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ABSTRACT

Work on neural networks which use liquid crystal projection screens to code the
input and weight matrices and a liquid crystal light valve to perform integration and
thresholding is reviewed.
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1. INTRODUCTION

Liquid crystal devices have enabled the construction of high spatial complexity
programmable matrix- vector multipliers and thresholding elements which are the
building blocks of optical neural networks. The optical matrix -vector multiplier
approach was the first method of implementing optical neural networks'. An N x N
input plane is replicated N x N times onto an N2 x N2 analogue weight plane and the
product between the replicated input and the weight plane is integrated on a N x N
thresholding plane. The resulting N x N thresholded output is either used in a
second matrix- vector multiplier (feedforward network) or recirculated through the
same matrix -vector multiplier (recurrent network). The threshold ing of the N'
channels is performed by a liquid crystal light valve (LCLV), which is controlled by
a single electrical waveform. The novelty of the optical approach in the case of the
recurrent network is that the dynamics of the computation depends on the dynamical
behaviour of the LCLV.
The following aspects will be discussed in this paper. Firstly, the basic building
blocks of these networks, which are the spatially multiplexed optical matrix -vector
multiplier and the LCLV. Secondly, an experimental and theoretical model of the
dynamical behaviour of the LCLV will be presented, followed by related system
experiments.

2. OPTICAL MATRIX -VECTOR MULTIPLIERS

The classic 2D matrix- vector multiplier (MVM) architecture2 has been explored in
neural networks2, optical interconnects', and numerical processing4. In the area of
numerical processing the limitations to the precision of the computation resulting
from the devices used has been assesseds'6. In general, the precision will be limited
by thermal noise at the detector at low light intensities and by signal- dependent
noise in the weight plane at higher intensities. 6 -7 bit precision is a best case, where
crosstalk due to the optical system is not accounted for. In the area of optical
interconnects there has been much emphasis on the signal attenuation in such
networks. A per channel loss of 19.5 dB when 4 inputs are connected to 4 outputs
through a 4 x 4 shutter array was measured'. The low precision and high losses
associated with the MVM have hindered the development of MVMs in the areas of
numeric processing and interconnects. However, they are of less importance for
optical neural networks.
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Fig. 1 Optical layouts of three space -invariant fan- out /fan -in systems. comprising:
Dammann gratings (G1 &2); input (I /P), weight (W) and output (O /P) planes'

At the IMT, a number of MVM systems which use diffraction gratings for input array
replication have been studied, and three systems were analysed' (Fig. 1 ). In system I,
the input plane is replicated in a Fourier optical arrangement using a Dammann
grating (DG) displaced from the Fourier plane 8'9. The displacement of the grating
allows the fan -in to be performed by a simple lens. In system II, the replication is
performed by the DG in a converging beam in order to tune the spot spacing10. In
system III, a lenslet array in conjunction with the DG performs a local replication of
each input channel (the interlaced fan -out I). The following conclusions were drawn.
System I requires a high resolution grating for adequate separation of the replications
in the weight plane. Since non -uniformities in the fan -out increase with the
resolution, the channel capacity of the first system will be limited. Moreover, the
spot size in the output plane is comparable to the input beam diameter. System II is
not telecentric due to the use of a grating in a converging beam arrangement.
However, this allows the spot spacing in the weight plane to be precisely controlled
by axially displacing the grating. The consequences are that a large aperture is
required for the fan -in optics and lenslets cannot be used behind the weight plane.
Because lenslets cannot be used, there must be adequate separation of the replicas in
the weight plane, so that the information capacity of this plane is not fully used.
System II1 had no apparent disadvantages other than requiring high quality lenslet
arrays for maintaining beamlet collimation between input and weight plane. The
main issues in these systems are the quality of the optical elements (lens, gratings,
and lenslet arrays) and the complexity of the fan -in optics. For example, in order to
process a 16 x 16 neuron input, system I requires a 16 x 16 fan -out grating of period
60 tm and a system length of over 1 metre 2. The uniformity of the fan -out of such a
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At the IMT, a number of MVM systems which use diffraction gratings for input array 
replication have been studied, and three systems were analysed7 (Fig. 1). In system I, 
the input plane is replicated in a Fourier optical arrangement using a Dammann 
grating (DG) displaced from the Fourier plane89. The displacement of the grating 
allows the fan-in to be performed by a simple lens. In system II, the replication is 
performed by the DG in a converging beam in order to tune the spot spacing10. In 
system 111, a lenslet array in conjunction with the DG performs a local replication of 
each input channel (the interlaced fan-out"). The following conclusions were drawn. 
System I requires a high resolution grating for adequate separation of the replications 
in the weight plane. Since non-uniformities in the fan-out increase with the 
resolution, the channel capacity of the first system will be limited. Moreover, the 
spot size in the output plane is comparable to the input beam diameter. System II is 
not telecentric due to the use of a grating in a converging beam arrangement. 
However, this allows the spot spacing in the weight plane to be precisely controlled 
by axially displacing the grating. The consequences are that a large aperture is 
required for the fan-in optics and lenslets cannot be used behind the weight plane. 
Because lenslets cannot be used, there must be adequate separation of the replicas in 
the weight plane, so that the information capacity of this plane is not fully used. 
System III had no apparent disadvantages other than requiring high quality lenslet 
arrays for maintaining beamlet collimation between input and weight plane. The 
main issues in these systems are the quality of the optical elements (lens, gratings, 
and lenslet arrays) and the complexity of the fan-in optics. For example, in order to 
process a 16 x 16 neuron input, system I requires a 16 x 16 fan-out grating of period 
60 pm and a system length of over 1 metre . The uniformity of the fan-out of such a
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high resolution grating would not be very high, with current technological
limitations.
The two systems II and III were further developed at 1MT. In system II the
converging beam fan -out was replaced by a conventional fan -out arrangement, with
the grating placed in a Fourier plane, system B shown in Fig. 2'''14. This system is
now a telecentric arrangement which allows the use of lenslet arrays after the weight
plane to reduce the spot size at the output. The spot spacing was tuned by using a
two -lens arrangement for the Fourier transform lenses, whose focal length can be fine
tuned by varying the distance between the lenses. This involves more degrees of
freedom than the one axial movement of the grating in system II, but has significant
advantages for the system.
The spot size and spacing at the three planes of the system (input, weight, and
output) are calculated in the diffraction limit. In critical designs, this calculation was
supplemented by ray -tracing. The quotient of the area of the elementary cell of the
spot intensity distribution to the area of the bright spot has been defined as the 2D
compression ratio'. It is convenient here to use a 1D compression ratio, C, which is
the ratio of the spot spacing to the spot diameter. In the diffraction limit, C is
spatially invariant across the three planes. However, when ray aberrations are
included, it decreases with the radial dimension in these planes. When C falls below
1, then the space bandwidth product (SBWP) of the system has been reached. When
C2 falls below the reciprocal of the pixel real estate of the device placed in the
corresponding plane, then excess loss will be incurred in the system throughput.

C
G1 L1 I/P L2 G2 L3 W LA1 L4 L5 LCLV

Fig. 2 Layout of optical neural network (system B), including liquid crystal light valve
(LCLV) plane.

The ID compression ratio at the input plane of Fig. 2 is equal to

C1p = 1.6 a/Ai, (1)
where a is the radius of the input beam, and A, is the period of 18 x 18 spot grating
G l . The numerical value in the system constructed (A, = 641.7 mm) was 2.5. This
is suitable for an input plane where the pixel spacing divided by the pixel aperture is
equal to or less than 2.5. This latter ratio is the square root of the reciprocal of the
pixel real estate, and we call it the pixel- mark -space (PMS). In the Seiko Epson 640
x 480 VGA screens (P13VM115/125) used in these experiments, the PMS in the
horizontal direction is 1.95, and in the vertical direction is 1.33, although the pixel
repeat spacing is isometric.
The 18 x 18 spot array on the input plane is relayed with an 18 x 18 fan -out to the
weight plane. In order to match the 105 spots to the pixel apertures of the VGA
screen at W, an accuracy of better that 0.1% is required for the spot repeat spacing.
Therefore, the focal lengths of L2 and L3 have to be long (200 mm) in order to avoid
excessive field curvature at W, and they have to be tunable. Therefore, a doublet
arrangement of two 300 mm lenses separated by an adjustable distance was
employed. The tuning required a lot of time, but worked. The ID compression ratio
of the spots in the weight plane was large (about 70) in the diffraction limit, due to
the eightfold beam expansion produced by the ratio of the focal lengths of L2 /L1.
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The 1D compression ratio at the input plane of Fig. 2 is equal to
Qp = 1.6 a/A,, (1)

where a is the radius of the input beam, and A, is the period of 18 x 18 spot grating 
Gl. The numerical value in the system constructed (A,= 641.7 mm) was 2.5. This 
is suitable for an input plane where the pixel spacing divided by the pixel aperture is 
equal to or less than 2.5. This latter ratio is the square root of the reciprocal of the 
pixel real estate, and we call it the pixel-mark-space (PMS). In the Seiko Epson 640 
x 480 VGA screens (P13VM115/125) used in these experiments, the PMS in the 
horizontal direction is 1.95, and in the vertical direction is 1.33, although the pixel 
repeat spacing is isometric.
The 18x18 spot array on the input plane is relayed with an 18 x 18 fan-out to the 
weight plane. In order to match the 105 spots to the pixel apertures of the VGA 
screen at W, an accuracy of better that 0.1% is required for the spot repeat spacing. 
Therefore, the focal lengths of L2 and L3 have to be long (200 mm) in order to avoid 
excessive field curvature at W, and they have to be tunable. Therefore, a doublet 
arrangement of two 300 mm lenses separated by an adjustable distance was 
employed. The tuning required a lot of time, but worked. The ID compression ratio 
of the spots in the weight plane was large (about 70) in the diffraction limit, due to 
the eightfold beam expansion produced by the ratio of the focal lengths of L2/L1.
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However, a practical compression ratio should incorporate ray aberrations which are
significant over the large image field (20 mm). A significant number of ray tracing
simulations have been performed on the problem of minimising field curvature for
relaying large image fields between two planes. 200 mm focal length is a reasonable
compromise when using stock lenses. However, the ray aberrations remain the
principle limitation to the SBWP of this type of system. Larger SBWPs require
longer focal length lenses.
The spacing of the sub -arrays is determined by G2 (A2= 188.6 mm). A 1D
compression ratio for the sub -arrays (spacing divided by size) of 1.5 was used. In an
ideal system (maximum SBWP), this would be one. In order to fan -in the sub -arrays
onto the liquid crystal light valve (LCLV), a lenslet array focusses the sub- arrays to a
spot array, followed by image demagnification using a telescope. The telescope does
not improve the compression ratio. Therefore, the ID compression ratio at the LCLV
is given by the spacing of the sub -arrays divided by the spot size in the focal plane of
the lenslet array

