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ABSTRACT

Plane wave expansion of optical fields is well known in optical textbooks. The wave vector is
normal to the wavefront and has the magnitude indicating the angular spatial frequency of the fields.
Maxwell equations lead to the equations connecting the wave vector and temporal angular frequency,
so-called, dispersion relations. The relations are derived for isotropic dielectric, metal, and anisotropic
crystals. Then laws of reflection and refraction are derived from continuity of the wave vector
components along the boundary. Geometrical construction based on the condition is shown for
refraction into isotropic materials and crystals. Evanescent waves arising from total reflection are also
formulated from the construction. Then formation of interference fringes between two plane waves
propagating in different directions is graphically displayed and optical beat signals generated between
different frequencies are explained in terms of the movement of the fringe patterns. Finally diffraction
by periodic structures is constructed together with the difference between thin and thick gratings is also
discussed. The case of a moving grating is also discussed.
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1. INTRODUCTION

Optical education comprises many disciplines such as geometrical optics, lens design, physical
optics based on electromagnetic theory, quantum optics including nonlinear optics and lasers, electronic
and mechanical design for optical components and electronics, interaction of light with matters needed
for development of new materials and devices. One of the most important requirements for education is
to deliver a small number of basic viewpoints or models from which many relationships and rules can be
deduced. There are many good, complete, but thick textbooks for the above disciplines, but such simple
basic concepts tying various optical phenomena have not yet been found by the author. One of them
seems to be the concept of wave vectors that represents plane waves, the simplest but general tools for
analysis of optical systems because arbitrary optical fields can be represented by their superposition.

In this paper I will show several examples of description of optical phenomena such as free-
space propagation, reflection and refraction, interference, and diffraction by using the concepts of wave
vectors. Mathematical relationships will also be illustrated by graphical constructions of wave vectors.

2. WAVE VECTORS AND MAXWELL EQUATIONS
2.1 Plane waves and Maxwell equations

Plane wave expansion of optical fields into angular spectrum is a basis for the Fourier optics that is very

simple and useful for evaluation of optical systems! . A plane wave is represented by
F(r,t)=Aexpli(k-r - ot +¢)], (1)

where A is the amplitude and k is the wave vector whose direction is normal to the wavefront and whose

magnitude is given by k=2m/A with the wavelength A. The wave vector has three dimensions

corresponding to the position vector r.  Since arbitrary optical fields can be represented by
superposition of the plane waves having different wave vectors and angular frequencies, it is enough to
study the behaviors of elementary plane wave.
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First we consider the Maxwell equations that are fundamental for wave optics. They consist of

four basic equations and three material equations. The first group of equations are given by

1) Ampere-Maxwell's law: rotH = —&-;_%:— +j (2a)
2) Faraday's law: rotE = —-%lti (2b)
3) Coulomb-Gauss's law: divD=p (2¢)
4) No magnetic monopole: divB=0 (2d)
The material equations that result from macroscopic averaging are expressed as
1) Electric polarization: D =¢E (3a)
2) Ohm's law: j=0E (3b)
3) Magnetic polarization: B=uH (3¢)
All of these three equations assume linear responses in electric and magnetic polarization as well as
electric current .
If we substitute Eq.(1) into Egs.(2a-d) with p = 0, we obtain
kxH=iwD+oE, (4a)
kxE =—-iwB (4b)
k-D=0 (4¢)
k-B=0 (4d)

The last two equations indicate that the wave vector is normal to D and B, while the first two ones lead
to orthogonality between H and D and that between E and B. Therefore, it follows that D, E, and k are

coplanar as shown in Fig.1. It also holds in crystals where D and E are not parallel to each other.
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Fig.1 Relationship between wave vector and electromagnetic fields.
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2.2 Dispersion relations

In the case of isotropic transparent media we can set 6=0 in Eq.(4a) and obtain after elimination
of H from Eqgs.(4a,b) considering Egs.(3a,c) the relation

(I - ene®)E =0 (5)

that leads to the wave number independent of the electric field E
k=lk|=/epo="2 = nk,, 6)
c

where n is the refractive index and ¢ and k() mean the light velocity and the wave number in vacuum.
We see that the magnitude of the wave vector is proportional to the refractive index. In vacuum the

wave vector is proportional to the frequency but in dispersive media with n(®) it shows nonlinear
dependence on the frequency.

