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INTRODUCTION

Catheter -based techniques have been used successfully in the treatment of many patients
with various cardiac rhythm problems, including A -V nodal reentrant tachycardia,
accessory pathways, and other atrial and ventricular arrhythmias. These techniques have
had limited success in the treatment of disorders such as ventricular tachycardia in the
setting of prior myocardial infarction. New techniques are needed to create the larger
lesions required for treatment of such conditions. In addition, conditions such as atrial
fibrillation and atrial flutter require new catheter -based techniques for linear ablation. As
a result, a wide range of energy sources have been investigated and developed.

MODIFIED RADIOFREQUENCY ABLATION

Radiofrequency ablation has been the primary energy source for thousands of catheter-
based treatments of cardiac arrhythmias. Radiofrequency energy results in the resistive
heating of myocardial tissue. Since radiofrequency lesions are typically 1 to 3 mm in

1 -13
diameter, methods of modifying radiofrequency ablation have been developed.

The cooling of the electrode- myocardial interface has been a fundamental modification,
permitting the delivery of much higher energy levels. The larger lesions have been used
clinically for the treatment of ventricular tachycardia in the setting of coronary artery
disease and atrial flutter.

Other modifications of radiofrequency ablation have been made, predominantly to
increase lesion size. Larger or longer electrodes have been used to increase the surface
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area of contact. In addition, the use of panel electrodes or arrays has been used to
increase the current density or change the surface area in contact with the myocardium.
I, 3 -5, 8 -12, 14 -16

CRYOABLATION

Cryothermia has been used to treat a large number of medical conditions, including
prostatic hypertrophy, dermatologic growths, and ophthalmologic disorders.
Cryothermia has been shown to result in the destruction of myocardial tissue and
therefore has been applied to the treatment of various cardiac arrhythmias. Developed
initially as a surgical method, cryoablation is undergoing resurgence, now as a potential
catheter -based technique.

Cryoablation results in the freezing of myocardium tissue, leading to cell death. There
are a number of reported ultrastructural changes due to freezing. Damage may occur to
the mitochondrial membrane, resulting in irreversible impairment of mitochondrial
function. Myofibril structure becomes disturbed and ice crystal formation may result in

17

damage to cytoplasmic elements and impairment of membrane function.

Cryothermia results in formation of a frozen region of myocardial tissue, often appearing
to be an ice ball. Irreversible changes in the myocardium occur when the temperature is
dropped to the range of -30 degrees to -70 degrees C. After the initial freezing phase,
there is evidence of hemorrhage and edema. Polymorphonuclear cells and other
inflammatory cells enter the disturbed region. Over time, the region is replaced with a

17

fibrous tissue. This process begins 2 weeks after the initial injury.

Electrophysiologic Effects of Cryothermia

Acutely, the application of cryothermia to the myocardium results in a reduction of the
amplitude of electrograms at or near the site of ablation. These electrophysiologic
abnormalities persist over time, following the development of cryoablation scar. The
dense region of fibrosis produced by the ablation is devoid of significant electrical
activity

Acutely premature ventricular beats are observed, possibly resulting from enhanced
18

automaticity. Ventricular ectopy disappears by 1 week. Programmed stimulation has
not demonstrated inducible arrhythmias. This experimental data is in agreement with
clinical observations of the absence of significant proarrhythmia due to cryoablation.
The well -demarcated lesions may account for the absence of proarrhythmia.

Cryothermal mapping

A unique characteristic of cryothermal techniques is the ability to alter reversibly the
19 -21

electrophysiologic properties of myocardial tissue. Cooling myocardial tissue results
in a decrease in amplitude of local electrogram signals and an increase in refractory
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periods. Sterile ice cubes have been applied both experimentally and clinically to locate
the site of origin of an arrhythmia. A cooling source at 0 degrees decreased the surface
temperature by -18 + 3.1 degrees C at 0 mm, and -4.2 + 2.3 degrees C at 2 -3 mm

20
subepicardially, and - 1.3 + 1.3 degrees C at 5 to 7 mm depths. Frequently the site at
which cooling terminated the tachycardia was located 3.0 to 7.5 cm from the site of

19, 21
earliest electrical recording. It is possible to use a cryoablation catheter to alter the

19

properties of the myocardial tissue reversibly. However, such techniques may only be
applicable to sites that are relatively superficial.

