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Abstract

After relating the adaptive wavelet transform to the human visual and
hearing systems, we exploit the synergism between such a smart sensor processing
with brain-style neural network computing.

The freedom of choosing an appropriate kernel of a linear transform, which
is given to us by the recent mathematical foundation of the wavelet transform, is
exploited fully and is generally called the adaptive wavelet transform (WT).
However, there are several levels of adaptivity: (i) Optimum Coefficients: adjustable
transform coefficients chosen with respect to a fixed mother kernel for better
invariant signal representation, (ii) Super-Mother: grouping different scales of
daughter wavelets of same or different mother wavelets at different shift location
into a new family called a superposition mother kernel for better speech signal
classification, (iii) Variational Calculus to determine ab initio a constraint
optimization mother for a specific task. The tradeoff between the mathematical
rigor of the complete orthonormality and the speed of order (N) with the adaptive
flexibility is finally up to the user’s needs. Then, to illustrate (i), a new invariant
optoelectronic architecture of a wedge-shape filter in the WT domain is given for
scale-invariant signal classification by neural networks.

Keywords: Adaptive Wavelet Transform, Smart Sensors, Pattern Recognition,
Neural Network,

1. Introduction

Wavelets have received significant attention as both a computational tool
for analyzing data at multiple scales and as a model for early processing in
mammalian visual and hearing systems. Progress in both of these areas makes
wavelets attractive as a preprocessing method for artificial neural networks.
Artificial neural networks (ANNs) also are an attractive method for adaptively
tuning wavelets to best fit particular applications.

The question of why the wavelet transform (WT) was answered by two major

pointsl. A real world application is often contaminated with noise. If such a noisy
signal happens to have a wideband transient (WT) nature, then the signal-to-noise
ratio can be enhanced by using a localized WT basis, but not by a Fourier basis. This
is because the noise which is global everywhere will be picked up by the inner
product with a Fourier transform (FT) which has also a global sinusoidal basis. On
the other hand, the localized signal can only contribute to the inner product where
the signal is nonzero and is matching well with a localized WT basis.

The other reason of using the WT is that often an interesting application is
nonlinear in nature, and the mathematical freedom to choose the transform kernel
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other than the sinusoidal FT allows us to pay the nonlinear price up front. For

example, an envelope soliton has been suggested by Szulas the mother wavelet
which is better suited for the nonlinear ocean wave (NOW) than the traditional FT
followed by a mode-mode nonlinear coupling. These nonlinear phenomena
occasionally possess exact solutions in somewhat idealized special cases, which can
be nevertheless exploited as the zeroth order solution. And then the departure
from the nonideal case may be accommodated by the linear WT expansion
coefficients.

Before we present why adaptive WT4 we wish to review why the Complete
Orthonormal (CON) Discrete WT, with its order O(N), is faster by Log N than FFT,

which is (by using the harmonic redundancy cos(120°) = - cos(60°)) of order O(N
Log N). The reason is the simple mathematical truth , 0 x anything= 0, which is due
to the localized WT basis that gives rise to more and more zero value as the WT
goes to higher and higher resolution, which requires less and less multiplication
and addition operations. According to Strang, this is indeed the “holy grail” of the
complexity theory in terms of any matrix -vector linear transform, i.e. from the

standard full matrix-vector multiplication OMN?), reduced to O(N Log N) by the FFT
butterfly symmetry, which is furthermore reduced to O(N) by the systematically
sparse matrices in the multiresolution pyramid. Then, the tradeoff of the
computational speed must be finally compared with the computational cost of about
O(N Log N ) of an Adaptive WT and the advantage of Adaptive WT.

2. Introduction to Wavelets

We begin with a brief comparison between the WT and FT as follows. The
~ WT generalizes the 1-D Fourier basis, eg(t)=exp(2nift) and harmonics, to a wideband

transient 2-D basis, generated by an affine group of scale and shift operations,
h®M=  hitb)/a)/a (D

Usually, digital implementation of the WT uses a discrete basis, a/ a0=2iI and
b/b,=1I (integer I) for a constant resolution for different scales. In Eq(1), the
normalization constant 1/a is often preferred.9 (cf.Eq(31) of Ref.[10] for the

conventional wavelet normalization of inverse square-root a.) The admissible
condition of a basis is that a square-integrable kernel h(t) must have zero dc

component and a sufficiently fast decay at high frequencieslo. The WT is defined in
the square integrable Hilbert space:

W T (s(0) = (hyp®, s®) =]+ hep@s@dt=Wab). @

For the discrete version of the WT, a simple example is given as follows:
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Discrete Haar Wavelet Matrix Expansion

Given a piecewise-constant approximation of a staircase function f(x)=(2,4,6,8)
in 4 quarter steps, one can compute by the inner product of f(x) with 4 Haar wavelet
bases to obtain the following:

f(x)= 5 d(x) - 2W(x) - W(2x) - W(2x-1)

which corresponds to the following column vector equation:

2 + + + 0
4 + + - 0
6 = 5 + -2 - - 0 - +
8 + - 0 -
Note that such a local base is sparse, meaning zero entries!

