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Abstract

The fractional Fourier transform is an important tool for both
signal processing and optical communities. This paper presents a tutorial

which includes the major related aspects ofthis transformation.

1_ Introduction

The fractional Fourier transform (FRT) operation was shown to be useful for
various spatial filtering and signal processing applications [1-8]. The FRT is a
private case ofthe ABCD matrix. When the ABCD matrix accepts the form of:

rA B1[cos
1_

C Dj[sin4 cos
the ABCD transform becomes the FRT..

In this transform the amount of shift variance may be controlled by choosing the
proper fractional order p for the transformation while 4 equals to p'it/2. When the
fractional order is one, the FRT becomes the conventional Fourier transform that is
totally shift invariant. For fractional order of zero the FRT gives the input
function, i.e. totally shift variant. For any other fractional orders in between, the
transform has a partial amount of shift variance.
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2. FRT- Definition

There are two common interpretations for the FRT. Both defmitions were proven
to be identical as shown in Ref. [7].

2.1 Definition based on propagation in graded index media

The first FRT defmition [9-1 1] is based on the field propagating along a quadratic
graded index (GRIN) medium having a length proportional to p (p being the FRT
order). The eigen-modes of quadratic GRIN media are the Hermite-Gaussian (HG)
functions, which form an orthogonal and complete basis set. The m th member of
this set is expressed as:

(/x I 2
\W) O)

where Hm a Hermite polynomial of order m and a is a constant associated with
the GRIN medium parameters. An extension to two lateral coordinates x and y is
straightforward, with Wm(x)Wn(y) as elementary functions.

The propagation constant for each HG mode is given by:

m =k1(m+iJ k[m+i)
with k=2ir/? and ? is the wavelength. The HG set is used to decompose any
arbitrary distribution u(x)

u(x) = AmkFm(x)

where the coefficient Am of each mode Wm(x) is given by:

Am = ru(x)tpm(x)/hmdx
with

hm =2mm!J/J
Using the above decomposition, the FRT of order p is defined as:

= Am'Fm(x)exp(i13mpL)

i11
2n2

L is the GRIN length that results in the conventional Fourier transform. It was
shown [10] that this defmition agrees well with the classical Fourier transform
definition when pl.



2.2 Definition based on Wigner distribution function

A complete signal description, displaying space and frequency information
simultaneously, can be achieved by the space-frequency Wigner distribution
function (WDF) [12].

In Ref [13] the fractional Fourier transform operation is defmed by following the
signal u(x) while its WDF is rotated by an angle =pit/2. Note that the WDF of a
1-D function is a 2-D function and the rotation interpretation is easily displayed.

In Ref [13], the same rotation strategy was generalized to 2-D signals, i.e. images,
whose WDFs are 4-D distributions. The WDF of a function can be rotated with
bulk optics [13].

This optical setup represents in the WDF space three shearing operations:
x,v-shearing or v,x-shearing. Where v is the spectral coordinate and x is the spatial
one. The x-shearing is performed by free-space propagation, then a lens performs
v-shearing, then again x-shearing is performed by free-space propagation. By
analyzing the optical configuration ofRef [13], Lohmann obtained:

r . 02+2 ( . xxou(x) = ..i[u(x0)]= C1 Ju(xo)exp ut lexpi —i2t . Idxo
2Si tan ) Xf1 sin

with

CI = ex[_
sgn(sin

))_]
.IFxfi sinI

This last equation defmes the FRT for 1-D functions. Generalization for 2-D
functions is straightforward. Note that XfI is also coined the scaling factor.

The two interpretations of the FRT operation have been united into one
formulation through a transformation kernel, as illustrated in Ref [8]:

u(x) = [u(x')](x)= JB(x, x')u(x')dx'
where B(x,x') is the kernel of the transfbrmation and p is the fractional order. The
kernel has two optical interpretations, one as a propagation through GRIN medium
[10] (I (1'

B(x,x)=exp— -

o2nmn! ( ) U)

and the second as a rotation operation applied over the Wigner plane [13]

(x2+x2 .( xx'
B (x, x ) =C1 exp iit — 2tiip

Xf1 tan) )f1 sm
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Note that (i) is the coefficient that connects the two interpretations:

3. Properties of the FRT

. Lineariiy:
The FRT ofa linear combination oftwo input functions u1 and u2 behaves
according to the defmition of linear systems. c1 and c2 are constants.

[c1u1(x)+c2u2(x)]=c1[u1(x)}+c23'[u2(x)]
• Continuity:

Two FRTs with different orders Pi and P2 yield the following theorem:

(c1PI+c2P2)[u(x)] = Zcp1 [3C2P2 (u(x))] = C2p2 [ZiCIPJ (u(x))]
• Parseval's theorem:

Juo(xo)2 dx0 = JIu(x)2 dx
• Shfl theorem:

If the input object is shifted by the amount of a, then its FRT yields:

u(x;a) = iO'[u0(x0 +a)] = exp[ia sin (2x+acos)}u(x +acos)
• Scaling theorem:

If the input object is scaled by the factor of a, then its FRT yields:

where

a

2 —12 (7tpp=—tan a tani—
7t

x
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