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ABSTRACT

Lens undistortion and image rectification is a commonly used pre-processing, e.g. for active or passive stereo 
vision to reduce the complexity of the search for matching points. The undistortion and rectification is imple-
mented in a field programmable gate array (FPGA). The algorithm is performed pixel by pixel. The challenges 
of the implementation are the synchronisation of the data streams and the limited memory bandwidth. Due 
to the memory constraints, the algorithm utilises a pre-computed lossy compression of the rectification maps 
by a ratio of eight. The compressed maps occupy less space by ignoring the pixel indexes, sub-sampling both 
maps, and reducing repeated information in a row by forming differences to adjacent pixels. Undistorted and 
rectified images are calculated once without and once with the compressed transformation map. The deviation 
between the different computed images is minimal and negligible. The functionality of the hardware module, 
the decompression algorithm and the processing pipeline are described. The algorithm is validated on a Xilinx 
Zynq-7020 SoC. The stereo setup has a baseline with 46 mm and non-converged optical axis between the cameras. 
The cameras are configured at 1.3 Mpix @ 60 fps and distortion correction and rectification is performed in real 
time during image capture. With a camera resolution of 1280 pixels × 960 pixels and a maximum vertical shift 
of ± 20 pixels, the efficient hardware implementation utilizes 12 % of available block RAM resources.
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1. INTRODUCTION

Three-dimensional reconstruction using passive or active stereo vision have been used in applications such as 
industrial environment,1, 2 medical imaging3 and other fields. For the high-speed inline measurement systems, 
an acceleration of the image processing algorithms is required. One solution for this is the use of FGPAs.4, 5 Real 
time preprocessing, such as lens distortion and image rectification, near the sensor is therefore an advantage.

2. THEORETICAL BACKGROUND
The physical inhomogeneity of the camera sensor causes non-linear lens effects (radial distortion) and the relative 
positioning offsets of the camera causes tangential distortion. For industrial image processing it is necessary to 
correct the lens distortion and to rectify the images. After rectification, the epipolar lines in both stereoscopic 
images run parallel to the image rows [6, pp. 239]. Thus, dense matching takes place in a 1D search area instead 
of in a 2D search area (both stereo images are line-correspondent).

The following describes the reverse transformation of lens distortion and image correction (as used in 
FPGAs4, 7, 8). The reverse transformation (see Figure 1) uses per camera two lens undistortion and image 
rectification transformation maps. In this maps, horizontal and vertical pixel positions in the raw image are 
defined. The grey value at the pixel position is usually an intermediate value within a two-dimensional rect-
angular grid. This is calculated by a bilinear interpolation. The four neighboring pixels at the pixel position 
(see Figure 1, neighboring pixels G0 −G3) and the decimal places of the pixel position are required for this. The 
interpolated grey value corresponds to the grey value of the rectified image to be calculated. [9, p. 273]
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Figure 1. Overview of the lens undistortion and image recftification module.

3. LENS UNDISTORTION AND IMAGE RECTIFICATION MODULE

Figure 1 show an overview of the lens undistortion and rectification module. One module per camera is required.
This module calculates the rectified images by reverse transformation (see section 2). This means that each
integer pixel in the rectified image corresponds to one pixel coordinate in the raw image. Since the corresponding
pixel position in the raw image is not an integer, a bilinear interpolation is performed from the nearby integer
pixel locations [10, pp. 437]. Two data must be available at the input of the module - the raw image of the
camera and the pre-computed compressed rectification map (see sections 2 and 3.1.1). The module consists of
four subsystems - Dual Port RAM with address calculator, decompression of the compressed rectification map,
an bilinear interpolation and the verification of invalidity values. The following subsections describe the two
necessary preparatory steps (calibration and decompression of rectification maps), the four subsystems and the
processing pipeline.

3.1 Preparatory steps

Before using the lens undistortion and image rectification module, a camera calibration and the generation of a
compressed rectification map per camera (camera setup k, k ∈ [0, 1]) is required.