2 + + + 0 5

4 + + - 0 -2
y = 6 = + - 0 + 1= [Wylb

8 + - 0 - -1

which defines a real matrix[W,] consisting of 4 orthogonal bases, which is easily
verified. Consequently, the inverse DWT is straightforward, just the transpose
denoted by the superscript T:

b = [W4]-1 y = [W4]T Y

This simple inverse is a major reason for choosing CON DWT. Now we will define
the family tree of Haar wavelets as shown in Figure 1.

From the Haar family tree follows dilation and wavelet equations:
o0 =623 +  ¢(2x-1)

Wx) = *(2x) - $(2x-1)
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Mother

wavelet W1=V2-V1 W2=V3-v2
difference q W(4x)
daughters W(2x) —W(4x-1 )

Father —
Dilation
sum=sons W(2x-1) |‘ ~ W(4x-2)
dilation
—:hr W(4x-3)
®d2x) ={P(x)+W(x)}/2
Vi =vo+Wo O(2x-1) ={®(x)-W(x)}/2
d(4x)
d(4x-1)
v =VIWT — D(4X-2)
1 ¢ (4¢-3)

Figure 1: Family tree of Haar wavelets.
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for which Daubechies succeeded in generalizing the piecewise constant Haar
wavelet to piecewise linear function, which gives better functional approximation
than constant Haar.

*Why CON DWT is computational O(N) rather than CON FFT O(N Log N) ?

The computational saving is due to the zero entries that require no
multiplication with the local bases forming sparse column vectors. The following

pyramid algorithm: O(N?)->O(N), developed independently by Burt-Adelson-
Mallat, show a local base of sum & difference giving sparse matrix N=2J

j=1 ++ ]:2 + + + O
W2] = +- [W4] = + o+ - 0
+ - 0 +
+ - 0 -

The Holy Grail of Complexity Theorem alluded to earlier early is the O(N) reduction
from O(N?):

wW2] +000 wW2]
00+0
(Wi4] = 0+00
wW2] 000+ [12]

eN=4, N-1 =3 smaller matrix [W2]
*Non-zero =Nx(j+1) = Nx(Log,N +1)

* Major Contribution of Multiresolution (MR)

Multi-Resolution Paradigm Mallat

levels=j Proi.=Pj Sca1e=<I>j Proi.=Qj Wavelet=Wj-

j=0 sums=s (=son) difference=d (=daughter)

j=1 s s d s s d d d
j=2 sss dss sds dds ssd dsd sdd ddd

FT: Early generations, low freq. parents, win over children, high freq., because of
Gibb’s overshooting
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WT: MR. overcomes the FT dominant parenthood, puts all on an equal footing.
¢ Companion between Discrete WT Vs. Continuous WT

¢ Discrete = Fast WT if CO.N. O(N)
°In_ner Product

y =y <f01WE 0>W

=Z by Wik
*Easy Inverse WT, if C.O.N.
eContinuous WT

*Completeness = Inverse WT
*EFT speedups by O(N Log 5 N).

3. Evidence for Wavelets in the Brain

Evidence for wavelets has been found in both the visual and hearing systems.
As described elsewhere this handbook (Daugman), Gabor wavelets have been
shown to be excellent models for the 2-D receptive fields in simple cells in the cat
visual cortex.

In the hearing system, sound waves striking the eardrum cause vibrations
that pass through the middle ear to the fluid-filled spiral-shaped cochlea. The
pressure waves in cause vibrations in the basilar membrane of the cochlea, which
are transduced to electrical signals by bending cilia that line the cochlea. The basilar
membrane can be viewed as a bank of bandpass filters, with the filter center
frequencies increasing with increasing distance into the cochlea. For human hearing
above 800 Hz, the filter frequency responses are dilated versions of each other,

meaning they are wavelets?2! See Figure 2. Other ways to say the same thing are
that the filters are constant-Q, (the Q factor is center frequency divided by
bandwidth), or that the frequency responses appear nearly identical translated
versions along a logarithmic frequency axis. This interpretation ignores nonlinear
phenomena that play important roles at low sound levels, but are less important for

normal speech volumes?2.

