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ABSTRACT 

The solution of the boundary value problem of electromagnetic wave transmission through an anisotropic layered 
structure placed in a rectangular waveguide is presented. The main axes of the crystallographic system of the layers are 
oriented parallel to the edges of the waveguide. For transmission through a single slab, the resulting scattering matrix 
elements S11 and S21 are transformed to the form known from the Nicolson-Ross-Weir model. This gives the possibility 
of using this model to retrieve complex material parameters (components of the permittivity and permeability tensors). 
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1. INTRODUCTION 
Recent trends in left-handed metamaterials (LHM) have led to a renewed interest on retrieving their effective 
permittivity ε and permeability μ1-4. Much of the LHMs realized so far are assumed to be biaxially anisotropic. Other 
important classes of man-made materials such as carbon-fiber reinforced plastics (CFRP) are characterized by uniaxial 
anisotropy5. 

One of the most important methods for determining complex material parameters is the Nicolson-Ross-Weir (NRW) 
method. In 1970, Nicolson and Ross6 gave the formulas for extraction of the complex permittivity and the permeability 
of an isotropic sample from measurements of the scattering matrix elements S11 and S21. The material under test (MUT) 
was placed in a coaxial transverse electromagnetic (TEM) waves transmission line (TL). In 1974, Weir7 obtained 
analogous relations for the MUT placed in a rectangular waveguide. In both works the field reflection coefficient Γ at the 
interface of two half-spaces and the propagation coefficient P were used. They can be expressed by the above mentioned 
ε and μ. 

If the sample is a solid, it is enough to consider the problem of the propagation through the slab. At least two additional 
layers should be considered for loose materials (e.g. synthetic granulates or grain seeds) and liquids. For this reason, the 
propagation in layered structure was considered. 

The problem of propagation of electromagnetic (EM) waves in an anisotropic layered structure placed in the waveguide 
is not new or even unresolved for simple configurations. Its solution is more arduous than difficult and occurs 
fragmentarily in many publications. The key work seems to be article by Damaskos et al.8, 9, describing the problem of 
propagation through the biaxially anisotropic slab placed in an empty rectangular waveguide. This work is surprisingly 
little cited in the scientific literature.  

An extraction of the material parameters from scattering matrix elements S11 and S21 is called the inverse problem, while 
obtaining S11 and S21 from ε and μ is a simple problem. The purpose of this work is to present the solution of the latter for 
the anisotropic material.  

In our work we first derived from basics relations described transverse electric (TE) and transverse magnetic (TM) 
waves propagating in a rectangular waveguide filled with an anisotropic medium. Field theory methods were used10. 
Although this derivation is not new, it highlights the analogy and differences with propagation in an empty waveguide. 
Second, we discuss the transmission matrix method in anisotropic layered media highlighting the mutual relationships 
between the field theory and the circuit theory. It is usually not shown in elementary textbooks11-14. Third, we present 
scattering matrix elements S11 and S21 at the form known from the Nicolson-Ross-Weir model. 
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2. DESCRIPTION OF THE CONFIGURATION 
Consider a medium consisting of t + 2 layers placed inside a rectangular waveguide with cross-sectional dimensions a 
and b. The boundaries of the layers are perpendicular to the waveguide z-axis and marked as dl, l = 0, 1, …, t (Fig. 1).  

 
Figure 1. A layered medium placed in a rectangular waveguide with cross-sectional dimensions a and b 

Layers marked as 0 and t + 1 have vacuum parameters. In each layer we are looking for a solution in the form of 
monochromatic waves propagating along the z-axis 

 ( ) ( ) ( ) ( ) ( )
0 0 0ˆ ˆ ˆ( , , , ) [ ( , , ) ( , , ) ( , , )]exp[ j( )]l l l l l
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where E(l) and H(l) denotes the electric and magnetic field intensity respectively. The upper sign (minus) corresponds to 
the wave running in the positive and the lower sign (plus) in the negative direction of this axis. To simplify the notation, 
in further considerations we will skip the arguments of the function, remembering the exp(+jωt) time dependence of all 
fields.  

