Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVI

Tuan Vo-Dinh
Anita Mahadevan-Jansen
Warren S. Grundfest
Editors

28–30 January 2018
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 10484
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)

ISBN: 9781510614536

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2018, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/18/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, ..., 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

Authors ix
Conference Committee

DIAGNOSTIC TECHNOLOGIES FOR CANCER DETECTION

10484 02 Paired-agent fluorescent imaging to detect micrometastases in breast sentinel lymph node biopsy: experiment design and protocol development [10484-1]

10484 04 Surface-enhanced spatially offset Raman spectroscopy (SESORS) for biomedical applications [10484-3]

ADVANCED PHOTONIC TECHNOLOGIES FOR CLINICAL APPLICATIONS

10484 08 Synergistic immuno photothermal nanotherapy (SYMPHONY) to treat metastatic cancers and induce anti-cancer vaccine effect [10484-7]

10484 09 Towards early detection of age-related macular degeneration with tetracyclines and fluorescence lifetime imaging [10484-50]

ROBOTICS AND LIGHT BIOPSIES FOR SURGICAL APPLICATIONS

10484 0D The epidural needle guidance with an intelligent and automatic identification system for epidural anesthesia [10484-11]

LUMINESCENCE METHODS FOR CLINICAL APPLICATIONS

10484 0G Assessment of post-implantation integration of engineered tissues using fluorescence lifetime spectroscopy [10484-14]

10484 0I Micro-hole array fluorescent sensor based on AC-Dielectrophoresis (DEP) for simultaneous analysis of nano-molecules [10484-16]

ACOUSTICS AND ULTRASOUND TECHNOLOGIES

10484 0N Optimizing signal output: effects of viscoelasticity and difference frequency on vibroacoustic radiation of tissue-mimicking phantoms [10484-21]

10484 00 Structural and functional assessment of intense therapeutic ultrasound effects on partial Achilles tendon transection [10484-22]
Comparison of acoustic shock waves generated by micro and nanosecond lasers for a smart laser surgery system [10484-23]

CLINICAL APPLICATIONS OF COHERENCE TECHNIQUES (OCT)

Motion-compensated optical coherence tomography using envelope-based surface detection and Kalman-based prediction [10484-24]

NIR/VIS SPECTROSCOPIC TECHNIQUES FOR CLINICAL APPLICATIONS

Vena cava filters and thrombolytic therapeutic monitoring based on functional near-infrared spectroscopy for deep vein thrombosis [10484-29]

Design and performance test of NIRS-based spinal cord lesion detector [10484-31]

DIFFUSE REFLECTANCE TECHNIQUES FOR CLINICAL APPLICATIONS

Simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in humans and other animal models using a single light source [10484-34]

IMAGING: THEORY AND SIMULATIONS

Selection of optimal multispectral imaging system parameters for small joint arthritis detection [10484-37]

Monte Carlo simulation of near-infrared light propagation in realistic adult head models with hair follicles [10484-38]

The study on fast localization method of anomaly block in brain based on differential optical density [10484-39]

POSTER SESSION

Wide-field high spatial frequency domain imaging of tissue microstructure [10484-40]

Detection of oral early cancerous lesion by using polarization-sensitive optical coherence tomography: mice model [10484-41]

Which experimental model can sensitively indicate brain death by functional near-infrared spectroscopy? [10484-42]

Hyperspectral near infrared spectroscopy assessment of the brain during hypoperfusion [10484-43]
3D registration method for assessing the gastrointestinal motility using spectral reflectance estimation [10484-44]

