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I
A serious talk by one of you on imaging would probably
address:

physics of imaging

biology of systems
processing of information

It would have a concrete result for:

nuclear magnetic imaging

.. positron emission tomography

computer axial tomography
ultrasound
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ii

This will not be possible this morning. What might be
possible is to:

Q review some new and old ideas in statistical signal
processing,

Q- bring a little more intuition for what you already
know,

Q suggest new ways for you to think about what you
do, and perhaps suggest new directions you might
take.

L
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With this in mind, let's

Q Review the geometry of signal processing in
low-dimensional subspaces.

Q- Establish some performance bounds, all of which
have a revealing geometry.

Q- Briefly comment on matched subspace detectors
and their application to spectrum analysis.

Compare time-frequency distributions to scattering
functions for active imaging (beamforming).

a Present ongoing work on multi-rank Bartlett and
Capon beamforming to manage field mismatches,
and connect with recent work on subspace
expanding estimators based on conjugate gradients.
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Linear Models & Subspace Signal Processing

Apriori Algebra:

I

xnHanhiai+Ekaj

n[h1H1]
a1-
A1

L
V SII1 t'ItrasoiiiI 2004: Statistical Signal Processing: pj)IiCatiOflS to Itcanitortittng, I)etcctttttt. anti I stttrtattott — p.525

Linear Models & Subspace Signal Processing

Apriori Algebra: Apriori Geometry:

a H — — — < A> : Noise" Subspace

I

1cH>:
Signal Subsj

x=Ha=h1ai+Ekaj

= [h1 H1]
a1-,
A1

I.
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Linear Models & Subspace Signal Processing

Aposteriori Algebra:

I = EhH1 + E111h1 + PA

(3- way resolution of identity)

Eh1H =L1 (hP1h1)1h<P1

Pjj1 I—H1(HH1y1H
(both idempotent)

Eh1Hh!=h1 & Eh1H1H1==O

(perfect imaging)

L
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Linear Models & Subspace Signal Processing

Aposteriori Algebra: Aposteriori Geometry:

I= EIIH +EH1h1 +PA
(3-way resolution of identity)

Eh1H1 =L?i (hPj1h1)'hP1
P1j =1—H1 (HH1)'H

(both idempotent)

Eh1HIhl=hI & Eh1H1H1=O

(perfect imaging)
I-
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Performance: Matched Subspace Filter

MSE Tr(errorcov)

I-

iTh1 1=
sin2 (0k)

Fxamn1c
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= sin2(2Lsinp)

I

sin2 (2ic sin)
= L/& & sin2 01 = 1— G2()
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=

L1âi =Eh1H1Y

{ai }

{hiaihi(hPihiY'h}

It is the "nearness" of
mode h1 to interfering
modes H1 that accounts
for noise gain!

Super-resolution
waves in a linear

of plane-
array

=
1-G2()

1/sNR—
sin2 01

var(â1)

G2()

SNR

L1 I Super-resolution does not work except at high SNR.
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Cramér-Rao Bound (CRB)
This performance result is exact for a known estimator.
Sometimes the computation for a known estimator is elu-
sive, and at other times the estimator is unknown. Then
we would like to know how much information the data car-
ries about a parameter, without specifying how we extract
this info. If the answer is too pessimistic, we must re-
design our experiment. A

var(01) � 1/(SNRsin2O);:: SNR —

81 < G1>
2 _____sin Oi =

L G = [g1,Gi] ; g. = - : sensitivity
SP1J t ltraSOtIfld2004: Statistical Signal Procccsing: AppIica1ioii to I3camurming. I)ctccton.and I:sOitiaOoiI —

Matched Subspace Detectors

Question: Is there a significant h1 effect in the model,

y=h1a1 +H1A1+,
or are we seeing only

y=H1A1+n?

Test: H0:a1=Ovs H1:a1LO

The uniformly most powerful-invariant, and GLR, test is

z = Pj1y;
* 0

Z•2 —
H1—1 >sinO= <i.

H1

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to l3eamtorming, l)cicciton, and Estimation — p.1025
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The geometry and invariances are these

'1 The detector measures sine2 ofthe angle between
zand<.>.

U- Any rotation or scaling of z leaves sin2O invariant.
This is a good thing.

ci This result extends in many ways to produce
L adaptive detectors.

SPIE t 1trasouiI 2004: Statistical SigiiI Processing: Applications to 3caniioriiiing, I)ctection, 11111 LstiITlaliorI — p.1 125

Example: Estimating Time-Frequency Distribution

Q There is a version of the matched subspace
detector that illuminates much of what is done in
smoothed or multi-window spectrum analysis, and
Rihaczek or Wigner-Ville time-frequency analysis.
<H>: Space of time-limited, band-limited signals,
approximately spanned by r = 2TW independent
vectors.