CLCLV = p(1.5N-1)f,/2fLAa, (2)

where p is the pixel spacing (42 p.m), N is the fan -out order (18), and f,,fLA are the
focal lengths of Ll and LAI, respectively 25 mm and 2 mm. The calculated value of
CLCLV (diffraction limit) is 6.8. The experimental value can be obtained from photos
of the weight plane and output plane, where a camera replaces the LCLV (Fig. 3). It
is 3, which shows that the lenslet array position is not optimally adjusted.

(a) (b)

Fig. 3 The weight plane (a) and output plane (b) of the system shown in Fig. 2's.

System III evolved into system C (Fig. 4)1"7. A dilute 16 x 16 input array is

generated by a high resolution grating GI (A1 = 268.2 mm) and an expanded beam
(a = 3 mm), giving a C1p of 18 (Eq. 1). In order to interlace a 16 -way fan -out and
separate the fan -out sub -arrays by 8 pixels (giving a sub -array C of 1.5), then CIE,
should be >_ 26. This could not be fulfilled with the given GI because, if the beam
was expanded further, the ray aberrations increased. Therefore, the system was
operated with spot sizes which overfilled one pixel on the Seiko Epson VGA screen.
It is anticipated that the VGA screen will be replaced by dilute source arrays which
fulfill the compression ratio criterion.The dilute input array is relayed to the weight
plane using a telescopic arrangement of lenslet arrays, and each channel is replicated
16 x 16 times by means of a Fourier plane Dammann grating.
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System III evolved into system C (Fig. 4)1617. A dilute 16 x 16 input array is 
generated by a high resolution grating G1 (A, = 268.2 mm) and an expanded beam 
(a = 3 mm), giving a CiP of 18 (Eq. 1). In order to interlace a 16-way fan-out and 
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Fig. 4 Layout of optical neural network (system C).

The 1 D spot compression ratio in the weight plane is

LCLV

CLASP = 2fLA2X /A7Ax, (3)
where fLA2 is the focal length of LA2, 11.5 mm, Ax is the pixel aperture of LCTV 1,
and A2 = A,. The resulting Cwsp for the smaller aperture dimension is 1.9, which is
acceptable for the VGA screen in the weight plane. The fan -in is accomplished by a
lenslet array in conjunction with a large aperture lens in a 4f arrangement. Each sub -
array is magnified by the ratio of the focal lengths of the large lens and the lenslet
array, and all sub -arrays are superposed at the output (Fig. 5).

(a) (b)

Fig. 5 The weight plane (a) and output plane (b) of system C16.

Since, the compression ratio is unaltered by the magnification, it is the same as
Cwsr, namely 1.9. The advantage of this system is that the SBWP is not limited by
the ray aberrations of the lenses used to relay the input to the weight plane. The size
of both planes can be increased when the number of lenslets is increased, and the fan -
out can be increased by increasing the diameter of the lenslets.

3. OPTICAL THRESHOLDING/INTEGRATION DEVICE

The first stage of integrating the matrix vector product arrays is performed when the
fan -in optics creates a summed intensity array (Figs. 3b and 5b). The summed
intensity of each spot of the array must be sensed and thresholded. This function is
performed by a liquid crystal light valve (LCLV)18. Four types of nematic LCLV
have been used in the neural network systems at IMT; three reflective and one
transmissive. The transmissive LCLV (Microoptics SPT -25) and one of the reflective
LCLVs (SOI, St. Petersburg) used a chalcogenide glass semiconductor
photoconductor (CGS), which absorbs in the blue /green and transmits red
wavelengths. Both valves had a high sensitivity (< 10 11,W /cm2) due to the long

1999 Euro-American Workshop on Optoelectronic Information Processing / 293

Fig. 4 Layout of optical neural network (system C). 

The 1D spot compression ratio in the weight plane is

W LA31/P LA1 LCLV

Cwsp = 2fLA2A/A2Ax, (3)
where fLA2 is the focal length of LA2, 11.5 mm, Ax is the pixel aperture of LCTV1, 
and A2 = A,. The resulting Cwsp for the smaller aperture dimension is 1.9, which is 
acceptable for the VGA screen in the weight plane. The fan-in is accomplished by a 
lenslet array in conjunction with a large aperture lens in a 4f arrangement. Each sub
array is magnified by the ratio of the focal lengths of the large lens and the lenslet 
array, and all sub-arrays are superposed at the output (Fig. 5).
SliggiillllSgSIS
gasMiaBMMigM®®giaigiissisiggis
aiiiaigggggsssas
gggggigasgiggggi
iigggiiiigiggigi
ES22S81!31iigBI2
msmmmmmmmmmmmmmm
8B8SBi881B8BB881
giaiiiiiiiiiiissgiiiiiSgggiiiiSi
8881188888811888
1181818888888888

# ♦ • * • * * * * *

«♦♦»**####»
(a) (b)

Fig. 5 The weight plane (a) and output plane (b) of system C16.

Since, the compression ratio is unaltered by the magnification, it is the same as 
Cwsp, namely 1.9. The advantage of this system is that the SBWP is not limited by 
the ray aberrations of the lenses used to relay the input to the weight plane. The size 
of both planes can be increased when the number of lenslets is increased, and the fan
out can be increased by increasing the diameter of the lenslets.

3. OPTICAL THRESHOLDING/INTEGRATION DEVICE

The first stage of integrating the matrix vector product arrays is performed when the 
fan-in optics creates a summed intensity array (Figs. 3b and 5b). The summed 
intensity of each spot of the array must be sensed and thresholded. This function is 
performed by a liquid crystal light valve (LCLV)18. Four types of nematic LCLV 
have been used in the neural network systems at 1MT; three reflective and one 
transmissive. The transmissive LCLV (Microoptics SPT-25) and one of the reflective 
LCLVs (SOI, St. Petersburg) used a chalcogenide glass semiconductor 
photoconductor (CGS), which absorbs in the blue/green and transmits red 
wavelengths. Both valves had a high sensitivity (< 10 pW/cm2) due to the long
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response times (several hundred msec). The liquid crystal layer was a 90° twisted
nematic in the case of the transmissive LCLV. The contrast ratio of the HeNe laser
read -out beam exceeded 100:1 but the activation of the photoconductor limited the
read -out intensity to less than 50 pW /cm2. Therefore a reflective LCLV was
developed using a 45° twisted nematic 19, which reduces the operating voltage and
increases on -state reflectance'''. The read light was reflected from aluminium pixels of
sizes 200 x 200 gm with 100 gm gaps or 800 x 800 gm with 200 gm gaps (Fig. 6).
When the read light (IR) is incident on the 45° twisted nematic reflective cell using a
polarizing beam splitter (PBS) (Figs. 9 and 10), then the reflected beam 1° has a low
intensity when the write intensity (IW) is low, and a high intensity when IW is high
(excitatory characteristic).
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f f

4 \ S.f f\ 4 4f f \f
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' f f\
\
\ 4
f,\
f
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Transparent electrodes

Liquid crystal

CGS layer

Pixellated metal mirror

Fig. 6 Cross section of the chalcogenide glass semiconductor photoconductor
reflective liquid crystal valve with pixellated metallic mirror ".

Two further reflective valves used a parallel aligned nematic liquid crystal 21'22. The
dark state (low intensity reflected light) for the parallel aligned LCLV is set by the
drive voltage. The dark state can be set for low write intensity (excitatory
characteristic) or high light intensity (inhibitory characteristic). For the inhibitory
characteristic the reflected light is high intensity when the write light is low
intensity.
The characteristics of the reflective LCLVs are tabulated in Table 1.
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LCLV SOI Asulab Lebedev

Photoconductor As,Se,_x CdS GaAs

Mirror Al- pixels Dielectric Dielectric

Reflectivity 70% 70% 75%

Spectral sensitivity Blue /green Blue /green Visible

Write sensitivity 5 µW /cm2 45 p.W /cm22 15 p W /cm2

Contrast ratio 100:1 40:1 10:1

Gain 60 dB 12 dB 60 dB

Rise time (ms) 40 120 900

Decay time (ms) 140 540 200

Table I Characteristics of reflective LCLVs used at the IMT 19 24'16.

