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ABSTRACT

The spectral properties of almost-Gaussian functions are considered and applied to the characterization to the
second-order approximation in the expansion of the coefficients of almost-perfect optical pulses. Specifically, adding
small amounts of odd-order Hermite-Gaussians to a Gaussian induces a second-order increase in the time-bandwidth
product, while the increase in the time-bandwidth product from adding even-order Hermite-Gaussian is higher-order
and hence smaller. We indicate the class of small perturbations of Gaussian functions which change neither the
temporal profile of the intensity nor the intensity of the spectral profile. We compare the almost-Gaussian functions
with femtosecond temporal width pulses data given by a Ti:Sapphire laser.
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1. INTRODUCTION

The last few years have brought about dramatic advances in the physics and technology of ultrashort-pulse generation
over a wide range of the electromagnetic spectrum. The techniques and technology of ultrafast sciences provide a
unique method for investigating physical phenomena throughout the physical and biological sciences. “Ultrafast” is
a term typically used to describe processes which occur on a picosecond (10~12s) or faster time scale. The primary
sources of coherent short-pulse radiation have been passively mode-locked lasers, which emit continuous trains of
ultrashort optical pulses in the visible and near-infrared spectral region. In recent years, increasing interest has
been shown in ultrashort laser pulses in the ultraviolet and infrared. Novel ultrafast optical modulation techniques
developed and used for self-mode-locked Ti:Sapphire (Ti:S) lasers have allowed powerful femtosecond-pulse generation
with unprecedented stability, reliability, and reproducibility. These advances have led to a revival of the interest in
nonlinear optical processes for frequency conversion of ultrashort pulses. The concomitant appearance of high-
damage-threshold synthetic nonlinear insulating crystals triggered the development of efficient optical parametric
generators and oscillators, as well as harmonic generators, giving rise to a substantial extension of the spectral
coverage of ultrashort-pulse sources in the ultraviolet and infrared. Last but not least, the advent of laboratory-scale
high peak power amplifiers based on solid state or excimer gain media has opened the way towards the efficient
generation of short-wavelength radiation for the characterization of ultrashort pulses has become an important
issue.!”® Commercial manufactures of lasers claim that their equipment can emit almost perfect pulses, although in
everyday experience, that is not true. An almost perfect pulse means an almost Gaussian profile without chirp with
ATAw = 1/2, where A7 is the duration of the pulse and Aw its spectral width.

Roughly, the optical pulse can be characterized by its spectral width (Aw) and by its time duration (A7). The
product (Aw)(A7) can be considered as a measure of the perfection of the pulse. We suppose that a perfect pulse
has no internal structure, and its (Aw)(A7) product is as low as possible. This means, that the squared modulus

of f(t) and its Fourier-transform g(w) have an almost-(Gaussian profile, such that (Aw)?(A7)? ~ 1/4 should be
accomplished.

The characterization of an optical pulse by its intensity profile and intensity of its spectrum is also interesting
due to the analogy with the reconstruction of the transversal structure of a monochromatic beam by its intensity
detected in the image and Fourier planes.®?
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Distortions of the perfect Gaussian pulse are properly described by Hermite-Gauss functions which are self-Fourier
transformed, and which give information about the class of these distortions.®?

Here, we will describe the class of phase distortions which are very difficult to detect using methods proposed in
these papers.

The aim of this work is to consider the spectral properties of almost-Gaussian functions. We will apply them
to the characterization to the second order approximation in the expansion of the coefficients of the almost-perfect
optical pulses given by Ti:S laser.®

2. LINEARIZED APPROACH

_ 2
Let us have some pulse E(t). It’s registration of the intensity profile | E(t)|” and the spectral intensity profile ]E(w)]

Are these quantities enough to distinguish this pulse from another pulse Fy(t), or not? Of course, the intensity is
measured with some error; so, the difference can be characterized by the defined error-bar functions:

U= / (IEQ)2 = |Eo(t)]?)* dt and W = / (|E’(w)|2—|E'o(w)|2)2 dw . (1)

Both functions are. in principle, measurable. For ultra-short pulses, we usually have the autocorrelation in eq.
(1) instead of the intensity. It has been shown that, from the modulus of the function and the modulus of its
Fourier-transform. the function can be effectively reconstructed,*®? at least if the function has finite carriage. This
means that a segment {; < t, exist such that a function E(t) = 0if t < t; or ¢t > t5. So, we could expect that the
difference between E and Ey could cause a significant increase of the error-bar functions &/ and W.