4. Combining Adaptive Wavelets with Neural Networks

There are several levels of adaptivity:

(i) Optimum Coefficients: adjustable transform coefficients chosen with
respect to a fixed mother kernel for better representation,

(ii) Super-Mother: grouping different scales of daughter wavelets of same or
different mother wavelets at different shift locations into a new family called a
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basilar membrane

sound

eardrum cochlea basilar membrane filters

Figure 2: Interpretation of cochlear basilar membrane response as bank of wavelet

filterszz.
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superposition mother kernel for better classification,

(iii) Variational Calculus to determine ab initio a constraint optimization
mother for a specific task. The tradeoff between the mathematical rigor of the
complete orthonormality and the speed of order (N) with the adaptive flexibility is
finally up to the user’s needs.

In terms of functionality, representation versus classification is an important
issue. A signal may be compressed for its faithful representation or feature
extraction for the best discrimination capability against other signal’s features. The
former works on the probability distribution of the majority data, while the latter is
the decision boundary with the overlapping minority data.

In this review, we emphasize neural network adaptive wavelets for signal
classification rather than representation for the following reasons. Adaptively
computing wavelet parameters (coefficients, dilation and shifts) with neural
networks for the purpose of signal representation is not competitive in speed with
the fast wavelet transform on serial hardware. The fast wavelet transform can be
implemented in O(IN), and methods exist for quickly deciding which wavelet
coefficients should be retained for the best compression. Implementing the neural
network algorithms on available high-speed parallel neural chips will greatly
increase their speed, but chips are also available for computing the fast wavelet
transform. For classification, on the other hand, the fast wavelet transform can
compute coefficients quickly, but it is not a trivial process to determine the best
coefficients to retain to best separate the training data into classes, rather than
represent it.

It is not so important that the wavelet features be orthogonal, as it is that they
separate the classes of training data. Since classifiers normally require relatively
lengthy off-line training, adapting wavelet features together with the classifier
during training is an attractive approach to minimize the misclassification rate.

For both neural and non-neural approaches, representation has received a
large amount of attention while classification has been rarely considered. Daugman
uses a neural network to learn the best set of coefficients for approximating an

image with a set of Gabor wavelets!®. A similar aproach has also been taken with a
constructive algorithm that allocates additional wavelet functions in areas as

needed!”. Neural networks have also been used to adaptively compute wavelet

shift and dilation parameters in addition to the coefficients!8. All of these
approaches employed nonorthogonal wavelets. An attractive alternative of using

discrete orthogonal wavelets has also been advanced!?. In this method, neural
network weights can be computed very quickly by exploiting the wavelets’
orthogonality, and making gradient descent unnecessary. Although not proposed
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in terms of neural networks, an efficient method has been proposed for computing

the best orthogonal wavelet from a scaling function for signal representationzo.

Another interesting alternative is to adatively compute wavelet waveforms in the

short-time Fourier time-frequency domain of a particular signa121. This avoids
some of the local minima problems that may arise in the time domain if the
wavelets are initialized poorly. However, extension to higher dimensions may be
more difficult, and computing wavelets from a Fourier-based time-frequency space

has drawbacksl7.

For representation, a signal s(t) can be approximated by daughters of a mother
wavelet h(t) according to

s(t) = 2y Wi h[(t'bk)/ ak)]’

where the Wi/ bk and ay are the weight coefficients, shifts, and dilations for each

daughter wavelet. This approximation can be expressed by the neural network of
Figure 3, which contains wavelet nonlinearities in the artificial neurons. This
architecture is similar to a radial basis function (RBF) neural network because
symmetric wavelets form a family of RBFs. The network parameters can be
optimized by minimizing an objective function, such as mean squared error.
To demonstrate how adaptive wavelets can approximate functions, we consider
three phonemes, “a,” “e,” and “i” (long vowels spoken in isolation) shown in
Figure 4. Figure 5 shows a single period extracted from each together with wavelet
approximations, showing good results with a small number of wavelets. The
resulting approximations can then be treated as super-wavelets, in that their

~ dilations can be used to approximate other voiced sounds with the same periodic
shape but different frequencies [adaptivity level (i)]. More details are provided

elsewheres.