The main issues for LCLVs in this application are the shape of the transfer
characteristic (plot of reflected IRversus 1W), the spatial uniformity, and the gain. The
ideal curve for the feedforward network (Fig. 9) is a sigmoid characteristic (Fig. 7).
Typically, the bottom left-hand asymptote is curtailed in LCLV, but by computer
modelling the LCLV the learning algorithm of the neural network can be
appropriately adapted 23.

t

Fig. 7 Shape of sigmoid characteristic.

Both the 45° twist and parallel aligned nematics modulate the phase of the read light
beam, and this phase modulation is converted to amplitude modulation by polarizing
elements. Therefore, phase uniformity is important for spatial uniformity. The LCLV
should have less than half a fringe over the aperture used. In system B the aperture is
reduced in comparison with the weight plane aperture by the demagnification factor of
the telescope, whereas in system C the aperture is comparable to that of the weight
plane. Therefore, the spatial uniformity requirements will be satisfied more readily by
system B.
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LCLV SOI Asulab Lebedev
Photoconductor AsxSe,.x CdS GaAs

Mirror Al-pixels Dielectric Dielectric
Reflectivity 70% 70% 75%

Spectral sensitivity Blue/green Blue/green Visible
Write sensitivity 5 fiW/cm2 45 p.W/cm2 15 uW/cm2

Contrast ratio 100:1 40:1 10:1
Gain 60 dB 12 dB 60 dB

Rise time (ms) 40 120 900
Decay time (ms) 140 540 200

Table 1 Characteristics of reflective LCLVs used at the 1MT l9 2416.

The main issues for LCLVs in this application are the shape of the transfer 
characteristic (plot of reflected IRversus i"), the spatial uniformity, and the gain. The 
ideal curve for the feedforward network (Fig. 9) is a sigmoid characteristic (Fig. 7). 
Typically, the bottom left-hand asymptote is curtailed in LCLV, but by computer 
modelling the LCLV the learning algorithm of the neural network can be 
appropriately adapted23.

Fig. 7 Shape of sigmoid characteristic.

Both the 45° twist and parallel aligned nematics modulate the phase of the read light 
beam, and this phase modulation is converted to amplitude modulation by polarizing 
elements. Therefore, phase uniformity is important for spatial uniformity. The LCLV 
should have less than half a fringe over the aperture used. In system B the aperture is 
reduced in comparison with the weight plane aperture by the demagnification factor of 
the telescope, whereas in system C the aperture is comparable to that of the weight 
plane. Therefore, the spatial uniformity requirements will be satisfied more readily by 
system B.
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Fig. 8 Photograph of the read -out side of the Lebedev LCLV when it is uniformly
illuminated with a coherent read -out beam, using a PBS, and the write intensity
and applied voltage are zero25.

Unfortunately, all the devices we worked with had a several fringes across the active
aperture. The fringe pattern on the Lebedev LCLV is shown in Fig. 8. This limited
the progress in the system experiments. The maximum gain of the LCLV is the
ratio of the maximum intensity of reflected read light to the intensity of write li ht
required to switch the valve ON to 90% of its saturation level. The maximum I is
set by the level at which the read beam begins to activate the photoconductor 26. The
need for high gain is illustrated in the two system configurations that were
investigated at IMT (Figs. 9 and 10).

Input

IHR

MVM 1 LCLV
(refl)

PBS MVM 2 Output

Fig. 9 Two -layer feedforward network formed from two matrix- vector multipliers
(MVM1 &2) and a reflective LCLV for integration /thresholding of the hidden
layer, and a PC for integration /thresholding of the output layer. 1W, 1R and I° are
the write, input read, and output read beams for the LCLV. PBS is the polarizing
beamsplitter.

The input plane is illuminated with a high power blue or green laser and passes
through a high complexity MVM before arriving as the write beam on the LCLV.
The losses incurred in the MVM can be up to 35 dB 27. IW must be sufficient to

296 / Critical Reviews Vol. CR74

$ i VVT;

Fig. 8 Photograph of the read-out side of the Lebedev LCLV when it is uniformly
illuminated with a coherent read-out beam, using a PBS, and the write intensity 
and applied voltage are zero25.

Unfortunately, all the devices we worked with had a several fringes across the active 
aperture. The fringe pattern on the Lebedev LCLV is shown in Fig. 8. This limited 
the progress in the system experiments. The maximum gain of the LCLV is the 
ratio of the maximum intensity of reflected read light to the intensity of write light 
required to switch the valve ON to 90% of its saturation level. The maximum P is 
set by the level at which the read beam begins to activate the photoconductor26. The 
need for high gain is illustrated in the two system configurations that were 
investigated at 1MT (Figs. 9 and 10).

MVM 1 LCLV PBS Output
(refl)

Fig. 9 Two-layer feedforward network formed from two matrix-vector multipliers
(MVM1&2) and a reflective LCLV for integration/thresholding of the hidden 
layer, and a PC for integration/thresholding of the output layer. Iw, IR and 1° are 
the write, input read, and output read beams for the LCLV. PBS is the polarizing 
beamsplitter.

The input plane is illuminated with a high power blue or green laser and passes
through a high complexity MVM before arriving as the write beam on the LCLV.
The losses incurred in the MVM can be up to 35 dB 21. Iw must be sufficient to
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saturate the response of the LCLV when all pixels in the weight Vane of MVM 1 are
fully transmitting. Equally, when all pixels are switched OFF, I must be
insufficient to activate the LCLV. It is convenient to set the operating regime of the
LCLV such that it is 50% activated when a weight plane of random weights is used.

Fig. 10 Recurrent network formed from one matrix- vector multiplier (MVMI) and a
reflective LCLV for integration /thresholding of the hidden layer. and a PC for
integration /thresholding of the output layer.

Another liquid crystal device which has been tested for this application is a smart
pixel array 28. The idea here is that a custom circuit for integration /thresholding can
be made in VLSI silicon and the liquid crystal built on top of it. In fact, the results
were disappointing: large non -uniformity, poor gain, and inconvenience due to the
arrangement of photodetectors and light modulators on the same side of the device.

4. DYNAMIC CHARACTERISTICS OF THE LCLV

At low write light intensities, there is a relationship between the speed of response of
the LCLV and the write light intensity. This is commonly approximated as an
inverse proportionality relationship and the sensitivity of a light valve is given in
units of the product of the two, or energy density. In order to analyse the behaviour of
the LCLV in a dynamic network such as Fig. 10, the exact temporal behaviour must
be measured and modelled. The measurements give a limited information which
guides the modelling. At first the theoretical results will be presented, followed by
the measurements, and then a generalised model.
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LCLV such that it is 50% activated when a weight plane of random weights is used.
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Fig. 10 Recurrent network formed from one matrix-vector multiplier (MVM1) and a
reflective LCLV for integration/thresholding of the hidden layer, and a PC for 
integration/thresholding of the output layer.

Another liquid crystal device which has been tested for this application is a smart 
pixel array 2S. The idea here is that a custom circuit for integration/thresholding can 
be made in VLSI silicon and the liquid crystal built on top of it. In fact, the results 
were disappointing: large non-uniformity, poor gain, and inconvenience due to the 
arrangement of photodetectors and light modulators on the same side of the device.

4. DYNAMIC CHARACTERISTICS OF THE LCLV

At low write light intensities, there is a relationship between the speed of response of 
the LCLV and the write light intensity. This is commonly approximated as an 
inverse proportionality relationship and the sensitivity of a light valve is given in 
units of the product of the two, or energy density. In order to analyse the behaviour of 
the LCLV in a dynamic network such as Fig. 10, the exact temporal behaviour must 
be measured and modelled. The measurements give a limited information which 
guides the modelling. At first the theoretical results will be presented, followed by 
the measurements, and then a generalised model.
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The Asulab LCLV was modelled on the Hughes LCLV (Model # H4O10) in which a
light blocking layer of CdTe is interposed between the dielectric mirror and the CdS
photoconductor. The temporal response of the photoconductor plus light blocking
layer used in the Hughes valve has been analysed experimentally and theoretically
for the case of an excitatory characteristic 29'30. It was observed that the rise time, Tr,

is inversely proportional to the write intensity when Iw is lower than 100 1.1.W /cm2,

but above this intensity it is inversely proportional to the square root of tw. When
the write light is switched off, the decay time of the photoconductor, 'td, is

independent of the initial light intensity. These results were explained theoretically
on the basis of a two -trap model. It was also noted that, in the case of thermal
equilibrium during decay, id will be inversely proportional to the number of free

carriers which have been excited, ie Iw.
We have made corresponding measurements on the Asulab LCLV. Since it is used
in the inhibitory characteristic in the system experiment (see later), switch -on
corresponds to a decay of the output from a constant high value to a low value which
depends on the write intensity. Conversely, switch -off corresponds to a rise of the
output from a low value which depends on the write intensity to a constant high
value. The decay curves have been plotted for a number of write light intensities
(Fig. 11).

1 1 1 1 1 1 1 1 n f l l 1 1 1 1 1 I I I I I I I I I I I I I I I 1 1 1 1 1 I I I I I I I I I I I I I I 1 1 1 11 1 1 11 I I 1 1 I I i I i i
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Fig. 11 Decay of read light intensity reflected from the Asulab LCLV with the write light
in .tW/cm2 as the variable parameter24.