To work with adimensional quantities, we make the transformations t — T‘:’ and w — “x*%, where t¢ is the
“mean” time. A7 1~ the root mean square (rms) width of the pulse, and wy and Aw its spectral bandwidth. Let us

- . . . . 2
assume that both L and Ey are almost Gaussian, after this transformation, i. e., E(t) & Eo(t) ~ e~ T, then we may
expand them by the Hermite-(iauss functions as

oo

E(t) Coln(t)e™ 5 (2)

I

Ey(t) t)e‘T (3)

z:

where H,(t) = H,(t)/\/2" \/=n! and H,(t) are the Hermite polynomials.

For the Hermite-(iauss functions, we have the following theorem:

F (Hn(t)e_%,t;w) = i"Hn(w)e_%. (4)

N

t

-z

This is clear, if we treat H,(t)e as an eigenfunction of the hamiltonian of the quantum harmonic oscillator.® A
different proof of this theorem which uses only the properties of the Hermite polynomials and no quantum analogies
is given by Ortega ef al."

Using this theorem. we can write the expansion for the Fourier-tranforms of functions F and Ejy:

" Sy Hp(w)e™ 7 (6)
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Note that here, coefficients C, and S, are the same as in (2) and (3). Without loss of generality, we may set
Co = Sp = 1, then, we have

IE@)° = |1+ > (Ca+ C3) Ha(t) + Y, CoCrHa(VHI(1)| €77, (7)
n=1 n,l=1 |

|Eo(t)]? = [1 + Y (Sa+ Sp) Ha(t) + > SaS;Ha(t)Hi(t) | €77 (8)
n=1 n,i=1 i

Replacing egs. (7) and (8) and their Fourier-transform in eq. (1), respectively, and after some algebraic manipu-
lations, we get

= o= 4Re(a,)Re(am) men _min=1_ (m+n+1
“= mX—:l f\;l Vorrmammt DT 2 ’ ©)
and in the frequency-domain
2 = 4Re(i" an)Re(1™ ayy,) men _ mitn_1 (m +n+ 1)
W= -1)=7 22 I'{—— . 10
m2=:1 7; V2ntmamlin! (=1 2 (10)

The “deviation” of the pulse E from Ej can be characterized by V =1 + W.

In order to understand the meaning of egs. (9) and (10) let’s consider the special case, a, = €6,}, for some fixed
k. Then, egs (9) and (10) can be written, respectively, as

_4r(k+1/2)

U= ————(R z , 11
T (Re(e)) (1)
and AT(k +1/2)
_ + -k 2
W= T (Re(s*e))™ . (12)
Hence, for odd k& we have
ark+1/2), ,
V=U+W = ————= ,
+ V2mk! el
42k =11,
—\/52%! le]?. (13)
and for even k,
8T (k + 1/2) )
V=U+W = ———(R
* Vo Reted’
8(2k — ! 9
—W(Re {eh)” (14)

2
In V for even k, we have (Re {€})2, but not [¢|* as for odd k. So if we add the small imaginary amount ie™"T Hot),
to the Gaussian pulse, in the first approximation the error bar deviation function does not change!

For example at k£ = 3, V= % EA

while for k = 4. V= 224 [Re {aq}]".

Hence, distortions will be hard to define at the quadratic order of perturbation with respect to ¢, at k = 2{, ay,
= 1€.
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Generally, the distortion which, in the first approximation, does not change U + W, can be represented as a sum
of Hermite-Gaussian functions of the form:

SE(t) = ieHu(t)e™ 7, (15)
=2
where ¢; are small amounts.

In the linearized approximation, E(t) and E(t) + é E(t) have the same square of the modulus and the same square
of the Fourier-transform.

3. NUMERICAL EXAMPLES

In this section, we present some examples to illustrate the statement follows eqs. (13) and (14). In the adimen-
sional coordinates, we simulate the characterization with quadratic detectors of the self-Fourier Gaussian ug(t) =
exp(—t?/2). In the simplest case, we disturb this perfect (aussian ug with small amount of the normalized Hermite-
Gaussian function, so the pulse u has the form

u(t) = (14 aH,(t)) exp(—t?/2) (16)

Figures la and 2b represents the square of modulus of u, while the right side shows the square of modulus of its
Fourier-transform. We plot it at o = 1/4 for n = 3 and o = i/4 for n = 4. As the reference line, we repeat the
case o = 0 (perfect Gaussian) at each plot. Figure (2a) is the same as figure (2b) as it should be for the self-Fourier
function..

In the case of polynomial of 3-rd order, the distortion reveals in the modulus of function in the time-domain (Fig.
la), but not in the frequency-domain (Fig. 1b) for a perturbation complex coefficient with null imaginary part. The
opposite holds for a perturbation with cero real part.