For representation, neural network learning does not appear to be
competitive with the fast wavelet transform. However, neural networks are well
suited for learning wavelet features in combination with a classifier. As an example,
we consider a combined classifier and wavelet feature detector given by

v, =o(u,) = ofZy wy Iy s, (1) hi(t-by)/akl},

where v, is the output for the n-th training vector s, (t) and o(z) =1/ [1+exp(-2)], a

sigmoidal function. This classifier can be depicted as the neural network of Figure 6,
which uses wavelet weights rather than the wavelet nonlinearities of the
representation network of Figure 3. The lower part of Figure 6 produces inner
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Figure 3: Example neural network architecture for wavelet signal approximation,
where the time value t feeds into the K nodes with wavelet nonlinearities.
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Figure 4: Phonemes: (a) “a,” (b) “e,” (c) “i.”
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Figure 5: Single periods of phonemes extracted from Fig. 4 signals (solid lines) and
adaptive wavelet approximations (dashed lines): (a) “a,” (b) “e,” (c) “i.”
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Figure 6: Example neural network architecture for classifier with wavelet features
(after synthesis all weights compress to single layer because of nonlinearities).
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products of the signal and wavelets, with the first wavelet on the left and the K-th
wavelet on the right. Figure 6 shows two layers of weights, but for this simple
example architecture, once the network is synthesized, the two layers collapse into
one because a nonlinearity does not exist between layers. A simple classification test
case was generated from the speech signals in Figure 4.  When only allowing the
weights to change during training and keeping the wavelet features fixed to their
initial values, 13% error resulted, while allowing the wavelet shifts and dilations to
adapt as well as the weights reulted in only 2.5%. This demonstrates the value of
adapting the parameters of wavelet features as well as the classifier weights. More

details are provided elsewhereS.

5. Invariant WT

As an example of the first methodology of adaptivity, we consider an
interesting application of invariant WT. There are many interests in applying
neural network technology to experimental measurements as an automation tool.
Similarly, the usefulness of the wavelet transform (WT) to replace the Fourier
transform (FT) has been demonstrated in data compression as well. This chapter
contributes toward the synergism of both technologies. One of the challenges in
experimental diagnoses is to achieve distortion invariant classification. Traditional
approaches are based on time-frequency joint representations (TFJR) such as the E.
Wigner distribution based on the quantum mechanical uncertainty principle and
the P Woodward ambiguity function based the Doppler shift uncertainty.
Unfortunately, both involve a second order convolution and correlation integral of
quadratic order, such that multiple pulses produce a double amount of spectrum
pulses that complicate the identification task for both TFJRs. Recently, a first-order

time-scale joint representation (TSJR), called the Wavelet Transform? 4, was
developed to replace the traditional FT by computing the TSJR for noisy wideband

transients. Fractal aggreg_;ate5 and turbulence data®” have been analyzed by WT
giving efficient interpretations. Motivated by multimedium satellite
communication (Broadband-ISDN), as well as the need for lossless fingerprint
compression, to be used in the National Crime Information Center, the wavelet
transform is being widely adopted for signal and image processing.
A WT-reduced set of data may be called a wavelet feature set, which can be used to
train and implement electronically a smaller size of the ANN for pattern
classification. We begin by comparing the FT and WT.

The FT is known to be an angle-preserving, or conformal mapping, which

has suggested the design of wedge-ring detectors in the Fourier planell. This device
works for scale-rotation invariance based on shift invariance because, despite of the
motion of the object, the square-law detectors guarantee the object centroid

alignment at the origin of the Fourier domain. This shift invariance is based on the
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modulus-invariant phase information in the following straightforward
mathematics:

| FTHg®) 12=1(eg(0),g() 1 2=1G(0 %=1 G(Dexp(-2njfb) | 2=1[_ " “exp(-2njft)g(t-b)dt | %(3)

On the other hand, the invariant property of the WT is based on the intrinsic
scale property in the TSJR domain (a,b). The idea is simple. To investigate the
invariant WT is to compute WT of various scales of the identical signal. Hopefully,
those scale-related WT coefficients organize themselves in such a fashion that can
be easily collected to produce the scale invariant features. Given a generic signal
under additive white noise,

S’l(t) = Si(ai t) + I’l(t),’ i =1,2,.., (4)

where the unknown scales o’s (suppressing class index i ) are equivalent to
unknown frequency compaction or hopping of similar waveforms s(t)’s. The
associated WT coefficient denoted by the prime is computed