For absorbing media the conductivity ¢ is finite and the wave vector satisfies the relation
(I - epew® - ipow)E =0 7

The wave number becomes complex such as

k=a+iﬁ=w1/u(e+i%)=w UE 8)

with the complex dielectric constant €. The plane wave decays after propagation by a distance
characterized by 1/B. The complex refractive index is expressed as

n= k =n'+in" )
[0}
with the real part
2
n'=£=\/ 2 [ 1+(—°—) +1} (10)
(0] 2¢g.U, £
and the imaginary part

2
o Be \/i[ (2 _1]_ an
w 2¢g.0, 0]

In crystals where the electric displacement D is not in general parallel to the electric field such as
D=[¢]E (12)
with the dielectric tensor [€] the dispersion relation contains the electric field such as

k(k-E)-|k['E - pw’[€]E = 0. (13)
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Hence the magnitude of the wave vector depends on its direction and is also connected with polarization
of the electric field E. The dependence of the magnitude on its direction is expressed by the index
surfaces. Propagation of plane waves in a uniaxial crystal is illustrated in Fig.2. In the crystal they
consist of a sphere and an ellipsoid. They cross each other at a single optic axis along which plane
waves of any polarization state of E propagates at the same velocity. The wave corresponding to the
sphere is called ordinary wave and behaves like plane wave in isotropic media, namely, its wave vector
is normal to D and E which are mutually parallel and normal to the plane formed by the optic axis and k
, so-called, the principal plane. On the other hand, the wave corresponding to the ellipsoid, called
extraordinary wave, has the electric field E that is inclined to D. Hence the direction of the Poynting
vector S=ExH does not coincide with k. This direction is also called the ray direction connected with

energy flow whose velocity is expressed? by

dw
V== (J=x,52). (14)
7 Ok
This expression also gives the normal on the index surface and is analog to that of group velocity in
dispersive media which is given by

0w
Vg = —é7(_ (15)
A difference is that in crystals the frequency ® depends not only on the magnitude but also on the
direction of the wave vector. If we consider dispersion of crystal in addition, the direction of the optic
axis also depends on frequency. In biaxial crystals that have two optical axes these axes do not
coincide with the ray axes along which the ray velocities associated with each of the index surfaces are
identical. -
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Fig.2 Wave vectors and the index surface in a uniaxial crystal.

3. REFLECTION AND REFRACTION

3.1 Laws of reflection and refraction
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We can derive the laws of reflection and refraction from continuity of the tangential components
of the wave vectors. Physically it means the connection of wavefronts in both media at the boundary as
shown in Fig.3. Whereas the temporal frequency should be the same in the both media, the spatial
frequency of the waves are required to be congruent at the boundary.

Fig.3 Continuity of the wave vector components and its physical meaning.

Constructions of reflection and refraction in isotropic media are illustrated in Fig.4(a). One
circle has the radius of the refractive index n1 in the first medium, while the solid semi-circle has n2 in

the second medium. At the Brewster angle satisfying tanOB=n2/ n] the incident direction goes through
the crossing point of the normal tangentials at each of the circles.

Brewster angle

Fig.4 Construction for the directions of refraction and reflection between isotropic media.

Refraction of wave vectors at a crystal surface can be constructed by using the cross-section of the index
surfaces. In Fig.5 we present examples with various directions of optic axis of a uniaxial crystal. The

ray direction is given by the normal at the index surfaces. 3:4
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optic axis

i optic axis
Fig.5 Wave vectors at reflection and refraction at a uniaxial crystal.
3.2 Fresnel's coefficients
The Fresnel's coefficients for reflection and transmission at the boundary can also be expressed

in terms of components or projections of wave vectors along the surface normal. The reflection
coefficient of p-components can be written as

_mcos@ —n,cos6, _k /cos —k,/cosb,
n,cosB, +n,cos0, k /cos +k,/cosB,

(15a)

P

in terms of the projection along the normal as shown in Fig.6a, while the s-component has the
coefficient given by

_mcosb —n,cos6, k_ -k,

15b
n,cos@ +n,cosb, k, +k,, (15b)

s

that depends on the normal components of the wave vectors as shown in Fig.6b. The transmission
coefficients are similarly represented as

7, = 2n, cos 0, _ k,/cos 0, (162)
n,cos@, +n,cosf, k /cos6, +k,/cosB,
and
7= 2n, cos 6, _ Kk, . (16b)

n,cos6, +n,cos0, k, +k,,

Only in the case of transmission of p-polarization the cross-term between the both media appears in the
numerator.
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Fig.6 Components of wave vectors contributing to reflection and transmission coefficients.

3.3 Total reflection

When the second medium has lower refractive index than the first one, the construction

becomes as shown in Fig.7. At the critical angle that satisfies sin¢c=n2/ n1 and can be constructed as
shown in Fig. 7b, reflectivity becomes unity. For larger incident angle the wave vector in the second
medium has the z-component that is represented by the imaginary number

27[1- 2. 26 2
k2 _ ﬂn, s U, —n, =ik22‘ (17)

i A

The value of k,,' can be obtained from the crossing point of the surface normal with the hyperbola
which is the branch of the circle for the incident angle larger than the critical angle. In this case
tangential component k2x=k]x exceeds the magnitude of k2. The wave with the imaginary component
of the wave vector is evanescent as in absorbing media mentioned before. The penetration depth below
the boundary is represented by 1/k,.' that decreases as the incident angle increases. Since the tangential
component of the wave vector in the second medium is always real, the evanescent wave progresses
along the boundary. It is called inhomogeneous wave because the planes of equal amplitude and those
of equal phase do not coincide with each other.

(a) 6<6 (b) 6= 16, (c) 6>6¢

Fig.7 Wave vectors in incidence on an optically thin medium.



