 04 Yu, Zong-Ru, 23 Zhang, Chupeng, 2Q Zhang, Huifang, 04 Zhao, Huiying, 2Q Zhong, Xianyun, 1Y Zhou, You, 1J Zu, Lijun, OE

Conference Committee

Symposium Chairs

Julie L. Bentley, University of Rochester (United States)
Sebastian Stoebenau, OptoTech Optikmaschinen GmbH (Germany)

Conference Chair

Julie L. Bentley, University of Rochester (United States)

Conference Co-Chair

Sebastian Stoebenau, OptoTech Optikmaschinen GmbH (Germany)

Conference Program Committee

Thomas Battley, New York Photonics Industry Association (United States)

Michael J. Bechtold, OptiPro Systems (United States)

Christopher T. Cotton, ASE Sailing Inc. (United States)

Walter C. Czajkowski, Optical Consultant (United States)

Michael A. DeMarco, QED Technologies, Inc. (United States)

Apostolos Deslis, JENOPTIK Optical Systems, LLC (United States)

Toshihide Dohi, OptiWorks, Inc. (Japan)

Dan Gauch, Schneider Optical Machines Inc. (United States)

Tom Godin, Satisloh North America Inc. (United States)

Heidi Hofke, OptoTech Optical Machinery Inc. (United States)

Jay Kumler, JENOPTIK Optical Systems, LLC (United States)

Justin J. Mahanna, Universal Photonics Inc. (United States)

Michael A. Marcus, Lumetrics, Inc. (United States)

Paul Meier-Wang, AccuCoat Inc. (United States)

Ted Mooney, Harris Geospatial Systems (United States)

Michael N. Naselaris, Sydor Optics, Inc. (United States)

Richard Nastasi, Universal Photonics Inc. (United States)

John J. Nemechek, Metrology Concepts LLC (United States)

Buzz Nesti, Naked Optics Corporation (United States)

Matthias Pfaff, OptoTech Optikmaschinen GmbH (Germany)

Paul Tolley, Smart System Technology & Commercialization Center (United States)

Blair L. Unger, Rochester Precision Optics, LLC (United States)

Martin J. Valente, Arizona Optical Systems, LLC (United States)

Kirk J. Warden, LaCroix Optical Company (United States)

Robert Wiederhold, Optimax Systems, Inc. (United States) **Dhananjay Joshi**, Clemson University (United States)

Session Chairs

Plenary Session

Julie L. Bentley, University of Rochester (United States)

- Grinding and Polishing Processes ISebastian Stoebenau, OptoTech Optikmaschinen GmbH (Germany)
- 2 Grinding and Polishing Processes II Jessica Nelson, Optimax Systems, Inc. (United States)
- 3 Grinding and Polishing Processes III John C. Lambropoulos, University of Rochester (United States)
- 4 Additive Manufacturing **Ulrike Fuchs**, asphericon GmbH (Germany)
- Optical Design and Engineering
 Blair L. Unger, Rochester Precision Optics, LLC (United States)
- Diamond Turning
 James T. Mooney, Harris Corporation (United States)
- 8 Molding Matthias Pfaff, OptoTech Optikmaschinen GmbH (Germany)
- 9 Freeform Fabrication and Testing Kate Medicus, Optimax Systems, Inc. (United States)
- Metrology IDan Gauch, Schneider Optical Machines Inc. (United States)
- 11 Metrology II
 Paul E. Murphy, QED Technologies, Inc. (United States)
- Metrology IIIFilipp Ignatonich, Lumetrics, Inc. (United States)
- 13 Optical Materials **Filipp Ignatonich**, Lumetrics, Inc. (United States)
- 14 Coating and Cleaning Jennifer D. T. Kruschwitz, University of Rochester, Institute of Optics (United States)