These curves have been fitted with the function

I °(t) = KO + Kl.e-K2.t. (4)

This can be written in a form which relates to the physical properties of the LCLV

1 °(Iw, t) = I °(Iw, co) + [I° (0,0) - I° (I W , oc)] .exp j - t (5)
'td(Iw)
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The Asulab LCLV was modelled on the Hughes LCLV (Model # H4010) in which a 
light blocking layer of CdTe is interposed between the dielectric mirror and the CdS 
photoconductor. The temporal response of the photoconductor plus light blocking 
layer used in the Hughes valve has been analysed experimentally and theoretically 
for the case of an excitatory characteristic29'30. It was observed that the rise time, xr,

is inversely proportional to the write intensity when Iw is lower than 100 uW/cm2,
but above this intensity it is inversely proportional to the square root of Iw. When 
the write light is switched off, the decay time of the photoconductor, xj, is
independent of the initial light intensity. These results were explained theoretically 
on the basis of a two-trap model. It was also noted that, in the case of thermal 
equilibrium during decay, x<j will be inversely proportional to the number of free
carriers which have been excited, ie Iw.
We have made corresponding measurements on the Asulab LCLV. Since it is used 
in the inhibitory characteristic in the system experiment (see later), switch-on 
corresponds to a decay of the output from a constant high value to a low value which 
depends on the write intensity. Conversely, switch-off corresponds to a rise of the 
output from a low value which depends on the write intensity to a constant high 
value. The decay curves have been plotted for a number of write light intensities 
(Fig. 11).
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Fig. 11 Decay of read light intensity reflected from the Asulab LCLV with the write light 
in pW/cm2 as the variable parameter24.

These curves have been fitted with the function
I°(t) = K0 + Kl.e'K2t. (4)

This can be written in a form which relates to the physical properties of the LCLV
»)+ [i°(0,0)-r(r,oo)].expj -—M

1 xd(i )j
,o/Twi°(r,t) = r(i (5)
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where I0(Iw, c) is the static transfer characteristic of the valve, 1 0(0, 0) is the output

intensity before the light was switched -on, and tid(Iw) is the decay time. In order to

simplify the notation for the following development, a separate function g(Iw) will be
used for the static transfer function of the valve. Then, equation (5) becomes

1 °(t) = g(Iw) + [ g(0) - g(Iw)] .exp - t (5')
td(1w)

A log -log plot of the decay time against the write light intensity 1w gave a straight
line with no change of slope. The gradient of the line was -0.68 and the intercept
with the log (Id) axis was 1.3. Therefore, the exponent of the write intensity is
intermediate between the inverse square root and the inverse quoted previously for the
rise time of an excitatory characteristic. The intercept on the write intensity axis is
also greater than that measured in 29 (19 s as opposed to about l s).
The behaviour of the rise time it with varying write intensity was then measured. In
this case, the valve is exposed to a variable write intensity in the initial state, and
then the write light is switched off. The equation corresponding to (5') in this case is

1°(t) = g(0) - [ g(0) - g(Iw)] .exp
Tr('

where tir(Iw) is the rise time. The log -log plot of the rise time against the write light

intensity lw gave a straight line, whose gradient was -0.50 and the intercept with the
log ('Cr) axis was 0.89 (or intercept on the 'Cr axis of 7.8 s). This is intermediate
between the no write light dependence and the inverse proportionality on write light
intensity mentioned earlier.
Although there is both a dielectric mirror and a light blocking layer between the
input (write) and output (read) sides of the valve, the light leakage from the read side
is sufficient to alter the dynamic transfer characteristic. The alteration is a uniform

upward translation of the 1° v. Iw curve. At the levels of read light used in the

experiment , about 5 mW/cm2, this translation increases I° by 20 %. However, since
the read light is constant in time, this breakthrough has no influence on the dynamic
behaviour.
In order to understand the dynamic behaviour of the valve in a system, where the
input changes in a continuous manner, equations (5') and (6) must be generalised. If
the write light was switched -off before the asymptotic output intensity was reached in
Fig. 10 then the output intensity would not reach the asymptote, because the LCLV
continues to integrate the write light intensity after switch -on. It is assumed that this
integration is that of a linear, time -invariant and causal system. Therefore, the output

can be written as the convolution of a (nonlinear) function of Iw(t) with the impulse
response of the system, which is an exponential decay (or rise) with the time constant
elucidated above,

(6)

t

1°(t) = rec..) + G(Iw(t')).expf - (t ,tt )}.dt' ,

-CO

where 't is either 'Id or tir.
For the decay time experiment, we had

(7)
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where I°(IV v, °°) is the static transfer characteristic of the valve, I°(0, 0) is the output 
intensity before the light was switched-on, and xcj(IW) is the decay time. In order to

simplify the notation for the following development, a separate function g(Iw) will be 
used for the static transfer function of the valve. Then, equation (5) becomes

I°(t) = g(Iw) + [ g(0) - g(Iw)] .exp f - —M . (5')1 *d(lW)J

A log-log plot of the decay time against the write light intensity Iw gave a straight 
line with no change of slope. The gradient of the line was -0.68 and the intercept 
with the log (Xj) axis was 1.3. Therefore, the exponent of the write intensity is 
intermediate between the inverse square root and the inverse quoted previously for the 
rise time of an excitatory characteristic. The intercept on the write intensity axis is 
also greater than that measured in29 (19 s as opposed to about 1 s).
The behaviour of the rise time xr with varying write intensity was then measured. In
this case, the valve is exposed to a variable write intensity in the initial state, and 
then the write light is switched off. The equation corresponding to (5') in this case is

I°(t) = g(0) - [ g(0) - g(Iw)] .exp j - —l , (6)
1 V* )J

where xr(Iw) is the rise time. The log-log plot of the rise time against the write light

intensity Iw gave a straight line, whose gradient was -0.50 and the intercept with the 
log (xr) axis was 0.89 (or intercept on the xr axis of 7.8 s). This is intermediate 
between the no write light dependence and the inverse proportionality on write light 
intensity mentioned earlier.
Although there is both a dielectric mirror and a light blocking layer between the 
input (write) and output (read) sides of the valve, the light leakage from the read side 
is sufficient to alter the dynamic transfer characteristic. The alteration is a uniform
upward translation of the 1° v. Iw curve. At the levels of read light used in the
experiment, about 5 mW/cm^, this translation increases 1° by 20%. However, since 
the read light is constant in time, this breakthrough has no influence on the dynamic 
behaviour.
In order to understand the dynamic behaviour of the valve in a system, where the 
input changes in a continuous manner, equations (5') and (6) must be generalised. If 
the write light was switched-off before the asymptotic output intensity was reached in 
Fig. 10 then the output intensity would not reach the asymptote, because the LCLV 
continues to integrate the write light intensity after switch-on. It is assumed that this 
integration is that of a linear, time-invariant and causal system. Therefore, the output
can be written as the convolution of a (nonlinear) function of Iw(t) with the impulse 
response of the system, which is an exponential decay (or rise) with the time constant 
elucidated above,

t
I°(t) = I°(-~) + jG(Iw(f))-exp{ - ^^}.df , (7)

—oo

where x is either x^ or xr.
For the decay time experiment, we had
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Iw(t') = Iw.H(f -t0),
where H(t) is the Heaviside function, and t0 is the time at which the light was
switched -on. When Eq. (8) is inserted into Eq. (7), we get

(8)

1 °(t) = 1 °( -oo) + i .G Iw i .G 1w (t t0)
d ( ) - d ( ).exp -

tid
(9)

This is the same as Eq. (5') with the identities I °( -c) - g(0), t0 = 0, and tid.G(Iw) =

g(lw) - g(0)
For the rise time experiment,

Iw(f) = Iw - Iw.H(t' -t0), (10)
where t0 is now the time at which the light was switched -off. When eq. (10) is
inserted into equation (7), then

I °(t) = I °( -0o) + tr.G(Iw).expl -
(t

ti

t0)1
(11)

r

This is the same as Eq. (6) with the identities I °( -oo) = g(0), t0 = 0, and tir.G(Iw) =

g(lw) - g(0)
Therefore, Eq. (7) is validated to the extent that it predicts the correct form of
response when step functions are applied to the write beam intensity.

5. OPTICAL NEURAL NETWORK SYSTEMS

The integrating /thresholding element (LCLV) represents an array of neurons whose
activation values o; are the sum of inputs x; that arrive via weighted pathways. The
input from a particular pathway is an input signal x1 multiplied by the weight W;1 of
the pathway. A bias term 0 is included in the sum in order to provide a variable
threshold

of = x;W;i +i9i. (12)
i =o

The weights are the pixel transmission values of the LCTV in the weight plane.
The outgoing signal (reflected read light intensity) is y; = f(o1) where y; is a non-
linear function (transfer curve) of the activation value (write light intensity).
The investigation of a feedforward optical nework of the type shown in Fig. 9 was
motivated by the desire of our collaborating computer scientists to realise a
multilayer perceptron hardware which had the potential of high parallelism. A major
difficulty was that only unipolar coding is available in an incoherent optical system
which uses intensity as the sole coding modality. The multilayer perceptron
algorithm had to be adapted to the optics''. In this method the network is trained
on the computer with unipolar inputs and bipolar weights. During the recall, bipolar
weights W;1 are transformed to all positive weights W;1' according to the input x;

/ 5. - Wmin xi
W = max (wu - Wmin ) 1 ,0 (13)
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IW(t') = Iw.H(t'-t0), (8)
where H(t) is the Heaviside function, and to is the time at which the light was 
switched-on. When Eq. (8) is inserted into Eq. (7), we get

I°(t) = I°(-oo) + xd.G(Iw) - xd.G(Iw).exp j - . (9)

This is the same as Eq. (5') with the identities I°(-oo) = g(0), to = 0, and xd.G(Iw) = 

g(iw) - g(0).
For the rise time experiment,

IW(f) = Iw - Iw.H(t'-t0), (10)
where to is now the time at which the light was switched-off. When eq. (10) is 
inserted into equation (7), then

I°(t) = I°(-=o) + xr.G(lw).exp| - . (11)

This is the same as Eq. (6) with the identities I°(-°o) = g(0), to = 0, and xr.G(Iw) = 

gdw)-g(0).
Therefore, Eq. (7) is validated to the extent that it predicts the correct form of 
response when step functions are applied to the write beam intensity.