Each layer has biaxial anisotropy with principal axes parallel to the axes of the Cartesian system. In this case the 
magnetic flux density B(l) and the electric flux density D(l) are described by the constitutive relations 

 ( ) ( ) ( )
0

l l l=B μ Hµ  (3) 

 ( ) ( ) ( )
0

l l l=D ε Eε  (4) 

and the matrices of relative permeability and magnetic permittivity tensors ε(l) and μ(l) for each layer are diagonal 
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If two of the three parameters are the same, the medium is uniaxially anisotropic. The another parameter can be 
anywhere, e.g. 
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At this case the optic axis is along the z axis. Maxwell’s equations in each layer are 

 ( ) ( ) ( )
0jl l l∇× = −E μ Hωµ  (7) 

 ( ) ( ) ( )
0jl l l∇× =H ε Eωε  (8) 

We assume that the waveguide walls are made of a perfect electric conductor (PEC), then the boundary conditions on the 
inner surface of the waveguide S mean vanishing the normal component of B(l) and the tangential components of E(l). 
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At the interface z = dl between the medium l and l + 1, the boundary conditions mean the continuity of the normal 
component of flux densities B(l) and D(l) and the continuity of the tangential components of field intensities E(l) and H(l).  

Substituting the assumed form of the solution (1) and (2) into Maxwell’s equations, it can be shown that the longitudinal 
components of the fields satisfy the coupled system of equations. Decoupling of E0z from H0z occurs in two particular 
cases (see Appendix A). In the first case TEm0 i TE0n modes can exist in the layered structure with biaxial material with 
ε(l) and μ(l) given by (5). In the second case the TEmn modes (including TEm0 and TE0n) and TMmn modes can propagate 
for specific configuration of material parameters. The latter case includes a particular form of an uniaxial anisotropy (so-
called transverse isotropy) determined by (6). Wave modes result from the substitution of general solutions of decoupled 
wave equations into boundary conditions on the surface S (see Appendix B). 

Our goal is to find elements S21 and S11 of the scattering matrix for the EM wave propagating from the left through the 
layer system. 

3. SCATTERING MATRIX ELEMENTS FOR LAYERED STRUCTURE 
Let’s focus on the TEmn mode transmission through a system of layers with uniaxial anisotropy defined by (6) located in 
the waveguide. The field in a medium l is the sum of waves running in the positive and negative direction of the z axis 
(see Appendix 2): 
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Boundary conditions at the interface z = dl require continuity of the normal component of flux densities and the 
tangential components of field intensities. Relations between the amplitudes A(l) and B(l) can be obtained by using 
boundary conditions continuity of fields Ex and Hy only: 

 ( ) ( 1)
1 1( ) ( )l l

x xE z d E z d+= = = ,    ( ) ( 1)( ) ( )l l
y l y lH z d H z d+= = =  (11) 

It may be shown that other three equations are not independent. Substituting (9) and (10) to (11) we get 
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The above system of equations can be written in the matrix form (see Appendix C) 
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and 
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An Eq. (15), described the matrix W(l,l+1), is a generalization of the Eq. (12) presented in the Rulf15 paper. That work 
concerned with the isotropic medium. 

Let’s write the following expressions based on (14) 
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Substituting (16) to (17) we obtain 
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Let’s denote h0 = d0 and the widths of particular layers as hl  

 1l l lh d d −= − , l = 1, ..., t  

One can then define 
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For a structure composed of t + 2 layers (see Fig. 1) we obtain 
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To obtain the S21 and S11 scattering matrix elements, one must find the relations of the amplitudes A(t+1) and B(t+1) with the 
notation At+1 and Bt+1 used in the theory of TL for the same reference plane z = dt. The amplitudes A0 and B0 at point z = 0 
on a uniform TL are related to the amplitudes At+1 and Bt+1 at point z = dt on the same line (see e.g. Rulf15, Eq. (13)) 
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If d0 = 0, then A(0) = A0 and B(0) = B0. Then dt is the sum of the widths of all the layers. Hence 
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The expression (20) can then be written as 
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The scattering matrix elements S21 and S11 satisfy following relationships 