Wiab)=]_ = dtsoneb)/a/a=]__t=ar sone-w)/2)/2 )

Use is made of the change of variables: t'=at, a’=aa , and b’=ab, and Eq(5) becomes

exactly equal to that original W(a,b) Eq(2) located radially by a factor of a in both a
and b plane.
W’(a,b) = W (aa,ab) + noise. (6)
Example:
If a=2, then signal s(2x) is shrunk by half (where for example the peak value
- of s(xo) at x, is shrunk to x=x0/ 2 location). Therefore, the WT coefficient

W’(a,b)=W(2a,2b) which is shifted toward the origin by a factor of 2, so that for a
compacted size signal the WT locates toward the center by the factor 2 along both the
a and b axes.

This observation makes it clear the geometric meaning of Eq(6) and our
design of a wedge detector on the TSJR plane follows. The wedge filter bank
consists of N radial wedges that have N equally spaced angles in the upper half
plane where a>0.

b, = a tan (n6,) (7)
b,,1 = a tan((n+1)8,), (8)

where 6, = 27/N for a total of N wedges. The total output value collected through
the wedge-shaped filter denoted by w,’ for s'(t) is integrated

wy .= ,[°°0 da 2 bn bn+1 w2 (a,b) =wp /. ©)
to give its value
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1/ multiplying with that wy, for s(t). Since this formula (9) is true

for every wedge extracted value, a simple normalization of all values gives us a set
of scale-invariant feature values. This fact is obvious, as often is the case in
hindsight, in that the size information of the object is mapped to the value of some
area integral and then a simple threshold can ignore the size information.

The present technique based on wavelets and neurons seems to be an ideal
tool to solve real time physics application problems that require scale-invariance.

For example, wavelet transforms have been applied to the onset of turbulence flow

by Frisch and Orzag7, and the Kolmogorov turbulence cascade by Meneveau® who

have demonstrated the self-similar nature of the turbulent flow. Thus, the present
technique might be used to enhance the turbulence onset signal giving better
diagnosis in real fluids, because it collects scale invariant information at multiple

resolution scales. A similar application by Freysz et.al.” that can be extended by
invariant wavelet technique was to investigate the scale-invariant fractal
aggregation in diffusion-limited cases. ~Another application of invariant wavelet
transform is the bubble chamber particle track recognition problem with a large
throughput rate in the superconductor supercollider experiments. The challenge
there is perhaps similar to the star track minutiae associated with the task of
compressing FBI finger print files by a lossless wavelet transform which is approved
by FBI to be better than the traditional discrete cosine transform used in the high
definition TV and data compression. However, the particle tracking is not stationary
and is further compounded by the time-dependent event under electromagnetic
field fluctuations, for which a scale-invariant wavelet transform automation may
prove to be useful for minor changes in the measurement setup. In the interest of

- simplicity to bring forward the use of this novel synergism between wavelets and
neurons we consider a one dimensional example. An important measurement
problem in astrophysics is detecting a weak signal under an unknown Doppler shift.
This type of frequency modulation by environmental perturbations is modeled as
follows.

As a generic illustration, we consider two classes of pulse signals that have
arbitrary carrier frequency and different frequency modulations and hopping. One
class has high, low and medium frequency modulated pulses, denoted as HLM, and
the other class has three modulated pulses of equal frequency, denoted as MMM for
a medium carrier frequency. A natural wavelet to analyze the change of pulses is

the bipolar Haar wavelet h(t) ={-1, +1)12, The HLM and MMM signal templates

are shown inRef. 13. The first and third HLM segments in Fig. 1al3 have an
amplitude of 2 while the middle segment has 1.75 amplitude, and altogether there
are 512 data points. The MMM signal template has one medium frequency in three
pulses. Training and test vectors with differing scale and noise are normalized so
each feature has a zero mean and 0.75 standard deviation. The training set consisted
of
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sl(t) and sz(t) (subscripts denote the two classes), while the test set consisted of 51(2t),
52(2t), sl(Zt)+n(t) and sZ(Zt)+n(t), where n(t) is 20 dB noise. Ref. 13 shows the two
noisy test signals, and simulated wedge outputs for the original HLM signal s;(t) and

scaled and shifted versions. The wedges of the scaled signal are essentially identical
to the original. The wedges of the shifted signal show graceful degradation for shifts
as well. To capture shift invariance, one can likewise design a horizontal bar filter
bank (space does not permit us to discuss this further).