5. OPTICAL NEURAL NETWORK SYSTEMS

The integrating/thresholding element (LCLV) represents an array of neurons whose 
activation values o, are the sum of inputs Xj that arrive via weighted pathways. The 
input from a particular pathway is an input signal Xj multiplied by the weight Wij of 
the pathway. A bias term 6, is included in the sum in order to provide a variable 
threshold

°j = Xxiwu (12)
i=0

The weights are the pixel transmission values of the LCTV in the weight plane.
The outgoing signal (reflected read light intensity) is y, = f(Oj) where y, is a non
linear function (transfer curve) of the activation value (write light intensity).
The investigation of a feedforward optical nework of the type shown in Fig. 9 was 
motivated by the desire of our collaborating computer scientists to realise a 
multilayer perceptron hardware which had the potential of high parallelism. A major 
difficulty was that only unipolar coding is available in an incoherent optical system 
which uses intensity as the sole coding modality. The multilayer perceptron 
algorithm had to be adapted to the optics31. In this method the network is trained 
on the computer with unipolar inputs and bipolar weights. During the recall, bipolar 
weights Wjj are transformed to all positive weights W^' according to the input xi

Wy = max< (w -W . V\ ij min ) S(W,J-Wn,i,)xi
V i 7

,0 (13)
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where W. is the minimum of all original weight values and local threshold t9;. The
neuron activation value becomes then

xi - =Wx (14)

The intermediate matrix -vector product E,(W;; - Wm;n)x; in Eq. (13) and all positive
weights W;;' are computed off -line (in a host computer). The final matrix -vector
product EW;'x; and the thresholding are performed in the optical system. The
disadvantage is that it cannot be used on -line. The recall task is shared between
computer and optics and hence does not take total advantage of the optics. The
advantage is that a multilayer implementation is possible. This is not the case for
simple weight constraint, where negative values of the weight matrix are represented
by zeroes. Although this works with reduced memory capacity for single layer
networks, multilayer networks do not converge. A technique which is extensible to
multilayer networks is the weight bias method 3233. In this method the network is
trained on the computer with bipolar inputs and initial weights. The global threshold
8 and the slope f3 of the thresholding function are set to arbitrary values. Once the
network is trained, bipolar weights and inputs must be transformed to unipolar all -
positive inputs for optical implementation. Considering inputs and weights
normalized to the [ -1,1] interval, this transformation can be done either by adding
one to the weights and inputs or by subtracting them from 1

ifxE[- 1...1] <=>
(12x)

E[0...1]. (15)

After this modification, the output of the network using complementary inputs and
weights can be calculated as follows

Y =f (1+W;.i)
(i+xi ) (1-W;i) (1-x;

2 2 + 2 2
(16)

=f 2 +7LWlx'
where N is the number of elements of the input vector. The drawbacks of this method
are that the thresholding function of the LCLV should be changed when the input x;
changes, and there is a loss of SBWP due to the use of complementary inputs and
weight matrices. However, the complementary outputs of the LCLV are readily
available when a polarizing beamsplitter is used. A variant of the weight bias method
is the Reversal Input Superposing Technique (RIST)'4. The final method for the
efficient use of unipolar coding in multilayer networks is to use mixed excitatory and
inhibitory characteristics in the neural plane thresholding'S.
The implementation of this method would require a LCTV in the read beam of the
LCLV (Fig. 12).
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where Wmin is the minimum of all original weight values and local threshold ft,. The 
neuron activation value becomes then

Xwuxi=Swiixi- (l4)

i i
The intermediate matrix-vector product Z(Wi, - Wmin)Xj in Eq. (13) and all positive 
weights Wij' are computed off-line (in a host computer). The final matrix-vector 
product iWij'xi and the thresholding are performed in the optical system. The 
disadvantage is that it cannot be used on-line. The recall task is shared between 
computer and optics and hence does not take total advantage of the optics. The 
advantage is that a multilayer implementation is possible. This is not the case for 
simple weight constraint, where negative values of the weight matrix are represented 
by zeroes. Although this works with reduced memory capacity for single layer 
networks, multilayer networks do not converge. A technique which is extensible to 
multilayer networks is the weight bias method32 In this method the network is 
trained on the computer with bipolar inputs and initial weights. The global threshold 
9 and the slope |3 of the thresholding function are set to arbitrary values. Once the 
network is trained, bipolar weights and inputs must be transformed to unipolar all
positive inputs for optical implementation. Considering inputs and weights 
normalized to the [-1,1] interval, this transformation can be done either by adding 
one to the weights and inputs or by subtracting them from 1

if x e [-1...1] <=> £ [0...1], (15)

After this modification, the output of the network using complementary inputs and 
weights can be calculated as follows

y,=f

= f

y (1 + Wij)0 + Xi) | y, t1 — Wy ) (l - Xj )

- + -Xw,
2 2 ; '

X;

(16)

where N is the number of elements of the input vector. The drawbacks of this method 
are that the thresholding function of the LCLV should be changed when the input xi 
changes, and there is a loss of SBWP due to the use of complementary inputs and 
weight matrices. However, the complementary outputs of the LCLV are readily 
available when a polarizing beamsplitter is used. A variant of the weight bias method 
is the Reversal Input Superposing Technique (RIST)j4. The final method for the 
efficient use of unipolar coding in multilayer networks is to use mixed excitatory and 
inhibitory characteristics in the neural plane thresholding35.
The implementation of this method would require a LCTV in the read beam of the 
LCLV (Fig. 12).
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Fig. 12 Implementation of mixed excitatory /inhibitory characteristics for neural plane
thresholding.

The investigation of recurrent optical systems of the type shown in Fig. 10 has been
motivated by a desire to study the dynamic behaviour of recurrent neural networks
rather than fixed state convergence. The dynamic behaviour is a topic of interest in
the computer science community'6. However, it has not been studied in the context
of optical implementations because of the overriding interest in static equilibrium
states of such networks. It is a relevant topic to study in the optical domain because
the necessary analog optical hardware exists and the modelling of the hardware can be
readily performed. The dynamic behaviour of the LCLV was mentioned as
contributing to the stability of the memory states in ref. 37. Moreover, a dynamic
equation for the LCLV different from the one developed here was presented without
proof in ref. 38. The algorithm for the recurrent network is the soft -threshold Hopfield
algorithm'. However, it is formulated in terms of bipolar neural outputs. Therefore,
one of the methods discussed above must be used. A combination of weight
constraint and the use of inhibitory characteristics which maintains a reasonable
memory capacity (number of static equilibrium states) is the Inhibitory Model40. The
positive components of the weight plane array are set to zero and all the neurons are
operated with an inhibitory characteristic. We constructed a recurrent neural network
based on the inhibitory model (Fig. 13).
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The investigation of recurrent optical systems of the type shown in Fig. 10 has been 
motivated by a desire to study the dynamic behaviour of recurrent neural networks 
rather than fixed state convergence. The dynamic behaviour is a topic of interest in 
the computer science community'6. Flowever, it has not been studied in the context 
of optical implementations because of the overriding interest in static equilibrium 
states of such networks. It is a relevant topic to study in the optical domain because 
the necessary analog optical hardware exists and the modelling of the hardware can be 
readily performed. The dynamic behaviour of the LCLV was mentioned as 
contributing to the stability of the memory states in ref. 37. Moreover, a dynamic 
equation for the LCLV different from the one developed here was presented without 
proof in ref. 38. The algorithm for the recurrent network is the soft-threshold Hopfield 
algorithm'9. However, it is formulated in terms of bipolar neural outputs. Therefore, 
one of the methods discussed above must be used. A combination of weight 
constraint and the use of inhibitory characteristics which maintains a reasonable 
memory capacity (number of static equilibrium states) is the Inhibitory Model40. The 
positive components of the weight plane array are set to zero and all the neurons are 
operated with an inhibitory characteristic. We constructed a recurrent neural network 
based on the inhibitory model (Fig. 13).
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Fig. 13 Recurrent neural network with fixed weight plane (Mask), using the Asulab LCLV
and 555 nm write and read wavelengths. Network initiated by a HeNe laser and
input mask (IN)24.