3.1.1 Calibration

For the camera calibration a calibre plate with a circle grid pattern is used [5, 10, pp. 428]. At least 20 images
per camera are taken with different positions of the calibre plate. The four rectification maps are calculated
using these calibration images. The following OpenCV functions are used to calculate rectification maps:
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1. findCirclesGrid(): Determination of the image points of the circle grid.11

2. stereoCalibrate(): Using for camera calibration to calculate the camera matrices, the distortion coeffi-
cients of both cameras and the rotation and translation vector between them.11

3. stereoRectify(): Calculation of the rectification transformation matrices for both cameras and the 4× 4
reprojection matrix Q (necessary for 3D reconstruction5).11

4. initUndistortRectifyMap(): Generation of rectification maps using the parameters calculated by step 3.
Two maps (x and y) for each camera containing the floating point pixel positions in the raw images.11

3.1.2 Generation of compressed rectification maps

To reduce bandwidth utilization, it is required to compress the rectification maps. Algorithm 1 shows the neces-
sary steps how to compress the two UndistRectMaps mapk x and mapk y of one camera k into one compressed
map mapk c. Redundant information is removed using lossy compression. The resulting map mapk c has the size
of N ×M bytes. N is the image width (or number of columns) and M is the image height (or number of rows).
In the first step, the pixel index in both UndistRectMaps are subtracted so the maps contain only the relative
pixel offsets.8 Then each UndistRectMap is subsampled. Subsampling is done according to a chequered pattern.
For mapk y, the index of this checkerboard pattern is offset by one compared to mapk x. That way the missing
value only has to be interpolated once per clock during decompression. Both subsampled UndistRectMaps are
merged to mapk c. The last step is reinterpretation of the values of this mapk c. The offset values from the
second column are quantized to seven binary decimal bits. Moreover, the offset deviations are calculated by the
subtraction of the value from the value located two columns before.8 The calculated offset deviations are stored
with a sign bit in addition to the seven binary decimal bits. The values of the first two columns are rounded.
Thus, these consist only of absolute pixel offset values without decimal places.

3.2 Hardware architecture

The proposed lens undistortion and image rectification module was realized with the System Generator Tool.
The generated ip core is integrated into a vivado project (with image acquisition via LVDS and image output
via HDMI and GigE). The passive stereo system used is based on a Xilinx Zynq-7020 SoC. The two cameras
are equipped with e2V EV76C570 CMOS sensors. The lens undistortion and image rectification ip core is
implemented in the programmable logic cells (Zynq PL).

Right Cam ModuleRight Cam Module

Left Cam Module

Lens undistortion and rectification module

cam_img

integer x
integer y

decimal y
decimal x

Verify Integer 
on Invalidity

8 bit

8 bit

8 bit

row, col
counters

VDMA

8 bit

Dual Port RAM 

8 bit

Bilinear 
Interpolation

Decompression
UndistRectMap

odd rows, even column
odd rows, odd column

even rows, even column
even rows, odd column

BRAM Address Calculator
- calculate write address
- calculate read address

s_axis

s_axi_lite

8 bit
m_axis

fsync

rectified 
image8 bit0

m_
axis

Figure 2. Architecture of the lens undistrectification and image rectification module.
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Algorithm 1 Compress UndistRectMaps mapk ∗ for camera k

for (k = 0; k < 2;+ + k) do
for (j = 0; j < M ; + + j) do � subtract pixel index

for (i = 0; i < N ; + + i) do
mapk x[j][i] = UndistRectMapk x[j][i]− i
mapk y[j][i] = UndistRectMapk y[j][i]− j

end for
end for

for (j = 0; j < M ; + + j) do � subsample and merge maps
for (i = 0; i < N ; i = i+ 2) do

