Keynote Address

Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation*

Louis L. Scharf⁺ Electrical and Computer Engineering, and Statistics Colorado State University, Ft Collins, CO 80523

SPIE Ultrasound Meeting, Feb. 18, 2004

* Supported by the Office of Naval Research and the National Science Foundation

+ Special thanks to Magnus Lundberg & Hongya Ge for insights on beamforming & conjugate gradient filtering.

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.1-25

A serious talk by one of you on imaging would probably address:

- physics of imaging
- biology of systems
- processing of information

It would have a concrete result for:

- nuclear magnetic imaging
- positron emission tomography
- computer axial tomography
- ultrasound

This will not be possible this morning. What might be possible is to:

- review some new and old ideas in statistical signal processing,
- bring a little more intuition for what you already know,
- suggest new ways for you to think about what you do, and perhaps suggest new directions you might take.

 $SPIE \ Ultrasound \ 2004; \ Statistical \ Signal \ Processing; \ Applications \ to \ Beamforming, \ Detection, \ and \ Estimation \ - \ p.3 \cdot 25$

With this in mind, let's

- Review the geometry of signal processing in low-dimensional subspaces.
- Establish some performance bounds, all of which have a revealing geometry.
- Briefly comment on matched subspace detectors and their application to spectrum analysis.
- Compare time-frequency distributions to scattering functions for active imaging (beamforming).
- Present ongoing work on multi-rank Bartlett and Capon beamforming to manage field mismatches, and connect with recent work on subspace expanding estimators based on conjugate gradients.

Linear Models & Subspace Signal Processing

Apriori Algebra:

$$\underline{\underline{a}} \qquad \mathbf{H} \qquad \underline{\underline{y}} = \underline{x} + \underline{\underline{n}}$$

$$\underline{x} = \mathbf{H}\underline{a} = \underline{h}_1 a_1 + \sum_{i=2}^{p} \underline{h}_i a_i$$
$$= [\underline{h}_1, \mathbf{H}_1] \begin{bmatrix} a_1 \\ \mathbf{A}_1 \end{bmatrix}$$

⊽ SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation – p.5.25

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.5:25

Linear Models & Subspace Signal Processing

Aposteriori Algebra:

 $\mathbf{I} = \mathbf{E}_{\underline{h}_1\mathbf{H}_1} + \mathbf{E}_{\mathbf{H}_1\underline{h}_1} + \mathbf{P}_{\mathbf{A}}$ (3-way resolution of identity)

 $\mathbf{E}_{\underline{h}_{1}\mathbf{H}_{1}} = \underline{h}_{1} \left(\underline{h}_{1}^{*} \mathbf{P}_{\mathbf{H}_{1}}^{\perp} \underline{h}_{1} \right)^{-1} \underline{h}_{1}^{*} \mathbf{P}_{\mathbf{H}_{1}}^{\perp}$ $\mathbf{P}_{\mathbf{H}_{1}}^{\perp} = \mathbf{I} - \mathbf{H}_{1} \left(\mathbf{H}_{1}^{*} \mathbf{H}_{1} \right)^{-1} \mathbf{H}_{1}^{*}$ (both idempotent)

 $\mathbf{E}_{\underline{h}_{1}\mathbf{H}_{1}}\underline{h}_{1} = \underline{h}_{1} \quad \& \quad \mathbf{E}_{\underline{h}_{1}\mathbf{H}_{1}}\mathbf{H}_{1} = \underline{0}$ (perfect imaging)

Linear Models & Subspace Signal Processing

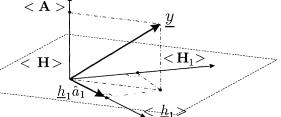
Aposteriori Algebra:

Aposteriori Geometry:

 $\mathbf{I} = \mathbf{E}_{\underline{h}_1\mathbf{H}_1} + \mathbf{E}_{\mathbf{H}_1\underline{h}_1} + \mathbf{P}_{\mathbf{A}}$ (3-way resolution of identity)