 0 11 0B S A= ,    1 21 0tA S A+ =   

If the wave is incident from the left, then Bt+1 = 0. We obtain 
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Next, if we denote elements of the W matrix as 
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we get the scattering matrix elements S21 and S11 of the layer system:  
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4. AN EXAMPLE: SCATTERING MATRIX ELEMENTS OF A SINGLE SLAB 
As an example, we examine the transmission through a single slab placed in an empty waveguide. We shall find 
a relation between the amplitudes on the two sides of an interface, first. We may assume without loss of generality that 
there is an interface z = d0 = 0 between layer 0 (to the left) and 1 (to the right). Then 
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Assuming that in the area 1 there is no wave returning from infinity, then B(1) = 0. We define the reflection coefficient Γ 
and the transmission coefficient T at the interface as (see e.g. Balanis12, p. 181): 
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After some manipulations we obtain 
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We will consider transmission through layer 1 assuming that media denoted by 0 and 2 have vacuum parameters. In 
addition, for simplicity we denote d1 = d. From (19), formally 

 
( 2 ) (1)

( 2 ) (1)

j j(2) (0)
(1,2) (0,1)

(2) (0)j j

e 0 e 0

0 e 0 e

k d k d

k d k d

A A
B B

−

−

      
=       
         

W W   

Taking into account that k(2) = k(0) and W(1,2) = W(1,0) then the above formula takes the form 
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or using (22) 
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The matrix W can be rewritten as 
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where the letter P indicates propagation factor7  
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After some manipulations matrices W(1,0) and W(0,1) can be expressed by the reflection coefficient at the interface Γ  
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Finally W takes the form 
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It can be shown that W is an unimodular matrix (see e.g. Born and Wolf13, p. 60). This means that the determinant of the 
matrix is equal to unity. 

Repeating the arguments cited above B2 = 0, B0 = S11A0 and A2 = S21A0. From (23)  
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The form (28) of obtained scattering matrix elements S21 and S11 of the layer with uniaxial anisotropy is consistent with 
the initial formulas of the NRW method6, 7 of the isotropic layer, derived using the method of graphs. 

5. REMARKS ON OTHER CONSIDERED WAVE MODES 
It is not difficult to notice that equations (28) are also valid for other considered cases. In the expression for P, should be 
substituted the appropriate wave number k(1) and in the formula for Γ – the corresponding impedance quotient Z(0,1). 
These parameters are summarized in the Table 1 and the Table 2. Material parameters affecting on EM wave propagation 
are given in brackets in the table head.  

 

Table 1. Parameters Γ and P of the TEmn and TMmn modes propagation through an uniaxially anisotropic slab 
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−

m
ε

η

ε m

 
( ) 2

( )
TM ( ) ( ) ( ) 2

0

11
l

l xx mn
l l l

xx xx zz

kZ
k

= −
mη
ε m ε

 

(1)exp( j )P k d= −  

2
(1) (1) (1)

0 (1) (1) 2
0

11 mn
xx xx

xx zz

kk k
k

= −m ε
ε m

 
2

(1) (1) (1)
0 (1) (1) 2

0

11 mn
xx xx

xx zz

kk k
k

= −m ε
m ε

 

2 2

mn
m nk
a b

   = π +   
   
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Table 2. Parameters Γ and P of the TEm0 and TE0n modes propagation through a biaxially anisotropic slab 

TEm0 modes  
parameter set (εyy, μxx, μzz) 

TE0n modes  
parameter set (εxx, μyy, μzz) 

(0,1)

(0,1)

1
1

Z
Z

−
Γ =

+
 

(1)
(0,1) 0

(0)
0

m

m

ZZ
Z

=  
(1)

(0,1) 0
(0)
0

n

n

ZZ
Z

=  

( )

( )
( )

0 2
0

( ) ( ) 2
0

11

l
xx
l

yyl
m

m
l l

yy zz

Z
k
k

=

−

m
ε

η

ε m

 

( )

( )
( )
0 2

0
( ) ( ) 2

0

11

l
yy
l

xxl
n

n
l l

xx zz

Z
k
k

=

−

µ
ε

η

ε µ

 

(1)exp( j )P k d= −  

2
(1) (1) (1) 0

0 (1) (1) 2
0

11 m
xx yy

yy zz

kk k
k

= −m ε
ε m

 
2

(1) (1) (1)
0 (1) (1) 2

0

11 mn
yy xx

xx zz

kk k
k

= −m ε
ε m

 

0m
mk
a
π

=  0n
nk
b
π

=  

6. CONCLUSION 
We have derived a formalism and presented a solution of the boundary value problem of EM waves transmission 
through an anisotropic layered structure placed in a rectangular waveguide. The main axes of the crystallographic system 
and the Cartesian system were oriented parallel to the waveguide edges. Hybrid modes as well as TE and TM may exist 
in this configuration, with TM waves only for an uniaxial anisotropy of a special form (so-called transverse isotropy). 
For the most general biaxial anisotropy, only TEm0 and TE0n waves can exist8.  