Cryoablation Designs and Systems

Cryoablation systems were originally developed for surgical use. These systems utilized
the Joule- Thompson effect and employed gaseous nitrous oxide. Nitrous oxide was
stored in a tank off the surgical field and regulated using a control console. This console
was connected to a large diameter supply tube that was sterilized and connected to a
hand -held cryosurgical probe. Within this probe, the nitrous oxide was delivered to a
nozzle at which the nitrous oxide expanded and decreased pressure. This change in
pressure resulted in a significant decrease in temperature. The cryosurgical probe may
have one of several configurations, usually with a circular "foot- print ".

Surgical probes are designed to achieve maximum cooling reliably with the ability to
control the amount of cooling. The supply tube can be large and the probes may be
reusable. In contrast, there are important constraints that catheter -based systems have.
These tube -like structures must be small enough in diameter to pass easily through the
venous or arterial system. Usually, these tubes are less than 3 mm in diameter. The
tubes must be flexible and strong. They also must maintain their shape and the ability to
be manipulated or steered to the correct location within the vascular system and within
the heart. In addition, the catheters must be able withstand internal pressures and
temperatures that may be created by the cryothermal techniques. An extremely important
safety consideration is the potential life -threatening risk if nitrous oxide or other agents
leaked into the blood stream.

While cryosurgical systems are commercially available, catheter cryoablation systems
have only been developed experimentally or in early clinical studies. There are several
potential designs employed in catheter -based systems. Some catheter -based systems are

22
based on the Joule- Thompson principle and utilize nitrous oxide . These systems are
quite similar to the surgical cryoablation systems. They operate at approximately 500 to
800 psi and achieve temperatures from -50 to -80 degrees C.

17,19
Another system utilizes a phase change from liquid to gas, resulting in freezing.
Delivery of a liquid has the potential advantage of necessitating much lower pressures
within the catheter tubing. This system and that utilizing the Joule- Thompson effect have
the advantage that the cooling occurs at the distal end of the catheter, rather than
requiring cooled fluid to be delivered to the catheter. Delivery of liquid refrigerants such
as liquid nitrogen has been used experimentally but has the disadvantage of requiring
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insulation materials to maintain the temperature of the liquid throughout the
approximately 1 meter length of the catheter.

Experimentally, semiconductors may be used to achieve a temperature differential via the
Peltier effect. By creating a temperature differential, the heat is removed from the tissue
and deposited on the other side. In multiple steps or stages, significant cooling may be
achieved.

Determinants of Lesion Size

The size of cryoablative lesions is affected by the temperature achieved and the duration
of the lesion. Lesion size increases with the total duration up to approximately 5 minutes

23
at which time the lesion size plateaus. Circulation of blood also greatly affects the size

24
of the cryoablative lesion since the blood warms the tissue being ablated. Repetitive
freezing and thawing may also increase lesion size. Repeated freezing of myocardial

23
tissue that is already below body temperature also results in an increase in lesion size.
The size of the probe also determines the lesion size. The increased surface area of the
probe will increase the surface area of the lesion and the depth.

Clinical Applications of Cryoablation

A -V Junction

25, 26
Surgical cryoablation has been used to create A -V block. Most of these procedures
have been with the right atrium opened while the patients are on cardiopulmonary bypass.
Therefore, the warming effects of the blood during the cryoablation lesions were not
present.

Percutaneous cryoablation techniques for A -V junction ablation have been performed
17, 19, 22, 27

experimentally and in initial clinical studies. An 8 Fr catheter was used to
22

create persistent A -V block in 5 out of 8 animals. These ablative lesions were small and
well- circumscribed. Using an 8 Fr steerable halocarbon cryoablation catheter, reversible
and irreversible block in the AV junction has also been demonstrated. Reversible PR
prolongation and 2:1 AV block occurred at -20 to -50 degree C without histologic

17

damage to the AV node. Complete irreversible block is also feasible using this catheter.

Cryoablation has also been applied to modification of A -V nodal function. Holman et al
demonstrated that cryoablative surgical lesions encircling the triangle of Koch resulted in
modification of A -V nodal properties with acute prolongation of A -V nodal refractory

2s
periods. Drug refractory A -V nodal reentrant tachycardia has been treated with this
technique.