Integrating 4D light-sheet imaging with interactive virtual reality to recapitulate developmental cardiac mechanics and physiology [10484-46]
Abiri, Arash, 1C
Abiri, Parinaz, 1C
Amodei, Richard, 0O
Badran, Karam W., 0N
Baek, Kyung In, 1C
Bajwa, Neha, 0N
Barton, Jennifer K., 0O
Basheer, Yusairah, 02
Bose, Sanjukta N., 0Q
Brankov, Jovan G., 02
Cattin, Philippe, 0P
Cao, Zili, 16
Chaiken, J., 10
Chang, Chih-Chiang, 1C
Chang, Kuo-Wei, 17
Chen, Hongli, 15
Chen, Leng-Chun, 0G
Chen, Ping-Hsien, 17
Danford, Forest, 0O
Deng, Bin, 10
Dent, Paul, 10
Ding, Yichen, 1C
Dolenec, Rok, 13
Elahi, Sakib F., 0G
Eslami, Katayoun, 09
Fang, Xiang, 0V, 14, 18
Feinberg, Stephen E., 0G
Fillioe, Seth, 10
Gonzales, David A., 00
Goodisman, Jerry, 10
Grundfest, Warren S., 0N
Guzman, Raphael, 0P
He, Yusheng, 02
Hegde, Kavita, 09
Howard, Caitlin C., 0O
Hsiai, Tsung K., 1C
Huang, Xiaobo, 18
Hwang, Kyo Seon, 0I
Imran, Branf, 08
Irsch, Kristina, 0Q
Kang, Dong-Hoon, 0I
Kang, Jin U., 0Q
Kao, Meng-Chun, 0D
Kennedy, Robert, 0G
Kim, Hye Jin, 0I
Kim, Hyungjin M., 0G
Kim, Jin Suk, 0I
Koevary, Jennifer W., 00
Kuo, Shiu Hyang, 0G
Kuo, Wen-Chuan, 0D, 17
Laistler, Elmar, 13
Lakowicz, Joseph R., 09
Lati, L. Daniel, 0O
Lee, Juhyun, 1C
Lee, Eunjil, 0I
Lee, Hung-Yi, 17
Lee, Seung Y., 0G
Lee, Sooyun, 0Q
Lengyel, Imre, 09
Li, Chengyue, 02
Li, Nanxi, 0X, 14
Lin, Steve, 19
Lin, Tzu-Han, 17
Lin, Weihao, 16
Liu, Weichao, 0V, 14, 18
Liu, Yang, 08
Lloyd, William R., 0G
Maccabi, Ashkan, 0N
Maccarini, Paolo, 08
Marcelo, Cynthia, 0G
Milanic, Matija, 13
Moström, James, 10
Mycek, Mary-Ann, 0G
Namir, Nikan K., 0N
Narsipur, Sri, 10
Nguyen, Hervé, 0P
Nguyen, Thu N., 19
Nieman, Gary, 10
Nobe, Kazuki, 1A
Odion, Ren, 04
Palmer, Gregory, 08
Pan, Boan, 0V, 14, 18
Park, Jung Ho, 0I
Peterson, Charles M., 10
Puche, Adam, 0P
Ren, Lina, 15
Rice, Phatlin S., 0O
Saddik, George N., 0N
Satalin, Josh, 10
Sattar, Husain A., 02
Searles, Quinn, 10
Sevag Packard, René R., 1C
Shin, Hyun-Joon, 0I
Slayton, Michael, 0O
St. John, Maie A., 0N
Steinmann, Richard, 10
Stergar, Jost, 13
Strobbia, Pietro, 04
Szivek, John A., 00
Szmacinski, Henryk, 09
Takahashi, Hideya, 1A
Taylor, Zachary D., 0N
Thompson, Richard B., 09
Tichauer, Kenneth M., 02
Ting, Chien-Kun, 0D
Toronov, Vladislav, 19
Tun, Sai Han, 10
Vande Geest, Jonathan, 00
Vo-Dinh, Tuan, 04, 08
Wang, Huiquan, 15
Wang, Jinhai, 15
Wilcox, Kailyn, 10
Woldemichael, Ermias, 19
Wu, Wen, 19
Xu, Xiaochun, 02
Yamada, Kenji, 1A
Yoshimoto, Kayo, 1A
Yu, Jing, 1C
Zam, Azhar, 0P
Zeng, Bixin, 16
Zeng, Hui-Hui, 09
Zhao, Ke, 0V, 14
Zhao, Zhe, 15
Zhou, Ying, 0G
Zhu, Danfeng, 16
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard Medical School (United States)

Program Track Chairs

Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs

Tuan Vo-Dinh, Fitzpatrick Institute For Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)
Warren S. Grundfest, University of California, Los Angeles (United States)

Session Chairs

1 Diagnostic Technologies for Cancer Detection
 Tuan Vo-Dinh, Duke University (United States)

2 Advanced Photonic Technologies for Clinical Applications
 Tuan Vo-Dinh, Duke University (United States)

3 Robotics and Light Biopsies for Surgical Applications
 Mary-Ann Mycek, University of Michigan (United States)

4 Luminescence Methods for Clinical Applications
 Laura Marcu, University of California, Davis (United States)

5 Surgical Guidance Technologies
 Warren S. Grundfest, University of California, Los Angeles (United States)
 Giju Thomas, Vanderbilt University (United States)
6 Acoustics and Ultrasound Technologies
 Warren S. Grundfest, University of California, Los Angeles
 (United States)
 Giju Thomas, Vanderbilt University (United States)

7 Clinical Applications of Coherence Techniques (OCT)
 Jennifer K. Barton, The University of Arizona (United States)

8 NIR/VIS Spectroscopic Techniques for Clinical Applications
 Quan Liu, Nanyang Technological University (Singapore)

9 Diffuse Reflectance Techniques for Clinical Applications
 Wolfgang Petrich, Roche Diagnostics GmbH (Germany)

10 Imaging: Theory and Simulations
 Anita Mahadevan-Jansen, Vanderbilt University (United States)
 Dirk J. Faber, Academisch Medisch Centrum (Netherlands)