Front Matter: Volume 10574

Event: SPIE Medical Imaging, 2018, Houston, Texas, United States
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings: Author(s), "Title of Paper," in Medical Imaging 2018: Image Processing, edited by Elsa D. Angelini, Bennett A. Landman. Proceedings of SPIE Vol. 10574 (SPIE, Bellingham, WA, 2018) Seven-digit Article CID Number.

ISSN: 1605-7422
ISSN: 2410-9045 (electronic)
ISBN: 9781510616370

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org
Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 1605-7422/18/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:
- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

xi Authors
xvii Conference Committee
xxi 2018 Medical Imaging Award Recipients

Part One

SESSION 1 BRAIN: SHAPES AND BIOMARKERS

10574 02 Sulcal depth-based cortical shape analysis in normal healthy control and schizophrenia groups [10574-1]
10574 04 Skull segmentation from MR scans using a higher-order shape model based on convolutional restricted Boltzmann machines [10574-3]
10574 05 Imaging biomarkers for the diagnosis of Prion disease [10574-4]
10574 06 Constructing statistically unbiased cortical surface templates using feature-space covariance [10574-5]

SESSION 2 DEEP LEARNING: SEGMENTATION

10574 07 Segmentation of anatomical structures in cardiac CTA using multi-label V-Net [10574-6]
10574 08 Iterative convolutional neural networks for automatic vertebra identification and segmentation in CT images [10574-7]
10574 09 Splenomegaly segmentation using global convolutional kernels and conditional generative adversarial networks [10574-8]
10574 0A Segmentation of left ventricle myocardium in porcine cardiac cine MR images using a hybrid of fully convolutional neural networks and convolutional LSTM [10574-9]
10574 0B Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks [10574-10]
10574 0C An effective fully deep convolutional neural networks for mitochondria segmentation based on ATUM-SEM [10574-11]
SESSION 3 IMAGE ENHANCEMENT

<table>
<thead>
<tr>
<th>10574 0D</th>
<th>A log-Euclidean and total variation based variational framework for computational sonography [10574-12]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10574 0E</td>
<td>Visualization of coronary artery calcium in dual energy chest radiography using automatic rib suppression [10574-13]</td>
</tr>
<tr>
<td>10574 0F</td>
<td>Radiation dose reduction in digital breast tomosynthesis (DBT) by means of deep-learning-based supervised image processing [10574-14]</td>
</tr>
<tr>
<td>10574 0G</td>
<td>Image enhancement method for digital mammography [10574-15]</td>
</tr>
<tr>
<td>10574 0H</td>
<td>Image reconstruction using priors from deep learning [10574-16]</td>
</tr>
</tbody>
</table>

SESSION 4 MACHINE LEARNING

<table>
<thead>
<tr>
<th>10574 0I</th>
<th>Automated abdominal plane and circumference estimation in 3D US for fetal screening [10574-17]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10574 0J</td>
<td>Left ventricle segmentation in 3D ultrasound by combining structured random forests with active shape models [10574-18]</td>
</tr>
<tr>
<td>10574 0K</td>
<td>Fine segmentation of tiny blood vessel based on fully connected conditional random field [10574-19]</td>
</tr>
<tr>
<td>10574 0L</td>
<td>Automatic and fast CT liver segmentation using sparse ensemble with machine learned contexts [10574-20]</td>
</tr>
<tr>
<td>10574 0M</td>
<td>Nearest neighbor 3D segmentation with context features [10574-21]</td>
</tr>
<tr>
<td>10574 0N</td>
<td>Detecting multiple myeloma via generalized multiple-instance learning [10574-22]</td>
</tr>
</tbody>
</table>