A grating G2 together with lens L5 replicates a 3 x 3 spot array 3 x 3 times on the
weight plane (Mask). A lens L6 Fourier transforms the weight plane to a 3 x 3 array
on the read side (photoconductor side) of the LCLV. By adjusting the position of
G2, the spacing of the write spots can be made to match the spacing of the read spots
on the valve. A wedge reflector WR removes 2% of the feedback beam in order that
the neural activations can be monitored. A mechanical shutter SI is used to close the
feedback loop when it is desired to stabilise the valve on a static input. The input is
effected using a helium neon laser and an input mask. A 3 x 3 spot array is generated
at the input mask and imaged onto the read side of the valve by lenses L9 and L6.
The input beam also has a shutter S2 which is closed when it is desired to let the
feedback loop run freely.
The system operation proceeded as follows. The shutter SI was closed and S2
opened in order to introduce a initial pattern using the input mask. As soon as the
system stabilized on the initial state, S2 was closed and at the same time S1 opened.
Then the system ran according to its dynamics. The system at this point operates in
continuous time, i.e. the state of each neuron is a continuous function of time and
each neuron updates asynchronously with respect to the other neurons.
The main imperfection in this experiment arises from the lack of well- engineered
componentry and devices. The standard deviation of the non -uniformity (SDNU)
generated by the fan -out al was 4 %. The SDNU of the OFF -state of the valve (zero
write light) was optimised to a minimum of 3% by translating the valve in an xy-
sense using a microtranslation stage. The combined SDNU in the reflected spot array
was 4 %. Due to the larger area and diverging nature of the beam incident on grating
G2, the beam fan -out was more non- uniform at this point of the feedback loop. For
the beams which will pass through the pixels the weight mask, there was a SDNU of
8 %.
Initial attempts to produce grey level weight masks increased this non -uniformity,
due to the difficulty of controlling the processing and the critical alignment required
for the resulting mask. The mask was designed according to the inhibitory model.
Two patterns, a "T" and an "L ", were stored in the mask. When the grey level
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weight plane (Mask). A lens L6 Fourier transforms the weight plane to a 3 x 3 array 
on the read side (photoconductor side) of the LCLV. By adjusting the position of 
G2, the spacing of the write spots can be made to match the spacing of the read spots 
on the valve. A wedge reflector WR removes 2% of the feedback beam in order that 
the neural activations can be monitored. A mechanical shutter SI is used to close the 
feedback loop when it is desired to stabilise the valve on a static input. The input is 
effected using a helium neon laser and an input mask. A 3 x 3 spot array is generated 
at the input mask and imaged onto the read side of the valve by lenses L9 and L6. 
The input beam also has a shutter S2 which is closed when it is desired to let the 
feedback loop run freely.
The system operation proceeded as follows. The shutter SI was closed and S2 
opened in order to introduce a initial pattern using the input mask. As soon as the 
system stabilized on the initial state, S2 was closed and at the same time SI opened. 
Then the system ran according to its dynamics. The system at this point operates in 
continuous time, i.e. the state of each neuron is a continuous function of time and 
each neuron updates asynchronously with respect to the other neurons.
The main imperfection in this experiment arises from the lack of well-engineered 
componentry and devices. The standard deviation of the non-uniformity (SDNU) 
generated by the fan-out G1 was 4%. The SDNU of the OFF-state of the valve (zero 
write light) was optimised to a minimum of 3% by translating the valve in an xy- 
sense using a microtranslation stage. The combined SDNU in the reflected spot array 
was 4%. Due to the larger area and diverging nature of the beam incident on grating 
G2, the beam fan-out was more non-uniform at this point of the feedback loop. For 
the beams which will pass through the pixels the weight mask, there was a SDNU of 
8%.
Initial attempts to produce grey level weight masks increased this non-uniformity, 
due to the difficulty of controlling the processing and the critical alignment required 
for the resulting mask. The mask was designed according to the inhibitory model. 
Two patterns, a "T" and an "L", were stored in the mask. When the grey level
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maskwas fabricated, a SDNU of 11% over the nine fanned -in spots was obtained. In
order to improve the uniformity of the fan -in, a binary mask was fabricated to replace
the grey level mask. Over each of the 34 transmitting pixels of the binary mask, a
piece of polaroid was glued in order to vary manually the grey level transmittance.
By this technique a SDNU of 3% over the nine fanned -in spots was achieved. By this
means, the non- uniformities of the mask and grating G2 could be corrected. A more
satisfactory solution would have been to use an LCTV as the grey level mask as in
the MVM1 of Fig. 10. However, the loss in the feedback loop would have been
increased and the Asulab LCLV did not have sufficient gain to compensate this loss.

400
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Neuron
Fig. 14 Non -uniformity of write sensitivity of the Asulab LCLV24.

The sensitivity of the LCLV, in the area selected for uniform OFF -state, was itself
quite non -uniform (Fig. 14). This resulted in the above system always settling down
to a steady state equilibrium. Since the facility for changing the interconnection
weights was in place, due to the adjustable polaroid on the mask, it was decided to
adjust the fan -in to pre- compensate this non -uniformity. This adjustment gave rise to
a dynamical equilibrium state as opposed to a static equilibrium state (Fig. 15).
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The sensitivity of the LCLV, in the area selected for uniform OFF-state, was itself 
quite non-uniform (Fig. 14). This resulted in the above system always settling down 
to a steady state equilibrium. Since the facility for changing the interconnection 
weights was in place, due to the adjustable polaroid on the mask, it was decided to 
adjust the fan-in to pre-compensate this non-uniformity. This adjustment gave rise to 
a dynamical equilibrium state as opposed to a static equilibrium state (Fig. 15).
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Fig. 15 Intensity of 6 spots of the reflected read beam from the LCLV in Fig. 13 as a

function of time.
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The temporal evolution of the intensities of each of the nine neurons can be measured
using the camera and image analysis software. The interconnection matrix (Mask) is
such that the nine neurons can be divided into two independent groups, one of six
and the other of three neurons, which act only amongst themselves. The temporal
evolution of the six neurons, which form two competing groups of three neurons, for
the case when the input image is an "L ", is shown in Fig. 15. It can be seen from the
figure that the system goes through five distinct phases: In the first phase, the
feedback loop was open (S2 closed) and there was no input (S I closed), therefore all
neurons were ON though the intensities were not uniform. In the second phase (S2
closed, S1 open), the initial pattern "L" was introduced in the system. As soon as
the feedback loop was opened and the input switched off (S2 open, S I closed), the
system underwent a period of transition, the third phase. The length of the transition
takes about 20 secs. In the fourth phase, all the neurons tend to their opposite states
(a "T ") in a quasi- static equilibrium. Then a fifth phase of regular oscillation between
states which are almost "L" and states which are almost "T ". There is an asymmetry
in this oscillation which favours the "L" state. The cycle time is about 100 seconds.
When the initial input image is a "T" the fifth phase is similar with a cycle time of
100 s, but with a different asymmetry, viz the "T" phases of the cycle last longer than
the "L" phases. If the intensity of the read -in light was decreased below a value of 700
.tW /cm`, the oscillation stopped and all neurons remained ON.
The interesting aspects of Fig. 14 are phases 3 and 4. Here, some neurons are
abruptly switched from a lw= 0 to a value of iw determined by the feedback loop. Yet
other neurons are switched from a high value of IW to a low value determined by the
feedback loop. What is important to note is that the time constants of the decaying
(and rising) neurons are roughly similar. The transition from the third to the fourth
phase is interesting because at this point the loop dynamics takes over. The dynamic
equation (7) of the LCLV is required to explain the equilibrium dynamic behaviour
of the network, ie the oscillations. If it is differentiated, then

1999 Euro-American Workshop on Optoelectronic Information Processing / 305

Phase

200 - N5

100 -

Time (s)
Fig. 15 Intensity of 6 spots of the reflected read beam from the LCLV in Fig. 13 as a 

function of time.
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the case when the input image is an "L", is shown in Fig. 15. It can be seen from the 
figure that the system goes through five distinct phases: In the first phase, the 
feedback loop was open (S2 closed) and there was no input (S1 closed), therefore all 
neurons were ON though the intensities were not uniform. In the second phase (S2 
closed, SI open), the initial pattern "L" was introduced in the system. As soon as 
the feedback loop was opened and the input switched off (S2 open, SI closed), the 
system underwent a period of transition, the third phase. The length of the transition 
takes about 20 secs. In the fourth phase, all the neurons tend to their opposite states 
(a "T") in a quasi-static equilibrium. Then a fifth phase of regular oscillation between 
states which are almost "L" and states which are almost "T". There is an asymmetry 
in this oscillation which favours the "L" state. The cycle time is about 100 seconds. 
When the initial input image is a "T" the fifth phase is similar with a cycle time of 
100 s, but with a different asymmetry, viz the "T" phases of the cycle last longer than 
the "L" phases. If the intensity of the read-in light was decreased below a value of 700 
|tW/citT, the oscillation stopped and all neurons remained ON.
The interesting aspects of Fig. 14 are phases 3 and 4. Flere, some neurons are 
abruptly switched from a Iw= 0 to a value of Iw determined by the feedback loop. Yet 
other neurons are switched from a high value of Iw to a low value determined by the 
feedback loop. What is important to note is that the time constants of the decaying 
(and rising) neurons are roughly similar. The transition from the third to the fourth 
phase is interesting because at this point the loop dynamics takes over. The dynamic 
equation (7) of the LCLV is required to explain the equilibrium dynamic behaviour 
of the network, ie the oscillations. If it is differentiated, then
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dl°(a , t) TG[ dlw(t)1 + G(lw)

If the first term on the RHS is ignored, then

dI°(Iw,t) g(Iw)-g(0)
dt i

(17)

(18)

It was mentioned earlier that six neurons form two competing groups. Let these be
called A and B, so that IWA= KAKI °B, where K is the transmission through the
feedback loop from output B to input A. Similarly, IWB= KBAI °A. For ease of analysis,
it is assumed that KBA = KAB. Then Eq. (18) can be written

Differentiating wrt t

But
dIWA

KAB.

dI°A g(IwA) - g(0)
(18')

(19)

(20 )

dt

gives

d2I°A 1

T

(dIwA

(I°A)-g(0)KBAgK.

dt2 i

g(IWB)-g(0)K.

dt )

dt AB. dt ti t
If the nonlinear function gO in the middle of the characteristic (see Fig. 7) is
approximated by a straight line of slope M (dynamic gain), then (19) and (20) can be
combined to form a harmonic equation of the form

d2I°A

dt2

KBAMZI °A
= KAB.