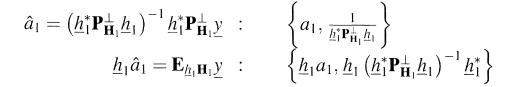
 $\mathbf{E}_{\underline{h}_{1}\mathbf{H}_{1}} = \underline{h}_{1} \left(\underline{h}_{1}^{*} \mathbf{P}_{\mathbf{H}_{1}}^{\perp} \underline{h}_{1} \right)^{-1} \underline{h}_{1}^{*} \mathbf{P}_{\mathbf{H}_{1}}^{\perp}$ $\mathbf{P}_{\mathbf{H}_{1}}^{\perp} = \mathbf{I} - \mathbf{H}_{1} \left(\mathbf{H}_{1}^{*} \mathbf{H}_{1} \right)^{-1} \mathbf{H}_{1}^{*}$ (both idempotent) $\underline{h}_{1}^{\hat{a}_{1}}$

 $\mathbf{E}_{\underline{h}_{1}\mathbf{H}_{1}}\underline{h}_{1} = \underline{h}_{1} \quad \& \quad \mathbf{E}_{\underline{h}_{1}\mathbf{H}_{1}}\mathbf{H}_{1} = \underline{0}$ (perfect imaging)

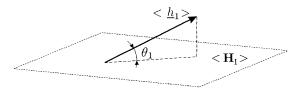


SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.6-25

Performance: Matched Subspace Filter

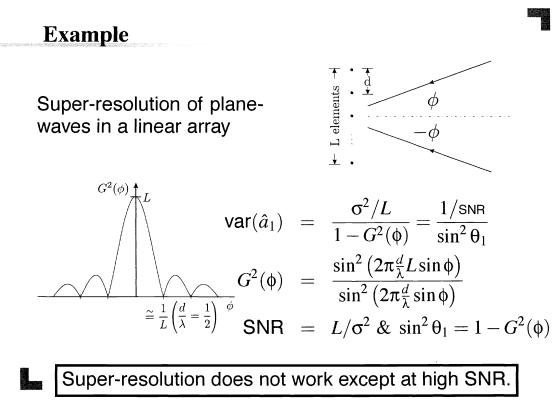


 $\mathsf{MSE} = \mathsf{Tr}(\mathsf{error \ cov}) = \frac{\underline{h}_1^* \underline{h}_1}{\underline{h}_1^* \mathbf{P}_{\mathbf{H}_1}^{\perp} \underline{h}_1} = \frac{1}{\sin^2(\theta_1)}$



It is the "	nearness" of
mode \underline{h}_1 t	o interfering
modes \mathbf{H}_1 t	hat accounts
for noise gain!	

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.7-25



SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.8-25

Cramér-Rao Bound (CRB)

This performance result is exact for a known estimator. Sometimes the computation for a known estimator is elusive, and at other times the estimator is unknown. Then we would like to know how much information the data carries about a parameter, without specifying how we extract this info. If the answer is too pessimistic, we must redesign our experiment.

$$\operatorname{var}(\theta_{1}) \geq 1/(\operatorname{SNR}\operatorname{sin}^{2}\theta)$$

$$\operatorname{sur}^{\langle \underline{g}_{1} \rangle} \operatorname{SNR} = \underline{g}_{1}^{*}\underline{g}_{1}/\sigma^{2}$$

$$\operatorname{sun}^{2}\theta_{1} = \frac{\underline{g}_{1}^{*}\mathbf{P}_{\mathbf{G}_{1}}\underline{g}_{1}}{\underline{g}_{1}^{*}\underline{g}_{1}}$$

$$\mathbf{G} = \left[\underline{g}_{1}, \mathbf{G}_{1}\right]; \quad \underline{g}_{i} = \frac{\partial \underline{x}}{\partial \theta_{i}}: \operatorname{sensitivity}$$

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.9-25

Matched Subspace Detectors

Question: Is there a significant \underline{h}_1 effect in the model, $\underline{y} = \underline{h}_1 a_1 + \mathbf{H}_1 \mathbf{A}_1 + \underline{n},$ or are we seeing only $y = \mathbf{H}_1 \mathbf{A}_1 + \underline{n}?$

Test:
$$H_0: a_1 = 0$$
 vs $H_1: a_1 \neq 0$

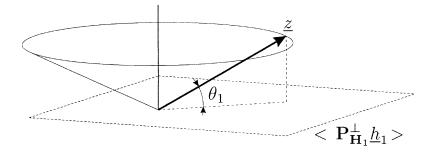
The uniformly most powerful-invariant, and GLR, test is

$$\underline{z} = \mathbf{P}_{\mathbf{H}_{1}}^{\perp} \underline{y};$$

$$\sin^{2} \theta = \frac{\underline{z}^{*} \mathbf{P}_{\mathbf{P}_{\mathbf{H}_{1}}^{\perp} \underline{h}_{1}} \underline{z}}{\underline{z}^{*} \underline{z}} \quad \begin{array}{c} H_{0} \\ \hline \\ R_{1} \\ \end{array} \quad \eta$$