SESSION 5 REGISTRATION

<table>
<thead>
<tr>
<th>10574 0O</th>
<th>A multilevel Markov Chain Monte Carlo approach for uncertainty quantification in deformable registration [10574-23]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10574 0P</td>
<td>Quadratic: quality of dice in registration circuits [10574-24]</td>
</tr>
<tr>
<td>10574 0Q</td>
<td>Self-reference-based and during-registration detection of motion artifacts in spatio-temporal image data [10574-25]</td>
</tr>
<tr>
<td>10574 0R</td>
<td>GPU-based stochastic-gradient optimization for non-rigid medical image registration in time-critical applications [10574-26]</td>
</tr>
<tr>
<td>10574 0S</td>
<td>Deformable image registration using convolutional neural networks [10574-27]</td>
</tr>
</tbody>
</table>
SESSION 6 KEYNOTE AND HIGHLIGHTS

10574 0U Foveal fully convolutional nets for multi-organ segmentation [10574-29]
10574 0V A novel framework for the local extraction of extra-axial cerebrospinal fluid from MR brain images [10574-30]
10574 0W A statistical model for image registration performance: effect of tissue deformation [10574-31]

SESSION 7 FMRI AND DTI

10574 0X SHARD: spherical harmonic-based robust outlier detection for HARDI methods [10574-32]
10574 0Y Regional autonomy changes in resting-state functional MRI in patients with HIV associated neurocognitive disorder [10574-33]
10574 0Z Tensor-based vs. matrix-based rank reduction in dynamic brain connectivity [10574-34]
10574 10 Extrapolated nonnegative decompositions for the analysis of functional connectivity [10574-35]
10574 11 Strain map of the tongue in normal and ALS speech patterns from tagged and diffusion MRI [10574-36]
10574 12 TRAFIC: fiber tract classification using deep learning [10574-37]
10574 13 Evaluation of inter-site bias and variance in diffusion-weighted MRI [10574-38]

SESSION 8 MOTION

10574 14 A novel filtering approach for 3D harmonic phase analysis of tagged MRI [10574-39]
10574 15 Feasibility of intra-acquisition motion correction for 4D DSA reconstruction for applications in the thorax and abdomen [10574-40]
10574 16 Deep-learning-based CT motion artifact recognition in coronary arteries [10574-41]
10574 17 Population-based respiratory 4D motion atlas construction and its application for VR simulations of liver punctures [10574-42]
10574 18 Sensitivity analysis of Jacobian determinant used in treatment planning for lung cancer [10574-43]

SESSION 9 IMAGE FEATURES

10574 19 HoDOr: histogram of differential orientations for rigid landmark tracking in medical images [10574-44]
SESSION 10 DEEP LEARNING: LESIONS AND PATHOLOGIES

10574 1A Topological leakage detection and freeze-and-grow propagation for improved CT-based airway segmentation [10574-45]
10574 1B Inter-scanner variation independent descriptors for constrained diffeomorphic demons registration of retina OCT [10574-46]
10574 1D Classification of malignant and benign liver tumors using a radiomics approach [10574-48]
10574 1E Quantitative phase and texture angularity analysis of brain white matter lesions in multiple sclerosis [10574-49]

SESSION 10 DEEP LEARNING: LESIONS AND PATHOLOGIES

10574 1F MRI tumor segmentation with densely connected 3D CNN [10574-50]
10574 1G Quantification of lung abnormalities in cystic fibrosis using deep networks [10574-51]
10574 1H Deep learning for biomarker regression: application to osteoporosis and emphysema on chest CT scans [10574-52]
10574 1I Microaneurysm detection using deep learning and interleaved freezing [10574-53]
10574 1J Dataset variability leverages white-matter lesion segmentation performance with convolutional neural network [10574-54]

SESSION 11 DEEP LEARNING: GENERATIVE ADVERSARIAL NETWORKS

10574 1K Modelling the progression of Alzheimer’s disease in MRI using generative adversarial networks [10574-55]
10574 1L Learning implicit brain MRI manifolds with deep learning [10574-56]
10574 1M Chest x-ray generation and data augmentation for cardiovascular abnormality classification [10574-57]
10574 1N Contextual loss functions for optimization of convolutional neural networks generating pseudo CTs from MRI [10574-58]