The TEmn mode transmission through a system of uniaxially anisotropic layers was considered in detail. We found the 
elements S21 and S11 of the scattering matrix for the EM wave propagating from the left. The resulting matrix W (see Eq. 
(21)), derived in this paper, plays a crucial role in determining S21 and S11. As a matter of fact, the form of matrix W is 
the same as reported by other authors for the isotropic11 and electrically anisotropic5 media. The novelty is obtaining new 
relations for wave impedances and wave numbers assigned to the individual layers. For other cases, considered in the 
Appendices A and B, these relationships are shown in Table 1 and 2. Appropriate parameters for isotropic media, known 
from the circuits theory11, should be replaced by these expressions.  

In the important case of transmission through a single slab, the solutions in the form of the S11 and S21 elements of the 
scattering matrix are obtained and presented in the same form as in the NRW method6-7. This enables their direct 
application for the extraction of complex components of permittivity and permeability tensors. 

In the general case it is possible to determine as many material parameters as many independent measurement results (in 
general, complex) we have. For the isotropy, the complex parameters S21 and S11 correspond to the complex permittivity 
ε and permeability μ. It is possible to extract both materials parameters using the scattering matrix elements by the only 
measurement in a specific configuration. In the case of anisotropy, it is clear that an additional one (see Table 1) or two 
(see Table 2) measurements should be made in a different configuration. For example, the MUT should be prepared 
differently (e.g. rotated5, placed in another waveguide16) or a different mode should be used8. 

In addition to the LHM and CFRP structures mentioned earlier, the results can be utilized to study classic anisotropic 
materials with known orientation of the main axes and man-made material structures, in particular artificial dielectrics17, 
magnetodielectrics18 and other layered composites, characterized by transverse isotropy of effective parameters. 
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APPENDIX A. TE AND TM WAVES IN AN ANISOTROPIC MATERIAL 
In each layer substituting (1) and (2) into Maxwell’s equations (7) and (8), we obtain  

 0
0 0 0j jz

y xx x
E kE H
y

∂
± = −

∂
ωµ µ  (29) 

 0
0 0 0j jz

x yy y
EkE H
x

∂
− = −

∂
 ωµ µ  (30) 

 0 0
0 0jy x

zz z

E E H
x y

∂ ∂
− = −

∂ ∂
ωµ µ  (31) 

 0
0 0 0j jz

y xx x
H kH E

y
∂

± =
∂

ωε ε  (32) 

 0
0 0 0j jz

x yy y
HkH E

x
∂

− =
∂

 ωε ε  (33) 

 0 0
0 0jy x

zz z

H H E
x y

∂ ∂
− =

∂ ∂
ωε ε  (34) 

Let’s we write (29) and (33) in the form of a system of equations 

 

0
0 0 0

0
0 0 0

j j

j j

z
y xx x

z
yy y x

EkE H
y

HE kH
x

∂± + = − ∂


∂ − = ∂


ωµ µ

ωε ε
 (35) 

and determine E0y and H0x with respect to partial derivatives of longitudinal components E0z and H0z. We get 

 0 0
0 02 2

0

j z z
y xx

xx yy

H EE k
k k x y

∂ ∂ 
=  − ∂ ∂ 

ωµ µ
µ ε

 (36) 

 0 0
0 02 2

0

j z z
x yy

xx yy

E HH k
k k y x

∂ ∂ 
=  − ∂ ∂ 

ωε ε
µ ε

 (37) 

where k0 is the wave number in the vacuum 

 0 0 0k
c

= =
ωω µ ε   (38) 

In the same way from (30) and (32) can be obtained E0x and H0y relative to the partial derivatives of E0z and H0z 

 0 0
0 02 2

0

j z z
y xx

xx yy

E HH k
k k x y

∂ ∂ 
= − − ∂ ∂ 

ωε ε
ε µ

 (39) 