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.10-25

The geometry and invariances are these

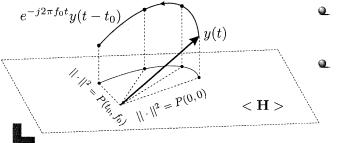


- The detector measures sine² of the angle between \underline{z} and $\langle \cdot \rangle$.
- Any rotation or scaling of \underline{z} leaves $\sin^2 \theta_1$ invariant. This is a good thing.
- This result extends in many ways to produce adaptive detectors.

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.11-25

Example: Estimating Time-Frequency Distributions

- There is a version of the matched subspace detector that illuminates much of what is done in smoothed or multi-window spectrum analysis, and Rihaczek or Wigner-Ville time-frequency analysis.
- < **H** >: Space of time-limited, band-limited signals, approximately spanned by r = 2TW independent vectors.



- Spectral multiwindowism for $t_0 = 0$
- Time-frequency multiwindowism for $t_0 \neq 0$

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.12:25

Intermediate Recap:

- So far everything comes down to sines of angles between subspaces.
- The subspaces change from problem to problem. But the idea, itself, remains unchanged.
- Examples:
 - ${}_{\sim}$ for estimation, $< \underline{h}_1 > \& < \mathbf{H}_1 >$
 - ${}_{\&}$ for bounding, $<\!\underline{g}_1 > \ \& <\! \mathbf{G}_1 >$
 - for detection, $<\underline{z}> \& < \mathbf{P}_{\mathbf{H}_1}^{\perp}\underline{h}_1 >$
 - \bullet for time-freq. analysis, < Slepian >

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.13-25

Active Beamforming

 The problem is to transmit a waveform through a randomly time varying medium, and then measure some characteristic, such as the scattering function

SF:
$$P_{\sigma\sigma}(\tau, \nu)\delta(\tau)\delta(\nu) = \mathsf{E}|\sigma(\tau, \nu)|^2$$

The measurement is assumed to be

$$y(t) = \int \int \sigma(\tau, \mathbf{v}) e^{j2\pi \mathbf{v} t} x(t-\tau) d\mathbf{v} d\tau$$

i.e., a linear combination of delayed, dopplered, & complex scaled signals.

• The problem is to design the signal *x* so that the SF $P_{\sigma\sigma}$ may be estimated from *y*.

Active Beamforming

I will not go into the details of estimation, but instead tell you that the best estimator that is quadratic in y and delay and modulation invariant will be attempting to estimate

 $\left(\Gamma_{xx}\cdot R_{HH}\right)\left(\Delta f,\Delta t\right)\Leftrightarrow\left(V_{xx}*P_{\sigma\sigma}\right)(\tau,\nu),$

where $\Gamma_{xx} \Leftrightarrow V_{xx}$ is a Fourier transform pair of ambiguity (Γ) and Rihaczek time-frequency dist. (*V*).

- $V_{xx}(t, f)$ is the Rihaczek TF-dist. $X(f)e^{j2\pi ft}x^*(t)$, an instantaneous inner product.
- The problem is to design the signal *x* for a desired *V* or Γ .

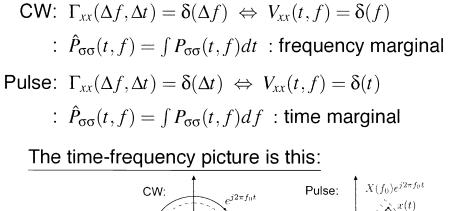
SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.15-25

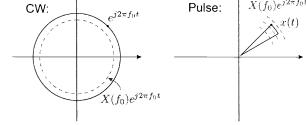
Active Beamforming

The reason this is interesting is that the story for Scattering Functions (SF), told this way, is dual to the story of Time-Frequency Distributions (TFD):

- SF: $(\Gamma_{xx} \cdot R_{HH})(\Delta f, \Delta t) \Leftrightarrow (V_{xx} * P_{\sigma\sigma})(\tau, \nu)$ Design V_{xx} (Rihaczek) or Γ_{xx} (ambiguity) for deconvolution of $Vxx * P_{\sigma\sigma}$.
- TFD: $(\Gamma_{xx} \cdot R_{HH}) (\Delta f, \Delta t) \Leftrightarrow (V_{xx} * P_{\sigma\sigma}) (t, f)$ Design $P_{\sigma\sigma}$ (time-freq. windows) or R_{HH} (ambiguity) for convolution $V_{xx} * P_{\sigma\sigma}$.