POSTER SESSION: ENHANCEMENT

10574 1O Multi-grid nonlocal techniques for x-ray scatter correction [10574-59]

Part Two

10574 1P A denoising algorithm for CT image using low-rank sparse coding [10574-60]
<table>
<thead>
<tr>
<th>Session: Machine Learning</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Q</td>
<td>A new method to reduce cone beam artifacts by optimal combination of FDK and TV-IR images</td>
</tr>
<tr>
<td>1R</td>
<td>CT artifact reduction via U-net CNN</td>
</tr>
<tr>
<td>1S</td>
<td>Automatic segmentation of thoracic aorta segments in low-dose chest CT</td>
</tr>
<tr>
<td>1T</td>
<td>Fast super-resolution with iterative-guided back projection for 3D MR images</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session: Quantification and Modeling</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Segmentation of subcutaneous fat within mouse skin in 3D OCT image data using random forests</td>
</tr>
</tbody>
</table>
Automatic detection of the inner ears in head CT images using deep convolutional neural networks [10574-78]

Multiorgan structures detection using deep convolutional neural networks [10574-79]

Coupling reconstruction and motion estimation for dynamic MRI through optical flow constraint [10574-80]

Sinogram synthesis using convolutional-neural-network for sparsely view-sampled CT [10574-81]

High resolution robust and smooth precision matrices to capture functional connectivity [10574-82]

Hubs defined with participation coefficient metric altered following acute mTBI [10574-83]

Aorta and pulmonary artery segmentation using optimal surface graph cuts in non-contrast CT [10574-84]

Model based rib-cage unfolding for trauma CT [10574-85]

Thoracic lymph node station recognition on CT images based on automatic anatomy recognition with an optimal parent strategy [10574-86]

Tapering analysis of airways with bronchiectasis [10574-87]

Volumetric versus area-based density assessment: comparisons using automated quantitative measurements from a large screening cohort [10574-88]

Subject-specific brain tumor growth modelling via an efficient Bayesian inference framework [10574-89]

Image-based assessment of uncertainty in quantification of carotid lumen [10574-90]

Automated Agatston score computation in non-ECG gated CT scans using deep learning [10574-91]

Generative statistical modeling of left atrial appendage appearance to substantiate clinical paradigms for stroke risk stratification [10574-92]

Feature analysis of high SUV regions based on FDG-PET [10574-93]

Relating regional characteristics of left atrial shape to presence of scar in patients with atrial fibrillation [10574-94]

Automatic anatomy recognition using neural network learning of object relationships via virtual landmarks [10574-117]

Training classifiers with limited data using the Radon cumulative distribution transform [10574-118]
POSTER SESSION: REGISTRATION

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10574 2R</td>
<td>Enhancement of breast periphery region in digital mammography</td>
<td>[10574-96]</td>
</tr>
<tr>
<td>10574 2S</td>
<td>Fast diffeomorphic image registration via GPU-based parallel computing: an investigation of the matching cost function</td>
<td>[10574-97]</td>
</tr>
<tr>
<td>10574 2T</td>
<td>Group-wise shape correspondence of variable and complex objects</td>
<td>[10574-98]</td>
</tr>
</tbody>
</table>