Accessory Pathway

Cryoablation has been applied extensively surgically. Cryothermal mapping has been
used surgically to demonstrate reversible block across the accessory pathway.
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Cryoablation has been applied endocardially or epicardially in these surgical procedures.
A special probe has been developed for ablation with in the coronary sinus to treat left -

29
sided accessory pathways. Experimentally cryoablation may be performed under the
mitral annulus, suggesting that this technique may be used to treat left -sided accessory

30
pathway cryoablation via a retrograde approach.

Ventricular Tachycardia

There has been extensive experience with the ablation of ventricular tachycardiac using
31

cryoablation. In some cases these have been in conjunction with other procedures such
as endocardial resection. Cryoablation alone has been used to treat patients with
ventricular tachycardia in the setting of coronary artery disease. Myocardial lesions in
the right and left ventricle have been created using a catheter -based cryoablation

17

system. Lesions with a median volume of 39 mm3 were created using serial applications
17

of temperatures of -18 C to -60 degrees C for up to 4 minutes.

Atrial Fibrillation

Using the maze procedure, a series of incisions and cryoablations have been used to treat
atrial fibrillation effectively. Cryoablation using a 5 cm tip has been compared to
radiofrequency ablation using a ten 5 mm rings with 2 mm interelectrode. Thrombus was
only minimal with cryoablation compared to extensive mural thrombus during

32
radiofrequency ablation.

LASER ABLATION

The acronym laser stands for Light Amplification by Stimulated Emission of Radiation.
A variety of materials may be stimulated, creating a monochromatic phase- coherent

33 -41, 42 -59
beam. A wide range of frequencies may be used: 250 rim to 10600 nm. Lasers
may use gases such as helium -neon (633 nm), argon (488 nm and 515 nm), holmium
(2100 nm) and carbon dioxide or use employ substances such as ruby (693 nm) or
neodymium - yttrium - aluminum -garnet (Nd:YAG, 1064 mn).

Laser techniques have been used extensively in ophthalmology, dermatology, and
33, 34, 36, 53 -58

cardiology. Lasers have been introduced for myocardial ablation. Variables
important in determining the effects of the laser include the laser type, its duration,
energy density, and the properties of the tissue.

Laser energy may be absorbed by myocardial tissue resulting in vaporization
and cutting. CO2 lasers, for example, primarily result in absorption with very little

48, 51
penetration. Lasers in the infrared region such as Nd:YAG YAG (neodymium-
yttrium- aluminum- garnet) result in the scattering of the photons before they are absorbed.
This results in photocoagulation caused by the distribution of energy at a greater depth.
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Ultraviolet radiation Xenon fluoride excimer, which produces energy in the ultraviolet
48

range, results vaporization of tissue in a thin layer.

The laser frequency determines the balance between scattering and absorption. As the
power density and duration increase, the lesion depth increases. As the irradiating spot

48

size increases, the size and depth of the lesion increase. The nature of the region that
is targeted will determine the selection of the type of laser. A -V junction modification
will require a relatively superficial lesion while ventricular tachycardia may require
deeper penetration. Argon lasers are used for superficial structures. The Nd:YAG lasers
may be used for deep structures such as ventricular tachycardia.

Catheter Design Characteristics and Requirements

Catheter -based laser devices require the efficient delivery of energy without significant
absorption by the fiber optic cable. Nd:YAG and Argon may be transmitted without
significant loss in the optical fiber, which are typically 200 and 600 um in diameter. The
energy must be effectively coupled to the myocardial tissue so that the energy is not
dissipated in the circulating blood. Saline may be flushed continuously at the end of the
catheter, removing blood from the path of the laser beam. A saline- filled balloon may
also be used to push blood away from the endocardial surface. This system may be
adapted to using an endoscope within a transparent balloon at the distal end of the
catheter. Hirao et al performed selective A -V junction or slow pathway using this

36
approach.

Laser energy must be delivered relatively perpendicular to the endocardial surface in
order to maximize transmission of energy. Mechanical prongs or suction at the end of
the catheter may be used to stabilize the catheter in a perpendicular position. The laser
beam also may be delivered from the side of a catheter lying alongside the endocardium.

A considerable amount of heat may be generated at the myocardial interface. Some
catheter -based designs employ saline cooling to reduce the temperature. tissue compared
to normal ventricular tissue. Pulsing of laser energy at low repetition rates may also be
used to decrease the peak temperature at the ablation site.