 0 0
0 02 2

0

j z z
x yy

xx yy

H EE k
k k y x

∂ ∂ 
= − − ∂ ∂ 

ωµ µ
ε µ

 (40) 

Substituting E0x and E0y into (40) and H0x and H0y into (43) we get the system of coupled equations for E0z and H0z  

 
2 2 2 2

0 0 0 0
0 0 0 02 2 2 2 2 2

0 0

1 1z z z z
xx yy zz z

xx yy xx yy

H E H Ek k H
k k x x y k k y y x

   ∂ ∂ ∂ ∂
− − = −   − ∂ ∂ ∂ − ∂ ∂ ∂   

 ωµ µ ωµ µ ωµ µ
µ ε ε µ

 (41) 

Proc. of SPIE Vol. 11442  114420A-9



 
 

 
 

 
2 2 2 2

0 0 0 0
0 0 0 02 2 2 2 2 2

0 0

1 1z z z z
xx yy zz z

xx yy xx yy

E H E Hk k E
k k x x y k k y y x

   ∂ ∂ ∂ ∂
− − =   − ∂ ∂ ∂ − ∂ ∂ ∂   

 ωε ε ωε ε ωε ε
ε µ µ ε

 (42) 

Each of equations (41) and (42) is a second order partial differential equation with constant coefficients of two functions 
E0z(x, y) and H0z(x, y). In general, hybrid waves propagation should be expected, which from the point of view of 
extracting parameters is not convenient. Instead, let’s explore the possibility of TE and TM waves propagation.  

We substitute E0z = 0 to (41) and (42), hence for TE waves 

 
2 2

0 0
02 2 2 2 2 2

0 0

0yyxx z z
zz z

xx yy xx yy

H H H
k k x k k y

   ∂ ∂
+ + =   − ∂ − ∂   

µµ µ
µ ε ε µ

 (43) 

 
2 2
0 0

2 2 2 2
0 0

( )
0

( )( )
xx yy xx yy z

xx yy xx yy

k H
k k k k x y

−  ∂
= − − ∂ ∂ 

µ ε ε µ
ε µ µ ε

 (44) 

Similarly, for TM waves we have H0z = 0, i.e. 

 
2 2
0 0

2 2 2 2
0 0

( )
0

( )( )
xx yy xx yy z

xx yy xx yy

k E
k k k k x y

−  ∂
= − − ∂ ∂ 

ε µ µ ε
µ ε ε µ

 (45) 

 
2 2

0 0
02 2 2 2 2 2

0 0

0yyxx z z
zz z

xx yy xx yy

E E E
k k x k k y

   ∂ ∂
+ + =   − ∂ − ∂   

εε ε
ε µ µ ε

 (46) 

Decoupling of E0z from H0z, i.e. obtaining separate equations for E0z and H0z, occurs in two particular cases. In the first 
case the following relation occurs: μxxεyy – εxxμyy = 0. Rewrite it as 

 yy yy

xx xx

= =
ε µ

α
ε µ

 (47) 

This condition resets equation (44) for TE waves and (45) for TM waves, then (43) and (46) takes the form 

for TE ( )
2 2

2 20 0
0 02 2 0z z zz

xx xx z
xx

H H k k H
x y

   ∂ ∂
+ + − =   ∂ ∂   

µα αε µ
µ

 (48) 

for TM ( )
2 2

2 20 0
0 02 2 0z z zz

xx xx z
xx

E E k k E
x y

   ∂ ∂
+ + − =   ∂ ∂   

εα αε µ
ε

 (49) 

Incidentally, the case α ≠ 1 seems to be unrealistic. Therefore we will not consider it. In the second case, decoupling 
occurs if either 

 0
y
∂
≡

∂
 or 0

x
∂
≡

∂
 (50) 

which is fulfilled in an empty waveguide by the TEm0 and TE0n modes respectively. These modes also exist in 
a waveguide filled with the biaxial medium. This was noticed for the first time in work of Damaskos et al.8 An Eq. (43) 
fulfilled by these solutions reduces to 

for TEm0 ( )
2

2 20
0 02 0z zz

xx yy z
xx

H k k H
x

∂
+ − =

∂
µ µ ε
µ

 (51) 

for TE0n ( )
2

2 20
0 02 0z zz

xx yy z
yy

H k k H
y

∂
+ − =

∂
µ ε µ
µ

 (52) 

while all other equations are satisfied identically. 
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APPENDIX B. WAVES IN A WAVEGUIDE 
TE and TM waves in an uniaxially anisotropic medium 