As for the 4-th order polynomial, it gives the self-Fourier function. So. distortions are seen as in the modulus of
the function, as in the modulus of its Fourier transform, while the distortion has non-zero real part (Fig. 2a). But
if we add such distortion with small imaginary coefficient, as in figures 2b, the distortions are almost not seen. As
we have showed, the same would take place for a distortion of form of any Hermite-Gaussian function of even order,
or their linear combination.

Any even function can be expanded with Hermite-Gaussian functions of even order. If this function is real, small
imaginary amount of such a function added to the perfect (Gaussian, is not seen at the second-order characterization.

4. EXPERIMENTAL PROCEDURE

The source of ultrashort laser pulses is a Ti:Sapphire Mira 900 pumped by an Innova 310 Ar3* laser from Coherent.
Pulses are time-measured by a Femtochrome FR103-XL autocorrelator which uses a second harmonic as nonlinearity
and captures the nonlinear signal with a photomultiplier. The autocorrelation traces are displayed and recorded with
the aided of a digital oscilloscope Tektronix model TDS 744A. The experimental setup can be seen in Fig. 3. Digital
data are fitted by Hermite-Gauss series.

The incoming pulses at A = 800 nm in the autocorrelator are splitted by a pellicle beam splitter (PBS) into two
replicas, one of them travells a variable-delay line while the other goes throught a fixed-delay line. A focus mirror
(CM) combine both replica on a KDP nonlinear crystal (NLC) producing a second harmonic signal of fundamental
pulses (A = 400 nm). This signal is captured by a photomultiplier (PMT) tube and displayed on the digital
oscilloscope. A rotating mirror stage (RS) supply the variable-delay line. A corner-cube retroreflector mirror (CCM)
on a sliding stages gives the fixed-delay path; this sliding stage is manually controlled by micromicrometer knob.
Fig. 4 is a schematics of the autocorrelator.
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Figure 1. Intensity of a perfect-gaussian pulse (1). A small real 3rd order Hermite-Gauss perturbation has been
added to the gaussian pulse (2). (a) Square modulus of ug(t) = e=** and u(t) = |1 + %H;;(t)|2 et (b) Square
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Figure 2. Intensity of a perfect-gaussian pulse (1). A small “pure” imaginary 4" order Hermite-Gauss perturbation
has been added to the gaussian pulse (2). (a) Square modulus of ug(t) = e™** and u(t) = |1+ %H4(t)|2e‘t2. (b)

Square modulus of ug(w) = e=" and w(w) = |l + §H4(t)|2 e=%*. Note the symmetry: Fig. (2b) is the same as Fig.
(2a) because they are self-Fourier functions.
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Figure 5. (1) Intensity autocorrelation experimental data, (2) 10**-order Hermite-Gauss summatory fitting.

5. RESULTS

As we said in Section 2, one usually measure the autocorrelation of | E(t)|? instead the intensity itself. Figure 5 shows
an experimental autocorrelation trace (+) sampled at 500 mega samples per second (MS/s) by a digital oscilloscope.
These experimental data were fitted by a 10**-order Hermite-Gauss finite summatory that resembles Eq. (2), whose
coefficients are ¢y = 8.72537 x 1071, ¢; = —8.48329 x 1073, ¢y = —2.59739 x 10~1, c3 = 1.08901 x 1073, ¢4 =
1.35207 x 107%, c5 = 2.81173 x 1073, ¢ = —5.31421 x 1072, ¢7 = —4.92186 x 1073, cg = 4.76055 x 1072, ¢q =
6.36713 x 1073, ¢19 = —1.59361 x 1072

It is clear that ¢ is the dominant coefficient in this approximation. So the envelop of the trace is almost-Gaussian,
hence the envelop of the pulse is also almost-Gaussian. If we take in considerations higher order coefficients, more
time-components of pulses can be determined.

The rms width of the autocorrelator trace is 4.698us, then assuming a factor form of 0.707 for a Gaussian envelop,
we got 108 fs as the rms width of the pulse.

6. CONCLUSIONS

The product of the duration of the pulse and its spectral width is considered as a measure of the perfection of the
pulse. We found the specific class of distortions of an almost-GGaussian wave packet, in the quadratic approximation,
which change nor the modulus of the function neither the modulus of its Fourier-tranform.

It would be interesting to consider some elementary processes which are sensitive to such distortions of a quasi-

Gaussian pulse. Experimentally, to obtain the spectra of the pulse to get a complete characterization of the electric
field of the pulse.

With this work we start a new line of research at our University, where students from chemistry, physics, and
electrical engineering will be training in the new ultrafast laser techniques. Mathematical concepts, such as Fourier
transform, cross and autocorrelation; characterization techiques, like FROG, time-frequency techniques and its vast
applications in physical optics, dispersion, nonlinear optics, and ultrafast spectroscopy.
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