Pathologic and Electrophysiologic Effects of Laser Energy

Laser energy acutely results in crater formation, coagulation necrosis, and
49

vacuolization There may be a central vaporized crater surrounded by a rim of necrotic
tissue. Water -soluble gaseous substances may be released. These byproducts are small in

58
the range of 3 um in size. Acutely, laser energy may result in perforation of tissue. Over
time, a homogenous region of fibrosis replaces laser ablative lesions.

Laser energy reduces the resting membrane potential, action potential amplitude and
upstroke velocity. These effects extend several millimeters beyond the edge of the region

39
of necrotic myocardium.
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Clinical Applications

A -V Junction

A 7 Fr catheter was used to deliver energy from an argon laser to achieve complete
42, 43

transection of the AV junction. A Nd:YAG laser has been effective in the treatment
49,55,57

of A -V nodal reentry and creation of A -V block. Transvenous laser ablation of the
44

A -V junction has also been accomplished using endoscopic techniques. A laser -based
47

thermal ablation catheter has also been tested for A -V junction ablation.

Ablation of Accessory Pathways and the Atrium

There is only limited experience with the use of lasers for atrial and supraventricular
arrhythmias other than A -V nodal reentry. Laser ablation has been used only selectively

54

for atrial flutter, for example. Weber et al have demonstrated the feasibility of laser
56

ablation of atrial myocardium. Laser ablation has been used in left -sided accessory
pathways.

41

A laser -based balloon catheter has been tested for use via the coronary.
50

Ventricular Tachycardia

Laser ablation offers particular advantages for the treatment of ventricular tachycardia.
Laser energy is capable of creating lesions larger than possible with conventional

58

radiofrequency energy. Laser energy created lesions with a mean volume of 996 + 73
58

mm3 versus 111 + 38 mm3 for radiofrequency ablation. Intraoperatively laser ablation
has been extensively used to treat ventricular tachycardia. Laser has been applied both

46

endocardially and epicardially. The irradiation surface area required for ventricular
tachycardia termination may range from 2.3 to 9.4 cm2 in cases where the ventricular
tachycardia is well -mapped to 9 to 19.5 cm2 in less well defined ventricular tachycardias
[Svenson, 1990 #20]. Laser ablation has been predominantly in patients with

53

ventricular tachycardia in the setting of prior myocardial infarction.

In summary, laser ablation has been used successfully but catheter -based techniques are
in the early stages of investigation are not commercially available.

MICROWAVE ABLATION

Microwave energy has been used for numerous commercial and household applications.
In the medical field, microwave energy has been used for the treatment of neoplasms and
prostatic hypertrophy. In addition it has been used for sterilization as well as blood and
fluid warming.
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Clinical Applications 

A-V Junction
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Ventricular Tachycardia
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Principles of Microwave Ablation and Microwave Systems

60 -79

Microwave ablation acts via dielectric heating of the myocardium. Microwave
heating occurs due molecular motion of water molecule dipoles in myocardial tissue.
The microwave systems consist of a microwave generator, which serves as the energy
source, and an antenna, which radiates electromagnetic energy. The design of the
microwave antenna determines the geometry of the electromagnetic field. A helical coil
design consists of a helical coil attached to the inner conductor extending beyond the
coaxial cable. A monopolar or whip antenna is another antenna design.

The generator most commonly uses either 915 MHz or 2450 MHz frequencies. The
Federal Communications Commission approves these frequencies for medical use. The
frequency 915 MHz may result in deeper penetration depending upon the antenna
characteristics and efficiency. The lower the frequency the lower amount of loss in the
coaxial cable, decreasing the heating of the cable.

Because the nature of the ablative lesion depends upon the electromagnetic field
properties, it is possible to evaluate each antenna by measuring its heating characteristics.
Utilizing a phantom material having dielectric properties similar to myocardial tissue,
several measurements may be made to describe the microwave antenna at a specific
frequency. A systems analyzer delivers energy over a large range of frequencies and
measures the amount of energy that is deposited into the tissue. Some of the energy is
reflected back to the generator and is not delivered to the tissue or phantom. When the
antenna is well suited or "matched" to the tissue, almost of the energy is delivered to the
tissue.

Another measure of the antenna's electromagnetic properties is the specific absorption
rate (SAR). Energy is delivered and the instantaneous temperature generated at each
point in space is measured. The three- dimensional temperature distribution is used as a
description of the relative microwave energy field strengths.