This invariant feature set can be furthermore fed into a two-layer feedforward
ANN for both the interpolation of non-integer scale value and subsequent
classification as demonstrated in the righthand side of Figure 7. Each signal is
wavelet transformed by the Haar wavelet, and collected through 32 wedge detectors
and fed into 32 input neurons of the input layer of ANN. An MxN two-layer
feedforward ANN has M=1 single output layer neuron for two classes (target or
clutter) and N=32 neurons at the input layer, one for each wedge detector output.
The ANN learning is described as follows.

A performance or energy function E(v) is a function of the output neuron
activity function v. The usual choice is the square difference of desired output d
(during the training, say 1 for class 1 and zero for class 2) and the actual output v.

E() = (v -d )%/2 (10)
The first layer has N=32 neurons whose input U and output v; are denoted

by the subscript j (note that the i-index of second layer neuron is suppressed for a
single neuron at the second layer considered here and thus the traditional double
indices of the interconnect weight wij is also reduced to one index wj for a single

neuron at the second layer). The net input to the second layer neuron is a wj

weighted sum from all output from the first layer:
And the g-threshold logic is defined by the logistic function:

v=1/[1+exp(- w]; (dv/du) = v(1-v) 20 (12a,b)

which has a nonnegative logic with more input u implying more output v. The
learning of the interconnect weight value is achieved by a local gradient descent.

Then, the standard gradient descent algorithm is used to determine the weights

A wj = (awj /0t)At = - (0E/9dv) (dv/du) (du/ awj) At
=(d -v) v(1-v) vj T (14)
where use is made of the gradient descent to compute the chain rule of
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Acousto-optical cell

WEDGE DETECTOR

.,O'"' Iwi
NEURAL NETWORK

Figure 7: Two dimensional optical correlator with cylindrical FT lenses and a bank
of the wavelet filters (located at SLM) for the WT of a one-dimensional signal
(Ref[10]) followed by the wedge detector, in the time-b and scale-a domain, and a

two-layer feedforward neural network for the noisy and distorted signal
classification.
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differentiations from Eqs(10-12), and At =t. Given signal templates si(t), i=1,2,for

the training by Eq(14), we have achieved perfect classification of two noisy contracted
signals Eq(4) with unknown compaction scale a;. The network outputs in Table 1 can

be seen to give the desired results:

Training Testing without noise Testing with noise
s;(0=HLM 0 51(29) 5X100  5;20+n(d 0023
() =MMM 1 so(20) 0.999 so(2t)+n(t)  0.990

Table 1: Network outputs for training and test set.

An optoelectronic architecture for optical implementation10 of the WT
preprocessing and the neural network classification is given in Ref.13. Input data is
represented by an acousto-optical transducer (with high GHz speed). Daughter
wavelets are encoded in the form of a film mask, or holographic matched filters
called the spatial light modulator (SLM). The output is a two dimensional plane.
The horizontal direction corresponds to the shift b (continuously distributed),
whereas the vertical direction corresponds to the dilation factor a (discrete sampled).
An integer discrete scale is easy for optical wedge detector layout and the noninteger
scale is taken care of by the fault tolerance of perceptron neural network

interpolation. Furthermore, we assume that a small angular separation 6 = 2n/N
between the width between b =a tan (n ) and b, , 1=a tan((n+1)6 ) is

approximated by a constant width, a 8, for a large N detector bank, as depicted in

Ref.13. This is easier for the layout of the optoelectronics device so that each row of
detectors has an equal spacing proportional to the location a of the row. A more
expensive monolithic design of the wedge detectors (where each wedge is a single
large detector ) can also be used but the integration time will be longer to slow down
the real-time operation. Then, a simple neural network is used to classify the yes
and no decision about the detection of a specific event under arbitrary distortion and
noise in the domain of time-scale joint representation.

6. Conclusion

In this review, we have shown that wavelets are attractive both for their
computational properties (e.g., fast O(N) wavelet transform) and for their usage in
biological preprocessing. This has led us and others to employ ANNs to give
wavelets varying degrees of adaptivity, with the most adaptivity coming from
synthesizing wavelets best suited to particular applications [adaptivity levels (ii) and
(iii)]. This ANN approach is better suited to determining classification features than
to representation.

As an example of scale-invariance, we have also demonstrated that adaptivity
methodology (i) can be used with a wedge-shape combination of wavelet
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coefficients to lead to a scale-invariant WT using ANN automation.
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