if j%2 == 0 then
mapk c[j][i] = mapk x[j][i]
mapk c[j][i+ 1] = mapk y[j][i+ 1]

else
mapk c[j][i+ 1] = mapk x[j][i+ 1]
mapk c[j][i] = mapk y[j][i]

end if
end for

end for

for (j = 0; j < M ; + + j) do � reinterpret values
for (i = N − 2; i > 1; i = i− 2) do

mapk c[j][i] =
FIX(mapk c[j][i])− FIX(mapk c[j][i− 2])

mapk c[j][i+ 1] =
FIX(mapk c[j][i+ 1])− FIX(mapk c[j][i− 1])

end for
mapk c[j][0] = round(mapk c[j][0]) � round integer values for first two cols
mapk c[j][1] = round(mapk c[j][1])

end for
end for

function fix(value, precision)
round(value · 2precision)/2precision

end function

The module consists essentially of four main parts (see Figure 1) - dual port RAM with BRAM address
calculator, decompression, bilinear interpolation and verify on invalidity. Figure 2 shows the modified hardware
architecture of the lens undistortion and image rectification module for one camera. The bold arrows show the
main path of the image. In comparison to the presented hardware architecture in paper 8 a total of four dual
port 36 k RAMs are used for intermediate buffering of 50 rows of the raw image. The number of rows to be
saved depends on the possible maximum vertical displacement, which depends on the base distance and the
angle between both cameras. The maximum vertical displacement value is obtained from the transformation
map UndistRecrMapk y. The compressed rectification map is loaded synchronized by VDMA from the external
memory. Figure 3 shows a block diagram of the decompression subsystem. The compressed transformation map
mapk c is compressed in reverse order to the compression algorithm 1 (see subsection 3.1.2). A line buffer is
required to interpolate the missing values. After decompression, the two integer and two decimal values are
available, which include the vertical and horizontal displacement.5 The BRAM address calculator uses the two
integer values to determine the new position of the grey value G0 stored in the dual port RAM. The calculation
of the bilinear interpolation is done with the two decimal places and the four neighbouring grey values G0−G3
(see Figure 1). The four determined grey values G0 − G3 are the grid points for the calculation of the bilinear
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Figure 3. Subsystem Decompression from figures 1 and 2: Recalculation of the horizontal x(m,n) and vertical y(m,n)
displacement values from compressed rectification map (M ×N).

interpolation. The Verify of Invalidity subsystem checks whether the pixel position of the calculated value is
within the image area.

3.3 Interfaces and processing pipeline

Figure 2 shows the architecture and interfaces of this module. The module calculates a rectified image pixel
by pixel. To do this, both data streams, which are streamed over an AXI4-Stream interface [12, pp. 5], must
be synchronous, but still offset accordingly. The data management is very complex. Figure 4 shows the rough
and simplified course of time. The two input streams and the output stream are visible - buffered values from
raw image stream, decompressed values from the compressed transformation map mapk c and rectified values
from image stream. The both input signals are provided via Slave AXI4-Stream interface. Initially, some rows
are buffered in four ring buffers (see range A). The number of the buffered rows depends on baseline between
the both cameras and camera orientation. In our case 50 rows are sufficient. This is absolutely necessary so
that grey values are also available at the corresponding calculated coordinates during the reverse transformation
(see section 2). After calculating a rectified value, the next pixel of the raw image stream is buffered in one
of the ring buffers (see range B). The pixels of the stored compressed transformation map are requested at a
time offset to this image data stream. The map is requested from the VDMA via the signal fsync. A rectified
pixel is calculated as soon as the ring buffer is filled accordingly and the two corresponding decompressed shift

BUFFERED VALUES OF RAW IMAGE

VALUES OF COMPRESSED MAP

VALUES OF RECTIFIED IMAGE

20 cycles20 cycles

cycles

raw image 1raw image 1 raw image 2raw image 2
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Figure 4. Simplified timeline of the processing pipeline. Filling buffer and start decompressing the transformation map
(range A); starting pixelwise rectification (range B); rectify the values of the last 50 rows and start saving the values of
the next raw image (range C).
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values (horizontal and vertical from the transformation map) are available. With the beginning of range B, this
is fulfilled for the first time. The rectification takes place a further 50 rows, although the entire raw image has
already been written to the ring buffers (see range C). During this time it is possible to write the 50 rows of the
next raw image into the ring buffers. The provision of the calculated rectified image is provided via the master
AXI4 stream interface m axis.