The microwave heating pattern varies by the antenna configuration. A helical coil
creates a circumferential heating pattern, ideal for positioning parallel to the endocardial
surface. Helical coil antennas may be used to make linear lesions such as for atrial

66
fibrillation ablation. Some dipole antennas may project the ablation energy forward.

Comparision of Microwave Ablation and Radiofrequency Ablation

There is evidence that microwave energy may lead to deeper lesions compared to
radiofrequency energy. In vitro phantom studies demonstrated that temperatures
increased at a greater depth during microwave ablation compared to radiofrequency
energy. Studies in an isolated perfused porcine right ventricular tissue model
demonstrated that lower antenna- tissue interface temperatures achieved comparable
depths of lesions: 70.4 + 13.5 ° C and 83.6 + 7.9 ° C for microwave and radiofrequency
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77
lesions, respectively (p= 0.004). A split tip microwave antenna at 30 Watts for 20
seconds had a lesion depth of 3.8 + 0.7 mm and 2.6 + 0.7 mm for microwave and
radiofrequency lesions in an excised bovine heart model (p<0.0001).67 Such comparisons
of microwave ablation with radiofrequency are highly dependent upon the characteristics

76
of the antenna used. In a study comparing a helical antenna to radiofrequency ablation,
ventricular lesions were longer using microwave ablation but the lesion depth and width

80
tended to be greater with radiofrequency ablation. Therefore, at present, additional data
using different antennas are needed to demonstrate that microwave ablation is capable in
vivo of larger lesion size.

Clinical Applications

A -V Junction

A helical antenna ablation catheter has been used to create chronic A -V block using
microwave energy at 2,450 MHz. Lesions were 4.7 + 2.1 mm in length, 2.8 + 1.3 mm
in width, and 0.9 + 0.25 mm in depth. The mean escape rate was 44 + 10 beats per

6

minute at 6 weeks. Other studies have also demonstrated the ability to perform A -V
79

junction ablation using a microwave ablation system. Subsequent studies have
demonstrated that A -V block may also be created with a forward- firing double helix
antenna.

Ventricular Arrhythmias

Microwave ablation systems that may be able to create lesions with a larger surface area,
depth, and volume, which might be effective in the treatment of many ventricular
tachycardias. There are several factors that affect ventricular lesion size. As the power

79
and duration of microwave energy delivery are increased, the lesion size also increases.
Caution must be taken, however, to avoid excessive temperatures resulting in thrombus

74
formation. Because microwave energy may be delivered despite tissue coagulation,
temperature monitoring during microwave ablation is particularly important. A feedback
control microwave ablation system may be used to achieve a selected target

74
temperature.

Atrial Arrhythmias and Atrial Fibrillation

Microwave energy has been used to successfully ablated aconitine- induced experimental
69

atrial tachycardia. A variety of linear ablation devices have been designed for catheter -
based maze procedures. Intraoperative endocardial linear ablation has been performed
in 18 patients with chronic atrial fibrillation and concomitant surgery for coronary artery
bypass graft surgery and mitral valve surgery. Only three patients had atrial fibrillation

81,82
at 30 days of follow -up.
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In summary, microwave ablation may be a promising technique, potentially capable of
treatment a wide range of ventricular and supraventricular arrhythmias.

ULTRASOUND ABLATION

Ultrasound energy results from the vibration of a piezoelectric crystal when an electrical
83,85

current is applied Ultrasound ablation occurs from the disruption of cell membranes
and tissue heating. Experimental studies using frequencies from 4.5 MHz to 10 MHz

83,85
have demonstrated a depth of up to 8 mm in the left ventricle. Lesion volume
increases even up to 300 seconds in duration of energy delivery. A depth of 8.1 + 1.5

84
mm may be achieved at 300 seconds and 85 degrees C.

Ultrasound energy may also be applied to the atrium and ventricle. It is being used for
ablation of focal atrial fibrillation and for atrial tachycardias. It may be possible to
combine ultrasound imaging and ablation in the same device.86_87

In summary, ultrasound ablation is in the early stages of experimental and clinical
applications. Ultrasound ablation may be particularly well suited for the ablation of
focal atrial fibrillation and ventricular tachycardia. It may be possible to combine
imaging and ablation.

SUMMARY

Modified radiofrequency energy, cryoablation, microwave, laser, and ultrasound
technologies may demonstrate significant advantages over conventional ablation. These
energy sources may permit the creation of larger and longer lesions for the treatment of
ventricular tachycardia and atrial arrhythmias.
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