Spectral multi-
windowism for t0 =0

Time-frequency mul-
tiwindowism for t0 0

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to l3camforming, Dctcction, and Estimation — p.1225
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Proc. of SPIE Vol. 5373     7



Intermediate Recap:

a So far everything comes down to sines of angles
between subspaces.

- The subspaces change from problem to problem.
But the idea, itself, remains unchanged.

Examples:
Q- for estimation, < L1 > & < H1>
a forbounding,<g1> &<G1>
CL for detection, < z > & < Pjjh1>

c for time-freq. analysis, < Slepian>

L
SP1I I itrasotind 2004: Statislical Signal Processing: \pplicalions to Bcaniforrning, I)etcction, and hstiiiiation — p.325

Active Beamforming

c- The problem is to transmit a waveform through a
randomly time varying medium, and then measure
some characteristic, such as the scattering function

SF: Pc,v)ö(T)ö(v) =

The measurement is assumed to be

y(t) = ff(T,v)e12tx(t —T)dvdt

i.e., a linear combination of delayed, dopplered, &
complex scaled signals.

. The problem is to design the signal x so that the SF

I. P may be estimated from y.

SPIh Ltltrasound 2004: Statistical Signal Processing: Applications to l3eamfornitng, l)etectton, and Estimation — p.14'25
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IActive Beamforming

cL I will not go into the details of estimation, but instead
tell you that the best estimator that is quadratic in y
and delay and modulation invariant will be
attempting to estimate

(F1 . RHH) (Af, At) (V;x * P5y) ('c, v),

where 1-' 4: %7 is a Fourier transform pair of
ambiguity (F) and Rihaczek time-frequency dist. (V).

u V(t,f) is the Rihaczek TF-dist. X(f)ei2JIx*(t), an
instantaneous inner product.

;L The problem is to design the signal x for a desired V
orF.

L
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Active Beamforming

The reason this is interesting is that the story for Scatter-
ing Functions (SF), told this way, is dual to the story of
Time-Frequency Distributions (TFD):

SF: (F•RHH)(Af,At) (V*P)(c,v)
Design (Rihaczek) or (ambiguity) for
deconvolution of Vxx*P.

TFD: (F•RHH) (Af,At) (V*P)(t,f)
Design P (time-freq. windows) or RHH (ambiguity)
for convolution %' * P.

I.
SPIE Ultrasound 2004: Statistical Signal Processing: Applications to t3camiorrnittg, t)ctcction, atitl t:stintanon — 1)1625
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Examples:

OW: 1T(Af,At) — V..(t,f) — ö(f)

P(t,f) fP(tf)dt : frequency marginal

Pulse: F(Af,At) = V(t,f) =E(t)
P(t,f) = fP(t,f)df : time marginal

The time-frequency picture is this:

Passive Beamforming

I.

The problem is to image power as a function of
range-doppler-angle. To simplify our arguments,
let's image only as a function of angle, .

We shall approach the issue as a 2-channel
problem.

I

CW: Pulse:

L
SPII I Itrasowid 2004: Statistical Signal Processing: \pplications to Ueainlorniing. l)ctection, and 1-istimation — p.17-25I

l We shall let h1 () stand for the conventional Bartlett
beamformer and H1() stand for the a matrix of
generalized sidelobe cancellers (GSCs) that are
orthogonal to h1(t).

SPIE Ultrasound 20(14: Statistical Signal Processing: Applications to l3eamForniitig, l)etcctioit, and Estimation — p.1825
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There are two things going on here. We are

1 . Imaging with beamformer h to estimate that part of
that looks like h1a1 , originating from angle .

2. Imaging with Generalized Sidelobe Canceller (GSC)
to estimate that part of y that looks like h1a1,

L originating from angle 4.

SPEI t 1traoiind 2004: Statistical SiznaI Processing: Applications to I3canhlorniing, t)clcction, and 1s(inatioti — 1)1925

Two Common Beamformers

The conventional Bartlett beam former computes the
power

= h)y(m)2 h)Rh1() =g)g1 ()
rn=1

The Capon beam former computes the power

Pc() hR'h1() =gP)g1()

I.