”This module is also configured via the Slave AXI4-Lite interface s axi lite. This interface inform about
possible error messages such as synchronization error or an overflow when the fill level of AXI FIFO ImgRect is
exceeded.”5

4. PERFORMANCE OF THE SYSTEM

4.1 Use of resources

The undistortion and rectification ip core needs the following resources (see Table 1) with a maximum image
size of 1280Px × 960Px and a maximum and minimum permissible vertical shift value of ± 24Px. The values
can be changed if desired. The IP core needs a BRAM load of 12% when using a Xilinx Zynq 7020 SoC. This is
made up of four ring buffers (bufferd raw image: 2 · (24Px+1) · imgwith max · 8 bit) and one line buffer (buffered
compressed rectification map: imgwidth max · 8 bit).

4.2 Deviations from different calculated rectified images

The lens distortion correction and image rectification was calculated without and with a compressed transforma-
tion map. In comparison to the use of uncompressed transformation maps the rectified image shows a deviation
of one till five grey value at the most (along strong gradients) using a binary precision of seven decimal places
for the offset values.

5. CONCLUSION AND FUTURE WORK

This paper shows an efficient FPGA-based lens distortion correction and image rectification module. To reduce
the bandwidth utilization, it is necessary to use compressed lens undistortion and rectification transformation
maps. Especially due to the effective lossy compression of the lens undistortion and rectification transformation
maps, pixel by pixel rectification of an image is possible. Table 2 shows the bandwidth utilization of the different
compressed undistortion and rectification transformation maps. With the new extension of the compression
algorithm (see subsection 3.1.2), a reduction of the bandwidth utilization by a factor of eight is achieved. The
extension of the compression algorithm in Ref. 8 is the additional subsample of the vertical and horizontal maps
(see algorithm 1). Compared to the generated rectified images without and with compressed transformation
maps, minor deviations of grey value are achieved (see subsection 4.2).

There are several applications of this FPGA-based lens undistortion and image rectification module, such as
its use in a stereo-based phase measuring Profilometry system.5 The presented lens undistortion and rectification
ip core is used in a passive stereo system (using a Xilinx Zynq-7020 SoC) without structured-light illumination.
Within the research group DIADEM, the stereo system will be integrated into a sensor arrangement with free-
form projection in future work. The planned stereo sensor setup has a working distance of 500mm, a base line
with about 100mm and a triangulation angle of 11�.

Table 1. Resource utilization of the UndistRect IP-Core in Xilinx Zynq 7020 SoC; at a set image size of 1280Px × 960Px
and a set vertical maximum of 24 rows.

Ressource LUT LUTRAM FF BRAM DSP IO BUFG
in % 3 1 2 12 7 33 3

Proc. of SPIE Vol. 11144  1114416-6



Table 2. Difference in memory utilization between OpenCV and different compressed UndistRectMaps (abbr. maps).
a Zynq-7000 32-bit DDR3 memory controller: maximal theoretical bandwidth 4267MB/s [13, p. 13]

Maps per Map type Data type Size (byte) Memory load (MB/s) Bandwidth
camera 2Mpix, 60 fps utilizationa (%)
OpenCV x float (M ×N) · 4 960 22.5

y float (M ×N) · 4
Compressed merged8 unsigned short (M ×N) · 2 240 5.6
Compressed subsample unsigned short (M ×N) · 1 120 2.8

& merged
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