POSTER SESSION: SEGMENTATION

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10574 2U</td>
<td>Student beats the teacher: deep neural networks for lateral ventricles segmentation in brain MR</td>
<td>[10574-99]</td>
</tr>
<tr>
<td>10574 2V</td>
<td>Fully convolutional neural networks improve abdominal organ segmentation (Cum Laude Poster Award)</td>
<td>[10574-100]</td>
</tr>
<tr>
<td>10574 2W</td>
<td>Multi-class segmentation of neuronal electron microscopy images using deep learning</td>
<td>[10574-101]</td>
</tr>
<tr>
<td>10574 2X</td>
<td>Automatic segmentation of fibroglandular tissue in breast MRI using anatomy-driven three-dimensional spatial context</td>
<td>[10574-102]</td>
</tr>
<tr>
<td>10574 2Y</td>
<td>Extraction of breast lesions from ultrasound imagery: Bhattacharyya gradient flow approach</td>
<td>[10574-103]</td>
</tr>
<tr>
<td>10574 2Z</td>
<td>Coupled dictionary learning for joint MR image restoration and segmentation</td>
<td>[10574-104]</td>
</tr>
<tr>
<td>10574 30</td>
<td>Exudate segmentation using fully convolutional neural networks and inception modules</td>
<td>[10574-105]</td>
</tr>
<tr>
<td>10574 31</td>
<td>Deformable model reconstruction of the subarachnoid space</td>
<td>[10574-106]</td>
</tr>
<tr>
<td>10574 32</td>
<td>Convolutional neural network based automatic plaque characterization for intracoronary optical coherence tomography images</td>
<td>[10574-107]</td>
</tr>
<tr>
<td>10574 33</td>
<td>Sequential neural networks for biologically informed glioma segmentation</td>
<td>[10574-108]</td>
</tr>
<tr>
<td>10574 34</td>
<td>A hybrid segmentation method for partitioning the liver based on 4D DCE-MR images</td>
<td>[10574-109]</td>
</tr>
<tr>
<td>10574 35</td>
<td>A new medical image segmentation model based on fractional order differentiation and level set</td>
<td>[10574-110]</td>
</tr>
<tr>
<td>10574 36</td>
<td>Automatic PET cervical tumor segmentation by deep learning with prior information</td>
<td>[10574-111]</td>
</tr>
<tr>
<td>10574 37</td>
<td>Automated segmentation of cellular images using an effective region force</td>
<td>[10574-112]</td>
</tr>
</tbody>
</table>
Improved stability of whole brain surface parcellation with multi-atlas segmentation [10574-113]

Feature extraction using convolutional neural networks for multi-atlas based image segmentation [10574-114]

Random walk based optic chiasm localization using multi-parametric MRI for patients with pituitary adenoma [10574-115]