2-Channel Model

I BF: h(o) I"
{e['rn.J }

L GSC: H(th)

I

R y(m)y* (m) : sample covariance
m=1

R'2h1 () & G() = R'2H1()
SPIt. Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, l)elcction, and Estimation — p.2025
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The Geometry
< >

- _U

11 =P(Q)

:i1 power out of GSC
< G(ç)>

Capon and GSC orthogonally resolve Bartlett. Thus
P() f; PB() (Kantorovich ineq.). If this is the picture for
a single angle , then the picture as we steer through an-
gles 4 is

L
V SItI I lirasounci 2004: Statistical Signal Processing: .'pplications to I3camiorrnittg, Dctcctton, and Lsttittattott — p.2t 25

The Geometry

Capon and GSC orthogonally resolve Bartlett. Thus
Pc(4) PB() (Kantorovich ineq.). If this is the picture for
a single angle p, then the picture as we steer through an-
gles 4 is

L
SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamlonning, Delection, and Estimation — p.2125

<2(c)>
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Connection to Filtering in Expanding Subspaces

- In the Capon (or MVDL) beamformer, the
computation in the denominator is

hR'h1 =/
= R'h1 : Wiener filter

- But the filter w S known to lie in the L-dimensional
Krylov subspace

which is known to terminate at dimension r << L for
many interesting problems.

ci Moreover it is known how to use conjugate gradients

L to expand < K > from < h > to < h , Rh1 > to ...

SPIE t'ltrasound 2004: Statistical Signal Proccssing: Applications to 13eamForiiing, 1)ctcction, aiid Lstirnahon — p.2225

To make a long story short...

Q— The matrix inversion can be avoided, and the Capon
beamformer may be written as

(r)(& — 1

where is computed recursively with CG's.

•• Bearing response pattern, 1.4--
showing the evolution of the l.2

beamformer with r. 11

O.8

O.6

O.4

0.21

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
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To make a long story short...

- The matrix inversion can be avoided, and the Capon
beamformer may be written as

(r)PC ()=

where (r) is computed recursively with CG's.

ci Bearing response pattern,
showing the evolution of the
beamformer with r.
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To make a long story short...

The matrix inversion can be avoided, and the Capon
beamformer may be written as

p(r)(\ _ 1

C ) —

where r) is computed recursively with CG's.

Q Bearing response pattern,
showing the evolution of the
beamformer with r.

k; ()W(r) ()

L

O8

0.8

04

0.2

::

I \

0 tL /\i
-0.2 0.2 0.4 0.8 0.8 1.2 1.4

I

I. -0.2 0 0.2 0.4 0.8 0.8 1 12 1.4
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To make a long story short...

The matrix inversion can be avoided, and the Capon
beamformer may be written as

1P '() = _______
C

where (r) is computed recursively with CG's.

VS11I- L Itrasound 2004: Statistical Signal Processing: Applications to Ic;imloriniiig, 1)ctcciion. and Estimation — p.2325

To make a long story short...

The matrix inversion can be avoided, and the Capon
beamformer may be written as

r)() = ______

where (r) is computed recursively with CG's.

c. Bearing response pattern,
showing the evolution of the
beamformer with r.

Bearing response pattern,
showing the evolution of the
beamformer with r.

1,4

12

0.8

0.6

0.4

0.2

L 4.2 0 02 0.4 0.6 0.8 1 12 1.4

c)

I

I-
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To make a long story short...

ci The matrix inversion can be avoided, and the Capon
beamformer may be written as

p(r)( \_ 1
C ) — _______

where (r) is computed recursively with CG's.

Q- Bearing response pattern,
showing the evolution of the
beamformer with r.

L Suggests that this way of
beamforming, allows for angle-
dependent dimension reduc-
tion, which is a good thing.

SPIIi ITltrasound 2004; Statistical SinaI Proccsiiig. Applications to l3carnIorniing, 1)clcction, and Estimation — p.2325

Recap
I

1 . Angles between signal and interfering subspaces
determine performance of estimators (and
detectors).

2. Matched subspace detectors actually estimate
angles between measurements and subspaces.

3. Multi-window or smoothed spectrum analysis and
TF analysis can be seen as subspace detection
or ought to.

4. Active beamforming is dual to TF analysis.

L
SPIE Ultrasound 2004: Statistical Signal Processing: Applications tol3eamiorming,J)etection, and Estimation — p.2425
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Recap

5. In passive beamforming, the powers out of the
Capon and GSC beamformers orthogonally
decompose the power out of the Bartlett
beamformer. This explains the higher resolution of
the Capon.

6. There is a connection between Capon beamforming
and conjugate gradient filtering, allowing for
reduced-dimensional beamforming with
angle-dependent dimensions.

7. Euclid and Pythagoras would be comfortable among
us.

L
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