The period T of the harmonic oscillation is given by

2n KBAM

T i

(21)

(22)

Approximate values for K, M, and t are 0.07, 4, and 1 s (the latter from Fig. 11

when lW = 20 µW /cm'"). Therefore, T = 21 s, which differs by a factor of 5 from the
period observed. This calculation represents a first approach where numerous
approximations hinder a closer match with experiment.

6. CONCLUSIONS

This review notes the highlights of one step along the path to understanding and
implementing optical neural networks. Very often a lot of work was expended on
blind alleys. For instance, a lot of time was spent on the early LCTVs in interfacing,
which was later redundant because of the advent of multimedia LCTVs. Of course,
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this meant that new optical elements had to be designed for each new device used. In
order to extend these studies to UXGA LCTVs, another design /fabrication cycle
would have to be performed.
Three components of the network have been described, the MVM module, the LCLV
and the system architecture. Work has advanced most rapidly in the first, and we
have now an idea on how to make a robust unit of high connectivity. The second
area is where more effort is needed in order to make reliable, uniform devices with
frame speeds up to I kHz. In the third area, we have been able to show where optics
may hold unique advantages, but there is a lot to do in order to confirm these
advantages and to develop appropriate algorithms and applications. In particular, an
efficient means of implementing bipolar connections or neurons would be important,
as would a storage prescription which made efficient use of available memory. For
example, an XGA LCTV which could be used at 52% capacity is a 1 Mbyte
memory, which could be accessed in parallel at I kHz rates, using a state of the art
LCLV. The area of application would be in tasks which are not efficiently performed
on conventional computers, such as optimisation and pattern recognition.

ACKNOWLEDGEMENTS

I would like to thank Wei Xue, Ken Weible, Christoph Berger, and Ali Pourzand
and numerous diploma and semester students who have made all the experimental
and simulation work on these systems, and all those in the IMT Optics group and at
the CSEM Zurich who have contributed to the microoptical element fabrication in
these studies. I also wish to thank the Swiss National Science Foundation who have
financed the studies on Optical Neural Networks at IMT between 1990 and 1998.

REFERENCES

I . N.H. Farhat, D. Psaltis, A. Prata, and E. Peak, "Optical implementation of the
Hopfield model ", Appl. Opt., 24, 1469 -1475 (1985).
2. J.W. Goodman, A.R. Dias, and L.M. Woody, "Fully parallel, high -speed
incoherent optical method for performing discrete Fourier transforms ", Opt. Lett., 2,
1 -3 (1978).
3. A.R. Dias, R.F. Kalman, J.W. Goodman, and A.A. Sawchuk, "Fiber -optic
crossbar switch with broadcast capability ", Proc SPIE 825, 170 -177 (1987).
4. M.A.G. Abushagar and H.J. Caulfield, "Optical matrix computations ", in Optical
Processing and Computing ed. H.H. Arsenault, T. Szoplik, and B. Macukow
(Academic Press; 1989).
5. S.G. Batsell, J.F. Walkup, and T.F. Krile, "Noise issues in optical linear algebra
processor design ", in Design Issues in Optical Processing ed J.N. Lee (Cambridge;
1995).
6. S.B. Odinokov and A.V. Petrov, "Analysis of addition accuracy in optoelectronic
matrix- vector multiplier ", Proc. SPIE 2430, 270 -278 (1994).
7. N. Collings, "Design considerations for a useful two -layer neural network ", Euro-
American workshop on Optical Pattern Recognition, eds. B. Javidi and P. Réfrégier
pp. 314 -333 (SPIE Optical Engineering Press, 1994).
8. K.J. Weible, G. Pedrini, W. Xue, and R. Thalmann, "Optical implementation of
a neural network associative memory using diffraction gratings ", Jap. J. Appl. Phys.
29, L1301 -L1303 (1990).
9. K.J. Weible, N. Collings, and A. Pourzand, "Initial results of a fully
interconnected neural network with modifiable interconnects ", Optical Memory and
Neural Networks, 1, 157 -159 (1992).

1999 Euro-American Workshop on Optoelectronic Information Processing / 307

this meant that new optical elements had to be designed for each new device used. In 
order to extend these studies to UXGA LCTVs, another design/fabrication cycle 
would have to be performed.
Three components of the network have been described, the MVM module, the LCLV 
and the system architecture. Work has advanced most rapidly in the first, and we 
have now an idea on how to make a robust unit of high connectivity. The second 
area is where more effort is needed in order to make reliable, uniform devices with 
frame speeds up to 1 kHz. In the third area, we have been able to show where optics 
may hold unique advantages, but there is a lot to do in order to confirm these 
advantages and to develop appropriate algorithms and applications. In particular, an 
efficient means of implementing bipolar connections or neurons would be important, 
as would a storage prescription which made efficient use of available memory. For 
example, an XGA LCTV which could be used at 52% capacity is a 1 Mbyte 
memory, which could be accessed in parallel at 1 kHz rates, using a state of the art 
LCLV. The area of application would be in tasks which are not efficiently performed 
on conventional computers, such as optimisation and pattern recognition.

ACKNOWLEDGEMENTS

1 would like to thank Wei Xue, Ken Weible, Christoph Berger, and Ali Pourzand 
and numerous diploma and semester students who have made all the experimental 
and simulation work on these systems, and all those in the IMT Optics group and at 
the CSEM Zurich who have contributed to the microoptical element fabrication in 
these studies. 1 also wish to thank the Swiss National Science Foundation who have 
financed the studies on Optical Neural Networks at IMT between 1990 and 1998.

REFERENCES

1. N.H. Farhat, D. Psaltis, A. Prata, and E. Peak, "Optical implementation of the 
Hopfield model", Appl. Opt., 24, 1469-1475 (1985).
2. J.W. Goodman, A.R. Dias, and L.M. Woody, "Fully parallel, high-speed 
incoherent optical method for performing discrete Fourier transforms", Opt. Lett., 2, 
1-3 (1978).
3. A.R. Dias, R.F. Kalman, J.W. Goodman, and A.A. Sawchuk, "Fiber-optic 
crossbar switch with broadcast capability", Proc SPIE 825, 170-177 (1987).
4. M.A.G. Abushagar and H.J. Caulfield, "Optical matrix computations", in Optical 
Processing and Computing ed. H.H. Arsenault, T. Szoplik, and B. Macukow 
(Academic Press; 1989).
5. S.G. Batsell, J.F. Walkup, and T.F. Krile, "Noise issues in optical linear algebra 
processor design", in Design Issues in Optical Processing ed J.N. Lee (Cambridge; 
1995).
6. S.B. Odinokov and A.V. Petrov, "Analysis of addition accuracy in optoelectronic 
matrix-vector multiplier", Proc. SPIE 2430, 270-278 (1994).
7. N. Collings, "Design considerations for a useful two-layer neural network", Euro- 
American workshop on Optical Pattern Recognition, eds. B. Javidi and P. Refregier 
pp. 314-333 (SPIE Optical Engineering Press, 1994).
8. K.J. Weible, G. Pedrini, W. Xue, and R. Thalmann, "Optical implementation of 
a neural network associative memory using diffraction gratings", Jap. J. Appl. Phys. 
29, L1301-L1303 (1990).
9. K.J. Weible, N. Collings, and A. Pourzand, "Initial results of a fully 
interconnected neural network with modifiable interconnects", Optical Memory and 
Neural Networks, 1, 157-159(1992).