Advanced two-layer level set with a soft distance constraint for dual surfaces segmentation in medical images [10574-116]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abidin, Anas Z., 0Y, 1F
Abramson, Richard G., 09, 2V
Agarwal, Chirag, 2W
Ajani, Bhavya, OL
Akkus, Zeynettin, 20
Al-Ars, Zaid, OR
Albuquerque, Kevin, 36
Al-Diri, Bashir, 1I, 30
Anastasio, Mark, 32
Anderson, Adam W., 0X
Antani, Sameer, 2V
Arias-Lorza, Andres M., 2D
Assad, Albert, 09, 1L
Atassi, Nazem, 11
Atria, Cristian, 0H
Ayyagari, Devi, 2C
Baek, Jongduk, 2I
Bagchi, Ansuman, 0A
Bai, Guanghui, 0A
Bai, Lijun, 0A
Baltruschat, Ivo M., 0K
Bandaru, R. S., 0J
Banerjee, Jyotirmoy, 0D
Bao, Shunxing, 0G
Barkhof, Frederik, 05
Barriga, Simon, 1Z
Basarab, Adrian, 29
Bauer, Christian, 04
Baxandall, Shalese, 1E
Bayouth, John E., 18
Beers, Andrew, 33
Belhomme, Gaetan, 12
Benson, Jeremy, 1Z
Berendsen, Floris F., 0R
Bermudez, Camilo, 09, 1L
Bernard, O., 0J
Bertozzi, Andrea L., 1Y
Bharadwaj, Aditya, 0L
Bhosale, Parag, 0R
Blaber, Justin A., 06, 0X, 13
Blackburn, Timothy J., 0G
Blitz, Ari M., 31
Boba, Meg F., 2V
Börnert, P., 25
Bosch, J. G., 0J
Bowles, Christopher, 1K
Boyer, Doug M., 2T
Brosch, Tom, 0I, 0M, 0U, 25
Brown, James, 33
Calabresi, P. A., 1B
Caliva, Francesco, 1I, 30
Canas, Liane S., 05
Cano-Espinosa, Carlos, 2K
Cao, Hanqiang, 2F
Cao, Jieli, 2C
Carass, Aaron, 1B, 31
Cardoso, M. Jorge, 05
Carillo, Hector, 1Z
Casper, Malte, 26
Castaneda, B., 22
Cattell, Liam, 2P
Cavallaro, A., 0I
Cazorla, Miguel, 2K
Chaganti, Shikha, 0P
Chang, Ken, 33
Chang, Yongjin, 2I
Chen, Zhen, 2C
Chen, Xinjian, 1U, 3A
Chen, Yen-Wei, 1T
Chinh, Chih-Liang, 0A
Cho, Seungyong, 2A
Chockanathan, Udayankar, 0Y
Choi, Shinkook, 1Q
Christensen, Gary E., 18
Chudzik, Piotr, 1I, 30
Cieslak, Kasia P., 34
Ciofolo-Veil, C., 0I
Collins, D. Louis, 0V
Conant, Emily F., 2H
Curran, Walter J., 1P
Davatzikos, Christos, 10, 2B
Davis, Larry T., 1L
Dawant, Benoit M., 27
de Bruyn, Mariene, 1G, 2D
De Silva, T., 0W
De Vita, Enrico, 05
de Vos, Bob D., 1S
Deprest, Jan, 0D
Dhabaan, Anees, 1P
Dogdas, Belma, 0A
Lenkinski, Robert E., 0G
Lessmann, Nikolas, 08
Li, Dandong, 2C
Li, Hua, 32
Li, Lihong, 35
Li, Quanzheng, 2I
Li, Shulong, 36
Li, Weifu, 0C
Li, Xiang, 31
Liang, Zhengrong, 35
Likar, Boštjan, 1J
Liò, Pietro, 24
Liu, Jiaqi, 09
Liu, Junchi, 0F
Liu, Tian, 1P
Llerena, Rafael, 1Y
Loog, M., 1N
Lorenz, Cristian, 0I, 25, 2E
Lu, Qingsheng, 24
Luci, Jeffrey, 13
Lyu, Ilwoo, 02, 06, 0X, 2T, 2V
Ma, Chiyuan, 3A
Maddani, Ali, 1M
Madsen, Kristoffer H., 04
Maehara, Akiko, 32
Mahmood, Faisal, 21
Majumdar, Somshubra, 1I, 30
Mannings, Rashindra, 2U
Manstein, Dieter, 26
Maquilan, Genevieve, 36
Marques, Filippe, 1G
Mastmeyer, Andre, 17
Mayhugh, Rhiannon E., 0Z
Maynard, John, 1Z
McPhillips, graeme, 2G
Mead, Simon, 05
Menegati Pavan, Ana Luiza, 2R
Menon, Prahlad G., 2L, 2N
Miclea, Razvan L., 1D
Mintz, Gary, 32
Misawa, Kazunari, 0B
Mistretta, Charles, 15
Modat, Marc, 05
Moeskops, Pim, 05
Mohiuddin, Khadeejah, 37
Mohktari, Fatemeh, 02
Moradi, Mehdi, 07, 1M
Mori, Kensaku, 08, 0K
Morlock, M., 16
Mostapha, Mahmoud, 0V
Mücke, Eike, 0Q
Nadeem, Syed Ahmed, 1A
Nath, Vishwesh, 0X, 13
Nazarian, Saman, 3B
Nedios, Sotrios, 2N
Nemeth, Sheilla, 1Z
Newton, Allen T., 0X, 13, 1L
Ngattai Lam, Prince D., 12
Nickisch, Hannes, 0M, 16, 1W
Nielsen, Jesper D., 04
Nielsen, Jesper H., 34
Noble, Jack H., 27
Noolthoud, Julia M. H., 15
O’Connor, Daniel, 29
Oda, Hirohisa, 0B
Oda, Masahiro, 08, 0K
Odhner, Deewy, 2F, 2O
Olahoru, Michael, 2N
Onieva Onieva, Jorge, 28
Oshiro, S., 2M
Ourselin, Sébastien, 05, 0D
Pan, Yue, 18
Paniagua, Beatrix, 2T
Pantalone, Lauren, 2H, 2X
Papageorghiou, A. T., 0I
Parimal, Sarayu, 0A
ParvathaiHenri, Prasanna, 06, 0X, 13, 38
Patel, Premal A., 0D
Patterson, Billie, 12
Patton, Taylor J., 18
Patwardhan, Kedar Anil, 19
Pedersen, Jesper Holst, 2D
Peebles, Donald, 0D
Perdomo, Jonathan, 2T
Pernuš, Franjo, 1J
Petean Trindade, Andre, 2R
Philbrick, Kenneth A., 20
Pien, Joseph, 0V
Plissard, Andrew J., 09, 1L, 2V
Platel, Bram, 2U
Pluim, Josien P. W., 0S
Prasanna, Prasanth, 07
Pridham, Glen, 1E
Prieto, Juan C., 12
Prince, Jerry L., 11, 14, 1B, 31
Puonti, Oula, 04
Qadir, Ammar, 0F
Qian, Yizhou, 1Y
Quan, Kin, 2G
Quiri, Caio Cesar, 2R
Ra, Jong Beom, 2I
Ramesh, Nisha, 0H
Ravnik, Domen, 1J
Ravnik, Domen, 1J
Raynaud, C., 0I
Reangamornrat, S., 1B
Reese, Timothy G., 11
Reinhardt, Joseph M., 18
Rejeski, W. Jack, 0Z
Resnick, Susan M., 1L
Rodrigues de Pina, Diana, 2R
Rogers, Baxter P., 0X, 13
Röhde, Gustavo K., 2P
Rosen, Bruce, 33
Roth, Holger, 0B
Rouet, L., 0I
Roundhill, D., 0I
Roy, Snehashis, 31
Ruan, Dan, 29
Rueckert, Daniel, 1K
Runge, Jurgen H., 34