Examples:



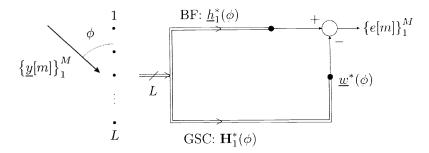


SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.17/25

Passive Beamforming

- The problem is to image power as a function of range-doppler-angle. To simplify our arguments, let's image only as a function of angle, φ.
- We shall let <u>h</u>₁(\$\phi\$) stand for the conventional Bartlett beamformer and H₁(\$\phi\$) stand for the a matrix of generalized sidelobe cancellers (GSCs) that are orthogonal to <u>h</u>₁(\$\phi\$).
- We shall approach the issue as a 2-channel problem.

2-Channel Model



There are two things going on here. We are

- 1. Imaging with beamformer \underline{h}_1 to estimate that part of y that looks like $\underline{h}_1 a_1$, originating from angle ϕ .
- 2. Imaging with Generalized Sidelobe Canceller (GSC) to estimate that part of \underline{y} that looks like $\underline{h}_1 a_1$, originating from angle ϕ .

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.19-25

Two Common Beamformers

 The conventional *Bartlett beamformer* computes the power

$$P_B(\phi) = \frac{1}{M} \sum_{m=1}^M |\underline{h}_1^*(\phi)\underline{y}(m)|^2 = \underline{h}_1^*(\phi)\mathbf{R}\underline{h}_1(\phi) = \underline{g}_1^*(\phi)\underline{g}_1(\phi)$$

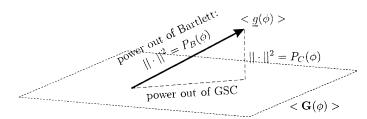
• The Capon beamformer computes the power

$$P_C(\phi) = \frac{1}{\underline{h}_1^*(\phi) \mathbf{R}^{-1} \underline{h}_1(\phi)} = \underline{g}_1^*(\phi) \mathbf{P}_{\mathbf{G}(\phi)}^{\perp} \underline{g}_1(\phi)$$

$$\mathbf{R} = \frac{1}{M} \sum_{m=1}^{M} \underline{y}(m) \underline{y}^{*}(m) : \text{ sample covariance}$$
$$\underline{g}_{1}(\phi) = \mathbf{R}^{1/2} \underline{h}_{1}(\phi) \& \mathbf{G}(\phi) = \mathbf{R}^{1/2} \mathbf{H}_{1}(\phi)$$

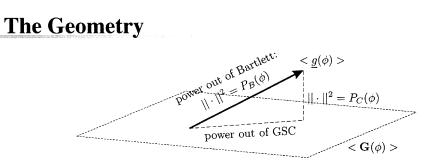
SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.20-25

The Geometry

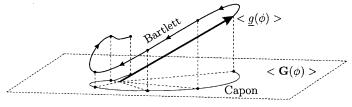


Capon and GSC orthogonally resolve Bartlett. Thus $P_C(\phi) \le P_B(\phi)$ (Kantorovich ineq.). If this is the picture for a single angle ϕ , then the picture as we steer through angles ϕ is

♥ SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation – p.21-25



Capon and GSC orthogonally resolve Bartlett. Thus $P_C(\phi) \le P_B(\phi)$ (Kantorovich ineq.). If this is the picture for a single angle ϕ , then the picture as we steer through angles ϕ is



 $SPIE \ Ultrasound \ 2004: \ Statistical \ Signal \ Processing: \ Applications \ to \ Beamforming, \ Detection, \ and \ Estimation \ - \ p.21.25$

Connection to Filtering in Expanding Subspaces

 In the Capon (or MVDL) beamformer, the computation in the denominator is

$$\underline{h}_{1}^{*}\mathbf{R}^{-1}\underline{h}_{1} = \underline{h}_{1}^{*}\underline{w}$$
$$\underline{w} = \mathbf{R}^{-1}\underline{h}_{1} : \text{ Wiener filter}$$

• But the filter \underline{w} is known to lie in the *L*-dimensional Krylov subspace

$$< K > = < \underline{h}_1, \mathbf{R}\underline{h}_1, \dots, \mathbf{R}^{L-1}\underline{h}_1 >$$

which is known to terminate at dimension $r \ll L$ for many interesting problems.