Let’s consider condition (47). In particular, it is satisfied for a medium with uniaxial anisotropy 

 xx yy=ε ε ,    xx yy=µ µ   

then equation (48) and (49) takes the form 

 
2 2

2
2 2 0ck

x y
∂ ∂

+ + =
∂ ∂
y y y  (53) 

where 

for TE  0zH=ψ ,    2 2 2
0( )zz

c xx xx
xx

k k k= −
µ µ ε
µ

 (54) 

for TM 0zE=ψ ,    2 2 2
0( )zz

c xx xx
xx

k k k= −
ε µ ε
ε

 (55) 

Boundary conditions on the waveguide inner surface S can be expressed as  

for TE ˆ( ) 0
ˆS

S

∂
⋅∇ =

∂
n

n


ψψ  (56) 

for TM 0
S
=ψ  (57) 

where n̂  is unit normal vector at the surface. 

Let’s apply the separation of variables method. Writing ψ in a typical way10  

 ( , ) ( ) ( )x y X x Y y= ⋅y  (58) 

and substituting into (53), we obtain formula 

 

22

22
2

( )( )

0
( ) ( ) c

Y yX x
yx k

X x Y y

∂∂
∂∂ + + =   

which leads to two equations of one variable  

 
2

2
2

d ( ) ( ) 0
d x
X x k X x
x

+ =  (59) 

 
2

2
2

d ( ) ( ) 0
d y
Y y k Y y
y

+ =  (60) 

where kx and ky are separation constants. In addition, we obtain a relationship  

 2 2 2
c x yk k k= +  (61) 

The general solutions of (59) and (60) are respectively 

 ( ) sin( ) cos( )x xX x A k x B k x= +  (62) 

 ( ) sin( ) cos( )y yY y C k y D k y= +  (63) 
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Substituting the separated form of the solution (58) to the boundary conditions (57) and (56) one can obtain10: 

for TE 
0

d ( ) 0
d x

X x
x =

= ,    d ( ) 0
d x a

X x
x =

= ,     
0

d ( ) 0
d y

Y y
y =

= ,    d ( ) 0
d y b

Y y
y =

=  (64) 

for TM (0) 0X = ,    ( ) 0X a = ,    (0) 0Y = ,    ( ) 0Y b =   (65) 

The general solution (62) differs from (63) by a spatial variable and by constant symbols only. We can substitute one of 
them to the appropriate boundary conditions and obtain the solution. Next, replacing the variable and symbols we can 
obtain the solution of the latter. 

Substituting the general solution (62) to the boundary conditions, we obtain a system of equations 

 
cos 0 sin 0 0
cos sin 0

x x x x

x x x x

Ak k Bk k
Ak k a Bk k a

− =
 − =

  

It gives A = 0 and 

 x
mk
a
π

= ,    m = 0, 1, 2, …  (66) 

In the same way for the function Y(y) we get C = 0 and 

 y
nk
b
π

= ,    n = 0, 1, 2, …  (67) 

The product of solutions X and Y – function ψ = H0z – is equal to 

 0 0( , ) cos cosz
m nH x y H x y
a b
π π   =    

   
 (68) 

where H0 = BD. This solution is called the TEmn mode10. To avoid a trivial solution, at least one of the indices must be 
nonzero. The first index is conventionally associated with the larger dimension, so we assume a ≥ b.  

Another system of equations is obtained by substituting (62) to (65)  

 
sin( 0) cos( 0) 0
sin( ) cos( ) 0

x x

x x

A k B k
A k a B k a

+ =
 + =

  

Hence B = 0 and 

 x
mk
a
π

= ,   m = 1, 2, 3, … (69) 

In turn, substituting (63) into (65) we have D = 0 and  

 y
nk
b
π

= ,   n = 1, 2, 3, … (70) 