Proc. of SPIE Vol. 10574 1057401-13
Conference Committee

Symposium Chairs

Leonard Berliner, Weill Cornell Medical College (United States) and New York Presbyterian - Brooklyn Methodist Hospital (United States)
Ronald M. Summers, National Institutes of Health (United States)

Conference Chairs

Elsa D. Angelini, Imperial College London (United Kingdom) and Télécom ParisTech (France)
Bennett A. Landman, Vanderbilt University (United States)

Conference Program Committee

Rafeef Abugharbieh, The University of British Columbia (Canada)
Mostafa Analoui, Livingston Securities LLC (United States)
Brian B. Avants, University of Pennsylvania (United States)
Meritxell Bach-Cuadra, Université de Lausanne (Switzerland)
Kyoungtae Ty Bae, University of Pittsburgh Medical Center (United States)
Ulas Bagci, University of Central Florida (United States)
Olivier Colliot, ICM Brain & Spine Institute (France)
Benoit M. Dawant, Vanderbilt University (United States)
Marleen de Bruijne, Erasmus MC (Netherlands)
Alexandre X. Falcão, Universidade Estadual de Campinas (Brazil)
Aaron Fenster, Robarts Research Institute (Canada)
James Fishbaugh, NYU Tandon School of Engineering (United States)
Alejandro F. Frangi, The University of Sheffield (United Kingdom)
Mona K. Garvin, The University of Iowa (United States)
James C. Gee, University of Pennsylvania (United States)
Benjamin Glocker, Imperial College London (United Kingdom)
Miguel Angel González Ballester, Universitat Pompeu Fabra (Spain)
Hayit Greenspan, Tel Aviv University (Israel)
Ghassan Hamarneh, Simon Fraser University (Canada)
David R. Haynor, University of Washington (United States)
Tobias Heimann, Siemens AG (Germany)
Christine P. Hendon, Columbia University (United States)
Ivana Išgum, University Medical Center Utrecht (Netherlands)
Stefan Klein, Erasmus MC (Netherlands)
Ender Konukoglu, ETH Zürich (Switzerland)
Tianhu Lei, MD Imaging Research (United States)
Karim Lekadir, Universitat Pompeu Fabra (Spain)
Session Chairs