4. INTERFERENCE

Interference between two plane waves with the wave vector k1 and k2 produces the fringe
pattern expressed by

I(r)= |A1 expli(k,-r — @t + ¢,)|+ A, expli(k, - r — 0t + ¢, )]|2
= |Al|2 +|A2|2 +24, - A, cos[(k1 —-k))r+¢, - ¢2]

The interference term has the argument that depends on the position in the same manner as the plane
wave with respect to the difference between the wave vectors represented by

(18)

K=k —k,. (19)

This vector can be named the fringe vector because its projection onto a plane of observation determines

both the normal and the angular spatial frequency of the observed fringes. When the angle 8 between the
wave vectors is smaller than 45°, the cross section of the fringe patterns can be illustrated in terms of
the moire fringes that are formed by the superposition of two linear gratings representing also the cross-
sections of the plane waves as shown in Fig.8(a) The magnitude of the fringe vector is given by

K1 =2 = 2Kk, = k21— c056) = ksin 2. (20)

Hence the spacing of the interference pattern is equal to

A=27t/K=l/sin—g— @1)

that takes the minimum value A/2 when the waves progress in the opposite direction as illustrated in
Fig.8(b). In this case the wave resultant from superposition is a perfect standing wave.

A=NT
ky k
! X !
(b)

Fig.8 Illustration of interference between two plane waves.
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When two plane waves with different frequencies w1 and @2 are superposed, the resultant
intensity becomes

I(r,t)=|A,|2+|A2|2+2Al.Azcos[(kl—kz)-r—(a),—wz)t+¢,—¢2] , (22)

The interference term shows now exactly the same form as the plane wave. The velocity of the moving
fringe pattern normal to the fringes is given by

y=Pmd 2 23)
17 kzl K
with the difference of the angular frequency
Q=0,-0, (24)

usually called the beat frequency. The fringe velocity of Eq.(23) takes the same expression as the group
velocity given by Eq.(15) . We have to notice that Eq. (22) is valid only if the beat is much lower than
the optical frequencies. If we detect the interference intensity at a fixed point, a sinusoidal signal with
the beat frequency, which preserves the phase difference between the waves. This is the principle of
heterodyne interferometry. The fringe movement mentioned above can actually visualized as that of the
moire fringes when one of the gratings is moved. This also constitutes a picture for the basic principle
of the displacement measurement by moire methods or interferometry.

We can say that the interference pattern arises as the spatial beat signal between wave vector
components on an observation plane. This model might be useful for analyzing formation of general
patterns that are produced by superposition of many plane wave components with various amplitude and
phase relationships.

5. DIFFRACTION

- We consider diffraction of plane wave at a periodic structure whose grating vector is expressed
by Kg . The vector is directed normal to the grating grooves and has the angular spatial frequency of the
grating. Then the wave vector of the m-th diffraction order can be expressed by

k,=k+mK, (25)

This relation is derived from the condition for the constructive interference between the plane waves
diffracted at the neighboring grooves. Since the wavelength should be unchanged in this case, the
construction for the diffracted orders can be illustrated as in Fig. 9(a). When the x-component of ky,
exceeds the magnitude of the incident wave vector, its normal component kz; becomes complex and is
determined from the intersection at the hyperbola similar to the situation in total reflection. The
amplitude of the diffracted orders depends on the shape of grooves.

When the thickness of the grating is larger than the spacing, we also have to consider the
coupling of the normal component of the vectors as well as the tangential components. Hence
diffraction only occurs if Eq.(25) with m=1 is realized as shown in Fig.9(b).

Diffraction from a grating moving at the velocity V such as progressive acoustic wave gives rise
to frequency shift given by

w,-ow=mV-K, (26)
that corresponds to a Doppler shift. The frequency shift can be detected from the interference signal

between different diffracted orders. The relationship of Eq.(26) corresponds to conservation of energy.
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Bragg diffraction

(b) Volume grating.

Fig.9 Construction of diffraction orders from a thin grating and volume grating.

6. CONCLUSIONS

In this paper we have tried to describe various phenomena observed in wave optics by graphical
construction using the wave vectors of plane wave component of optical fields. First we discussed
plane wave solutions of Maxwell equations and the resulting dispersion relations for isotropic media and
crystals. Especially propagation of ordinary and extraordinary waves in a uniaxial crystal was
graphically illustrated. Next direction changes of wave vectors in reflection and refraction between
different media were explained by using diagrams with index surfaces in the both media including
crystals. Total reflection and the properties of the associated evanescent waves were also illustrated.
Then combination of plane waves was introduced to visualize two-beam interference. Interpretation in
terms of moire fringes was presented including those for heterodyne interferometry. Finally diffraction
of a plane wave at periodic gratings was schematically depicted with reference to generation of
evanescent waves, Bragg diffraction at volume grating, and diffraction at a moving grating.

Most of these descriptions can be found in various textbooks of optics separately. The unique
contribution of this paper, however, might be to present them from a unified viewpoints and to show
their physical meanings illustrated with geometrical constructions. For education and training visible
images and demonstrations would be especially helpful for fixation and applications of acquired
knowledge and experiences.
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