Proc. of SPIE Vol. 10296  102960F-19



308 / Critical Reviews Vol. CR74

10. N. Collings, A.R. Pourzand, R. Völkel, "The construction of a programmable
multilayer analogue neural network using space invariant interconnects" Proc. SPIE
2565, 40 -47 (1995).
11. N. Collings and C. Berger, "Demonstration and discussion of an interlaced fan -
out interconnect ", Inst. Phys. Conf. Ser. 139: Part II, 247 -250 (IOP Publishing;
1995).
12. K.J. Weible, "Experimental investigation of optical neural networks and learning
systems ", Ph.D dissertation (University of Neuchâtel, November, 1993).
13. A.R. Pourzand, "Optimization of 2D liquid crystal devices for use in optical
information processing systems ", Ph.D dissertation (University of Neuchâtel, June
1998).
14. N. Collings, A.R. Pourzand, F.L.Vladimirov, N.I.Pletneva, A.N.Chaika, "The
construction of a multilayer analogue neural network using liquid crystal SLMs ",
Optical Memory and Neural Networks 6, 187 -198 (1997).
15. A.W. Lohmann, et al., "Array illuminators for the optical computer ", Proc. SPIE
963, 232 -239 (1988).
16. C. Berger, "Compact all- optical recurrent neural network ", Ph.D dissertation
(University of Neuchâtel, October 1998).
17. C. Berger, N. Collings, R. Völkel, M.T. Gale, and T. Hessler, "A microlens-
array -based optical neural network application ", JEOS A 6, 683 -689 (1997).
18. N. Collings and W. Xue, "Liquid crystal light valves (LCLV) as thresholding
elements in neural networks: basic device requirements ", Appl. Opt., 33, 2829 -2833
(1994).
19. N. Collings, A.R. Pourzand, F.L. Vladimirov, N.I. Pletneva, and A.N. Chaika,
"Pixellated reflective light valve for neural network application, " submitted to
Applied Optics.
20. J. Grinberg, A. Jacobson, W.P. Bleha, L.Miller, L. Fraas, D. Boswell, G.
Myer, "A new real -time non -coherent to coherent light image converter: The hybrid
field effect liquid crystal light valve ", Opt. Eng. 14, 217 -225 (1975).
21. Fabricated for our institute by Asulab S.A., Neuchâtel, Switzerland, in 1984.
22. Purchased from the P.N. Lebedev Institute, Moscow, Russia, in 1996.
23. P.D. Moerland, E. Fiesler, and 1. Saxena, "Incorporating LCLV non -linearities
in optical neural networks ", Appl. Opt. 35, 5301 -5307 (1996).
24. W. Xue, "Characterization of liquid crystal light valves for neural network
application ", Ph.D dissertation (University of Neuchâtel, March 1994).
25. C. Berger, N. Collings, and D. Gehriger, "Recurrent optical neural network for
the study of pattern dynamics ", Proc. SPIE 3402, 233 -244 (1997).
26. N. Collings and W. Xue, "Characterization of optically addressed SLM's for
recurrent optical neural networks ", Int. J. Optical Computing, 2, 97 -107 (1991).
27. N. Collings, A.R. Pourzand, F.L.Vladimirov, N.I.Pletneva, A.N.Chaika, "The
construction of a multilayer analogue neural network using liquid crystal SLMs ",
Optical Memory and Neural Networks 6, 187 -198 (1997).
28. T.C.B. Yu, R.J. Mears, A.B. Davey, W.A. Crossland, M.W.G. Snook, N.
Collings, and M. Birch, "Smart VLSI /FELC spatial light modulators for neural
networks ", Proc. SPIE 2430, 243 -248 (1994).
29. L.M. Fraas, W.P. Bleha, J. Grinberg, and A.D. Jacobson, "ac photoresponse of a
large -area imaging CdS /CdTe heterojunction ", J. Appl. Phys., 47, 584 -590 (1976).
30. L.M. Fraas, J. Grinberg, W.P. Bleha, and A.D. Jacobson, "Novel charge -
storage -diode structure for use with light- activated displays ", J. Appl. Phys.,47, 576-
583 (1976).
31. P.D. Moerland, E. Fiesler, and I. Saxena, "Discrete all- positive multilayer
perceptrons for optical implementation ", Opt. Eng. 37, 1305 -1315 (1998).

308 / Critical Reviews Vol. CR74

10. N. Collings, A.R. Pourzand, R. Volkel, "The construction of a programmable 
multilayer analogue neural network using space invariant interconnects" Proc. SPIE 
2565,40-47 (1995).
11. N. Collings and C. Berger, "Demonstration and discussion of an interlaced fen- 
out interconnect", Inst. Phys. Conf. Ser. 139: Part II, 247-250 (IOP Publishing; 
1995).
12. K.J. Weible, "Experimental investigation of optical neural networks and learning 
systems", Ph.D dissertation (University of Neuchatel, November, 1993).
13. A.R. Pourzand, "Optimization of 2D liquid crystal devices for use in optical 
information processing systems", Ph.D dissertation (University of Neuchatel, June 
1998).
14. N. Collings, A.R. Pourzand, F.L.Vladimirov, N.i.Pletneva, A.N.Chaika, "The 
construction of a multilayer analogue neural network using liquid crystal SLMs", 
Optical Memory and Neural Networks 6, 187-198 (1997).
15. A.W. Lohmann, et al., "Array illuminators for the optical computer", Proc. SPIE 
963,232-239 (1988).
16. C. Berger, "Compact all-optical recurrent neural network", Ph.D dissertation 
(University of Neuchatel, October 1998).
17. C. Berger, N. Collings, R. Volkel, M.T. Gale, and T. Hessler, "A microlens- 
array-based optical neural network application", JEOS A 6, 683-689 (1997).
18. N. Collings and W. Xue, "Liquid crystal light valves (LCLV) as thresholding 
elements in neural networks: basic device requirements", Appl. Opt., 33, 2829-2833 
(1994).
19. N. Collings, A.R. Pourzand, F.L. Vladimirov, N.l. Pletneva, and A.N. Chaika, 
"Pixellated reflective light valve for neural network application, " submitted to 
Applied Optics.
20. J. Grinberg, A. Jacobson, W.P. Bleha, L.Miller, L. Fraas, D. Boswell, G. 
Myer, “A new real-time non-coherent to coherent light image converter: The hybrid 
field effect liquid crystal light valve”, Opt. Eng. 14, 217-225 (1975).
21. Fabricated for our institute by Asulab S.A., Neuchatel, Switzerland, in 1984.
22. Purchased from the P.N. Lebedev Institute, Moscow, Russia, in 1996.
23. P.D. Moerland, E. Fiesler, and I. Saxena, "Incorporating LCLV non-linearities 
in optical neural networks", Appl. Opt. 35, 5301-5307 (1996).
24. W. Xue, "Characterization of liquid crystal light valves for neural network 
application", Ph.D dissertation (University of Neuchatel, March 1994).
25. C. Berger, N. Collings, and D. Gehriger, "Recurrent optical neural network for 
the study of pattern dynamics", Proc. SPIE 3402, 233-244 (1997).
26. N. Collings and W. Xue, "Characterization of optically addressed SLM's for 
recurrent optical neural networks", Int. J. Optical Computing, 2, 97-107 (1991).
27. N. Collings, A.R. Pourzand, F.L.Vladimirov, N.i.Pletneva, A.N.Chaika, "The 
construction of a multilayer analogue neural network using liquid crystal SLMs", 
Optical Memory and Neural Networks 6, 187-198 (1997).
28. T.C.B. Yu, R.J. Mears, A.B. Davey, W.A. Crossland, M.W.G. Snook, N. 
Collings, and M. Birch, "Smart VLSI/FELC spatial light modulators for neural 
networks", Proc. SPIE 2430, 243-248 (1994).
29. L.M. Fraas, W.P. Bleha, J. Grinberg, and A.D. Jacobson, "ac photoresponse of a 
large-area imaging CdS/CdTe heterojunction", J. Appl. Phys., 47, 584-590 (1976).
30. L.M. Fraas, J. Grinberg, W.P. Bleha, and A.D. Jacobson, "Novel charge- 
storage-diode structure for use with light-activated displays", J. Appl. Phys.,47, 576
583 (1976).
31. P.D. Moerland, E. Fiesler, and I. Saxena, "Discrete all-positive multilayer 
perceptrons for optical implementation", Opt. Eng. 37, 1305-1315 (1998).

Proc. of SPIE Vol. 10296  102960F-20



1999 Euro- American Workshop on Optoelectronic Information Processing / 309

32. H.J. Wright and W.A. Wright, "Holographic implementation of a Hopfield
model with discrete weightings ", Appl. Opt. 27, 331- 338 (1988).
33. B.K. Jenkins and C.H. Wang, "Model for an incoherent optical neuron that
subtracts ", Opt. Lett. 13, 892- 894 (1988).
34. Y. Hayasaki et al., "Reversal -input superposing technique for all- optical neural
network ", Appl. Opt. 33, 1477 -1484 (1994).
35. F.M. Dickey and J.M. DeLaurentis, "Optical neural networks with unipolar
weights ", Opt. Comm. 101, 303 -305 (1993).
36. IEEE Trans. Neur. Networks 5, (1994) Special issue on dynamic recurrent neural
networks.
37. H.J. White, "Experimental results from an optical implementation of a simple
neural network ", Proc. SPIE 963, 570 -575 (1988).
38. K. -Y. Hsu, H. -Y. Li, and D. Psaltis, "Holographic implementation of a fully
connected neural network ", Proc.IEEE 78, 1637 -1645 (1990).
39. J.J. Hopfield, "Neurons with graded response have collective computational
properties like those of two -state neurons ", Proc. Nat. Acad. Sci. USA 81, 3088-
3092 (1984).
40. I. Shariv and A.A. Friesem, "All- optical neural network with inhibitory
neurons ", Opt. Lett. 14, 485 -487 (1989).

1999 Euro-American Workshop on Optoelectronic Information Processing / 309

32. H.J. Wright and W.A. Wright, "Holographic implementation of a Hopfield 
model with discrete weightings", Appl. Opt. 27, 331- 338 (1988).
33. B.K. Jenkins and C.H. Wang, "Model for an incoherent optical neuron that 
subtracts", Opt. Lett. 13, 892- 894 (1988).
34. Y. Hayasaki et al., "Reversal-input superposing technique for all-optical neural 
network", Appl. Opt. 33, 1477-1484 (1994).
35. F.M. Dickey and J.M. DeLaurentis, "Optical neural networks with unipolar 
weights", Opt. Comm. 101, 303-305 (1993).
36. IEEE Trans. Neur. Networks 5, (1994) Special issue on dynamic recurrent neural 
networks.
37. H.J. White, "Experimental results from an optical implementation of a simple 
neural network", Proc. SPIE 963, 570-575 (1988).
38. K.-Y. Hsu, H.-Y. Li, and D. Psaltis, "Holographic implementation of a fully 
connected neural network", Proc.IEEE 78, 1637-1645 (1990).
39. J.J. Hopfield, "Neurons with graded response have collective computational 
properties like those of two-state neurons", Proc. Nat. Acad. Sci. USA 81, 3088
3092 (1984).
40. 1. Shariv and A.A. Friesem, "All-optical neural network with inhibitory 
neurons", Opt. Lett. 14, 485-487 (1989).

Proc. of SPIE Vol. 10296  102960F-21