1 Brain: Shapes and Biomarkers
 James C. Gee, University of Pennsylvania (United States)
 David R. Haynor, University of Washington (United States)

2 Deep Learning: Segmentation
 Kensaku Mori, Nagoya University (Japan)
 Tom Vercauteren, University College London (United Kingdom)

3 Image Enhancement
 Jayaram K. Udupa, University of Pennsylvania (United States)

4 Machine Learning
 Punam Kumar Saha, The University of Iowa (United States)

5 Registration
 Benoit M. Dawant, Vanderbilt University (United States)
 Stefan Klein, Erasmus MC (Netherlands)

6 Keynote and Highlights
 Murray H. Loew, The George Washington University (United States)

7 fMRI and DTI
 Martin A. Styner, The University of North Carolina at Chapel Hill
 (United States)

8 Motion
 Dzung L. Pham, Henry M. Jackson Foundation (United States)
 Marc Modat, University College London (United Kingdom)

9 Image Features
 Marleen de Bruijne, Erasmus MC (Netherlands)

10 Deep Learning: Lesions and Pathologies
 Ivana Išgum, University Medical Center Utrecht (Netherlands)
 Cristian Lorenz, Philips Research (Germany)

11 Deep Learning: Generative Adversarial Networks
 Mads Nielsen, Niels Bohr Institute (Denmark)
 Hayit Greenspan, Tel Aviv University (Israel)
2018 Medical Imaging Award Recipients

Robert F. Wagner Best Student Paper Award
Robert F. Wagner was an active scientist in the SPIE Medical Imaging meeting, starting with the first meeting in 1972 and continuing throughout his career. He ensured that the BRH, and subsequently the CDRH, was a sponsor for the early and subsequent Medical Imaging meetings, helping to launch and ensure the historical success of the meeting. The Robert F. Wagner All-Conference Best Student Paper Award (established 2014) is acknowledgment of his many important contributions to the Medical Imaging meeting and his many important advances to the field of medical imaging.

This award is co-sponsored by:

The Medical Image Perception Society

SPIE.

2018 Recipients:

First Place: Dynamic beam filtering for miscentered patients (10573-29)
Andrew Mao, William Shyr, Grace J. Gang, J. Webster Stayman, Johns Hopkins Univ. (United States)

Second Place: Tumor margin classification of head and neck cancer using hyperspectral imaging and convolutional neural networks (10576-4)
Martin Halicek, Georgia Institute of Technology (United States) and Augusta Univ. (United States); James V. Little, Xu Wang, Emory Univ. School of Medicine (United States); Mihir Patel, Emory Univ. School of Medicine (United States) and The Winship Cancer Institute of Emory Univ. (United States); Christopher C. Griffith, Emory Univ. School of Medicine (United States); Amy Y. Chen, Emory Univ. School of Medicine (United States) and The Winship Cancer Institute of Emory Univ. (United States); Baowei Fei, Georgia Institute of Technology & Emory Univ. (United States) and The Winship Cancer Institute of Emory Univ. (United States)