The resulting solution ψ = E0z is called TMmn mode 

 0 0( , ) sin sinz
m nE x y E x y
a b
π π   =    

   
 (71) 

where E0 = AC. The separation constants are the same for both types of modes 

 x
mk
a
π

= ,    y
nk
b
π

=  (72) 
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Substituting (72) to (61) we obtain the cutoff wave number (kc)mn for the nm-th mode. It is designed kmn, given by  

 
2 2

( )c mn mn
m nk k
a b

   ≡ = π +   
   

 (73) 

It is a function of the guide dimensions only. Taking into account (54) and (55), the wave number k can be written as 

for TEmn 
2

0 2
0

11 mn
xx xx

xx zz

kk k
k

= −m ε
ε m

 (74) 

for TMmn 
2

0 2
0

11 mn
xx xx

xx zz

kk k
k

= −m ε
m ε

 (75) 

The dispersion occurs, i.e. the relationship between the wave number k and the angular frequency ω is nonlinear.  

According to (36)–(40) transverse components for TE waves can be written as 

 0 0 0 0 0
0 02 2 2 2

0

j j j cos sinxx z zz z zz
x

xx xx mn mn

H Hk n m nE H x y
k k k y k y k b a b

∂ ∂  π π π   = − = − =     − ∂ ∂     

ωmm  ωmm  ωmm
m ε

  

 0 0 0 0 0
0 02 2 2 2

0

j j j sin cosxx z zz z zz
y

xx xx mn mn

H Hk m m nE H x y
k k k x k x k a a b

∂ ∂ π π π     = − − = = −     − ∂ ∂     

ωmm  ωmm  ωmm
m ε

  

 0 0 02
TE

1 j sin coszz
x y

mn xx

k m m nH E H x y
Z k a a b

π π π   = = ±    
   



m
m

  

 0 0 02
TE

1 j cos sinzz
y x

mn xx

k n m nH E H x y
Z k b a b

π π π   = ± = ±    
   

m
m

  

where 

 0
TE

xxZ
k

=
ωµ µ

  

Transverse components for TM waves can also be obtained from the same equations, hence  

 0 0
0 02 2 2 2

0

j j j cos sinz zzz zz
x

xx xx mn xx mn xx

E Ek kk m m nE E x y
k k x k x k a a b

∂ ∂ π π π     = − ± = =     − ∂ ∂     
 

ε ε
m ε ε ε

  

 0 0
0 02 2 2 2

0

j j j sin cosz zzz zz
y

xx xx mn xx mn xx

E Ek kk n m nE E x y
k k y k y k b a b

∂ ∂  π π π   = − ± = =     − ∂ ∂     
 

ε ε
m ε ε ε

  

 0
0 0 02

TM

1 j sin coszz
x y

mn xx

n m nH E E x y
Z k b a b

π π π   = =    
   



ωε ε
ε

  

 0
0 0 02

TM

1 j cos sinzz
y x

mn xx

m m nH E E x y
Z k a a b

π π π   = ± = −    
   

ωε ε
ε

  

where 

 TM
0 xx

kZ =
ωε ε
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Note that 

 0
0 0 0 0

0

k= =
µωµ ω µ ε η
ε

,    0 0
0 0 0

0

k
= =

εωε ω µ ε
µ η

  

where η is the intrinsic impedance of the vacuum 

 0

0

=
µη
ε

  

Using these relationships, we get for TE waves 

 0 0 0
TE 2

0 2
0

11

xx xx xx

mn
xx xx

xx zz

k kZ
k k kk

k

= = =

−

ωmm  ηmm η
m ε

ε m

  

 TE 2

2
0

11

xx

xx

mn

xx zz

Z
k
k

=

−

m
ε

η

ε m

  

Similarly for TM waves we have 

 

2

0 2
0

TM
0 0 0

11 mn
xx xx

xx zz

xx xx xx

kk
kk kZ

k k

−
= = =

m ε
m ε

η η
ωε ε ε ε

  

 
2

TM 2
0

11xx mn

xx xx zz

kZ
k

= −
mη
ε m ε

  

 

TE waves in a biaxially anisotropic medium 

Let’s consider propagation of EM waves in the bianisotropic medium now. As mentioned in the previous chapter, the 
condition (50) resets TM modes. If 0y∂ ∂ ≡  the TE modes fulfilled the relations 

 
2

20
02 0z

c z
H k H
x

∂
+ =

∂
,    ( )2 2 2

0
zz

c xx yy
xx

k k k= −
µ µ ε
µ

 (76) 