• Moreover it is known how to use conjugate gradients to expand $\langle K \rangle$ from $\langle \underline{h}_1 \rangle$ to $\langle \underline{h}_1, \mathbf{R}\underline{h}_1 \rangle$ to ...

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.22-25

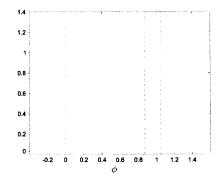
To make a long story short...

 The matrix inversion can be avoided, and the Capon beamformer may be written as

$$P_C^{(r)}(\phi) = \frac{1}{\underline{h}_1^*(\phi)\underline{w}^{(r)}(\phi)}$$

where $\underline{w}^{(r)}$ is computed recursively with CG's.

 Bearing response pattern, showing the evolution of the beamformer with *r*.



∇SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation – p.23/25

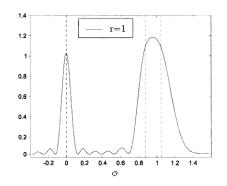
To make a long story short...

 The matrix inversion can be avoided, and the Capon beamformer may be written as

$$P_C^{(r)}(\phi) = \frac{1}{\underline{h}_1^*(\phi)\underline{w}^{(r)}(\phi)}$$

where $\underline{w}^{(r)}$ is computed recursively with CG's.

 Bearing response pattern, showing the evolution of the beamformer with r.



Ø SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation = p.23-25

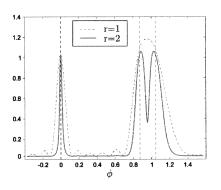
To make a long story short...

 The matrix inversion can be avoided, and the Capon beamformer may be written as

$$P_C^{(r)}(\phi) = \frac{1}{\underline{h}_1^*(\phi)\underline{w}^{(r)}(\phi)}$$

where $\underline{w}^{(r)}$ is computed recursively with CG's.

 Bearing response pattern, showing the evolution of the beamformer with *r*.



♥ SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.23-25

To make a long story short...

 The matrix inversion can be avoided, and the Capon beamformer may be written as

$$P_C^{(r)}(\phi) = \frac{1}{\underline{h}_1^*(\phi)\underline{w}^{(r)}(\phi)}$$

where $\underline{w}^{(r)}$ is computed recursively with CG's.

 Bearing response pattern, showing the evolution of the beamformer with *r*.



♥ SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.23-25

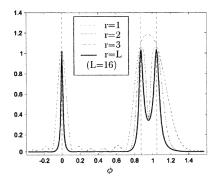
To make a long story short...

 The matrix inversion can be avoided, and the Capon beamformer may be written as

$$P_C^{(r)}(\phi) = \frac{1}{\underline{h}_1^*(\phi)\underline{w}^{(r)}(\phi)}$$

where $w^{(r)}$ is computed recursively with CG's.

 Bearing response pattern, showing the evolution of the beamformer with r.



▼SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.23-25

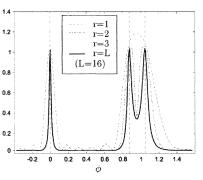
To make a long story short...

 The matrix inversion can be avoided, and the Capon beamformer may be written as

$$P_C^{(r)}(\phi) = \frac{1}{\underline{h}_1^*(\phi)\underline{w}^{(r)}(\phi)}$$

where $\underline{w}^{(r)}$ is computed recursively with CG's.

- Bearing response pattern, showing the evolution of the beamformer with *r*.
- Suggests that this way of beamforming, allows for angledependent dimension reduction, which is a good thing.



SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.23-25

Recap

- 1. Angles between signal and interfering subspaces determine performance of estimators (and detectors).
- 2. Matched subspace detectors actually estimate angles between measurements and subspaces.
- 3. Multi-window or smoothed spectrum analysis and TF analysis can be seen as subspace detection ... or ought to.
- 4. Active beamforming is dual to TF analysis.

Recap

- 5. In passive beamforming, the powers out of the Capon and GSC beamformers orthogonally decompose the power out of the Bartlett beamformer. This explains the higher resolution of the Capon.
- 6. There is a connection between Capon beamforming and conjugate gradient filtering, allowing for reduced-dimensional beamforming with angle-dependent dimensions.
- 7. Euclid and Pythagoras would be comfortable among us.

SPIE Ultrasound 2004: Statistical Signal Processing: Applications to Beamforming, Detection, and Estimation - p.25-25