 0 0 0
0 02 2 2

0

j jz zz z
y xx

xx yy c

H HE
k k x k x

∂ ∂ = = − ∂ ∂ 

ωµ µωµ µ
µ ε

  

 0
0

0

y
x

m

E
H

Z
=  ,    0

0
xx

mZ
k

=
ωmm
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Under condition 0x∂ ∂ ≡  the other TE modes exist for which 

 
2

20
02 0z

c z
H k H
y

∂
+ =

∂
,    ( )2 2 2

0
zz

c xx yy
yy

k k k= −
µ ε µ
µ

 (77) 

 0 0 0
0 02 2 2

0

j jz zz z
x yy

xx yy c

H HE
k k y k y

∂ ∂ 
= − = − − ∂ ∂ 

ωµ µωµ µ
ε µ

  

 0
0

0

x
y

n

EH
Z

= ± ,    0
0

yy
nZ

k
=
ωµ µ

  

It can be shown, that solutions of (76) fulfilled boundary conditions (65) are TEm0 modes8, 9  

 0 0( , ) cosz
mH x y H x
a
π =  

 
  

 0
0 0j sinzz

y
a mE H x

m a
π = −  π  

ωmm    

 0 0j sinzz
x

xx

k a mH H x
m a

π = ±  π  

m
m

  

 0 0 0 0x z yE E H= = =    

where 

 
2

0
0 2

0

11 m
xx yy

yy zz

kk k
k

= −m ε
ε m

,    0 0( )c m m
mk k
a
π

≡ =   

In turn, the solution of the (77) with boundary conditions (65) are TE0n modes 

 0 0( , ) cosz
nH x y H x
b
π =  

 
  

 0
0 0j sinzz

x
b nE H x

n b
π =  π  

ωµ µ   

 0 0j sinzz
y

yy

k b nH H x
n b

π = ±  π  
µ

µ
  

 0 0 0 0y z xE E H= = =    

where 

 
2

2 0
0 2

0

11 n
xx yy

xx zz

kk k
k

= −ε µ
ε µ

,    0 0( )c n n
nk k
b
π

≡ =   
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APPENDIX C. DERIVATION OF THE MATRIX REPRESENTATION 
This appendix shows the derivation of the equation (14). The system of equations (12)–(13) can be written in the matrix 
form 

 

( ) ( )
( 1) ( 1)( ) ( 1)( )

( 1) ( 1)
( 1) ( ) ( ) ( 1) ( 1)( ) ( 1)TE TE

( 1) ( 1)
TE TE

exp( j ) exp( j )
exp( j ) exp( j )

exp( j ) exp( j ) exp( j ) exp( j )

l l
l l l ll ll

l lzz l l
l l l l ll l

zz l l l ll l

k d k d
k d k dA A

Z Zk d k d k d k dB B
Z Z

+ + +
+ +

+ + + +
+ +

 −
   −  =    − − − −     

µ
µ


 
 

 (78) 

Introducing the wave impedances ratio 

 
( 1)

( , 1) TE
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TE
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l l

l

ZZ
Z
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we get 

 
( ) ( 1)( ) ( 1)( )

( , 1) ( , 1)( 1) ( ) ( 1)( ) ( 1)

1 1 1 1exp( j ) 0 exp( j ) 0
1 10 exp( j ) 0 exp( j )

l ll ll
l lzz

l l l ll l ll l
zz l l

k d k dA A
Z Z k d k dB B

+ +

+ ++ + +

      − −   
=         − −         

µ
µ

  

and next 

 
( 1) ( )

( 1) ( )

1j j( 1) ( )( )
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=         − −            

µ
µ

  

Let’s define the matrix 

 
1 ( , 1) ( , 1)( ) ( )

( , 1)
( , 1) ( , 1)( 1) ( 1) ( , 1) ( , 1)

1 1 1 1 1 11
1 1 2 1 1

l l l ll l
l l zz zz

l l l ll l l l l l
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Z Z Z Z
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+
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After some manipulations, we get 

 
( 1) ( )
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( , 1)

( 1) ( )j j
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0 e 0 e

l l
l l
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+

+
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+

+ −

      
=       
         

W   

As expected, the formula (78) takes the form (14). 
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