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ABI
An outline is presented for a program to teach the modelling of optical
components such as couplers, filters, resonators, interferometers, etc. to
senior electrical engineering students. The program exploits the student's
background in linear algebra, circuit analysis and transmission line theory.
It is designed to complement an elective course in microwave engineering.
Numerous simulation examples associated with optical communication,
measurement and sensing provide the experimental environment.

1. IWTROJXJCTION

The rapid progress of optical technology in such traditionally electrical and
computer engineering (E.C.E.) disciplines as communications, digital signal
processing, measurement and sensing, has made it imperative to include optical
engineering in the E.C.E. curriculum. A workshop, held on July 25-27, 1990
near Estes Park, Colorado, recommended a number of topics, such as
optoelectronics and laser electronics, to be part of the electrical
engineering program.

Presently the E.C.E. student receives a good introduction into linear algebra,
circuit theory and transmission line theory, and is given the opportunity
through electives to familiarize herself with concepts in communications and
microwave engineering. A great deal of optoelectronics material can be easily
incorporated into the electives by making use of the students' background in
the areas mentioned above.

The present paper describes a program nd its technical details, implemented
at the E.C.E. Department of Concordla University to teach undergraduates the

operating principles of optoelectronic components, such as optical resonators,
filters, interferometers and modulators of both bulk and surface wave
architecture, using network models and concepts learned in microwave circuit
design. In fact, optical and microwave engineering is taught within the same
sequence of courses to emphasize their interdisciplinary nature and also to
utilize study time more economically.

The program begins with fundamental concepts, such as representations of waves
in terms of field components, representations of four—port circuits
(scatter ing, scattering transfer , impedance transfer , etc . ) , and conservation
principles (losslessness, reciprocity, bilateral symmetry, etc.). As we shall
see later two-port and fourport circuits play a key role In the modelling of
simple optical devices. It is therefore very Important, that the student
understands their properties. Next, elementary optical devices, used in
communication, signal processing and industrial sensing are introduced. These
include the lossless interface, the homogeneous delay line, or Fabry—Perot
etalon, the beamsplitter, the directional coupler and the matched attenuator
(neutral density filter). For each device both scattering and transfer
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representations are given. Students are assigned tasks to combine the basic
components into composite devices, to investigate their characteristics and to
check for violation of the conservation criteria. As a matter of course the
student is introduced to the Michelson and MachZehnder interferometers, the
multimirror transmission line, or the stratified dielectric, the cascaded A
coupler, the unit transmittance interferometers and the frustrated total
internal reflection (FTIR) filter.

With a reasonably good grasp of transmission line concepts the senior
undergraduate can readily comprehend the spectral characteristics of periodic
structures which constitute the next phase of the program. Here we refresh the
student in the linear algebra of cascaded unit cells and solve problems
related to grating structures, Bragg filters, reflective arrays and optical
impedance matching. The principles of the transmission line equivalent of a
unit cell (effective refractive Index concept), and transverse resonance are
developed in detail with illustrative examples drawn from the slab waveguide,

the Bragg waveguide and the FabryPerot cavity.

It is shown that crystalline anisotropy is a cause of conversion between TE
and TM modes and that as a result, a homogeneous anisotropic layer of finite
thickness is analogous to a fourport coupler, while a semiinfinite one acts
as a mode converting termination. In a graduate course these results are used
to treat multilayer optical filters and birefringerit antireflection coatings
and to discuss guidance by superlattices.

Numerical design examples ye assigned. 3Short simulation programs are written
by students, using MATLAR or Mathcad , in which they compute filter and
impedance characteristics, w- diagrams, or performance characteristics as a
function of material or geometrical parameters. The numerical assignments also
draw attention to Inaccuracies incurred in matrix manipulation and to the
difficulties of finding the roots of complex transcendental equations. In the
Laboratory students build and test some of the optical circuits eTcountered
during the lectures. Video recordings of laboratory excercises provide
additional support. The following sections outline the analytical framework of
our program.

a. F'UNLAMENTAL CONCEP

The modelling process described in this paper applies to optical components,
passive or active, which can be characterized by a two-port., or a four—port
circuit, i.e. basically to two—dimensional problems. Included In this category
are some uniform transmission lines, i.e. axially homogeneous lengths of
isotropic or anisotropic media exhibiting gain or loss, the lossless interface
or partially reflecting mirror, lumped element couplers such as the
beamsplitter and the fused fiber coupler, distributed couplers, polarizers,
Fabry—Perot resonators, and composite devices fabricated from the above.
Excluded from this category are those components to which a valid 4x4 matrix
description can not be applied because of the dominantly three—dimensional
nature of the geitry. The desription of the components is similar to the
we 1 1 known Jones and 4x4 matr ix ca 1 cul I , but they are modif led to sul t the
background of electrical engjneers. A variant of the 2x2 matrix analysis,
using so—called 41V matrices , is widely taught in laser electronics courses.
Note also, that the analytical framework taught at Concordia applies to
m crowave and ultrasonics components as wel I. We exploit these analogies in a
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graduate course In integrated Surface Wave Devices.

To utilize the scattering and wave transfer representations one must first
define forward and backward running "waves" as appropriate linear combinations
of electric and8 magnet Ic field components . Of the several definit ions used In
the literature we adopt the so—called travelling wave representation,
normalized so that the power flow carried by a wave Is given by its absolute
value squared.

Consider a TE or s polarized wave propagating in the z direction In a
homogeneous region characterized by a refractive Index n. Assume, that the
field components depend only on x and z. Denoting the tangential field
components of the total field (forward plus backward propagating) by E and

H, the incident and reflected waves a(z) and a(z) are defined by

+ £ 1= -1/2
a(z) Yr YL P E

I it it 0 ya(z) = = — exp(jk x) (1)
a(z) ñ

•bI2TE
1/2

H

where Y,ncos() is the normalized wave admittance in the region, Is the

angle of incidence, ,)0=Vii70 is the free space impedance and the exp(jkx)

factor is to cancel the conjugate factor present In E and in H , in order to
+ y x

make a and a independent of x. A corresponding definition is used in the
case of Th or p polarized fields with a normalized wave admittance of

Y=n/cos().

Having thus defined forward and backward running waves the scattering matrix
of a two-port, illustrated in Fig.1, is defined by

bSa (2)

where b[b b2lT and a=[a a]1 are the terminal parameter column vectors and

S S
s= [; :} (3)

This definition can be extended to any number of terminal pairs. In
particular, the scattering matrix of an anisotropic layer supporting hybrid
modes, or that of a device carrying both TE and TM modes is, like for a
four-port coupler, a 4x4 matrix.

In addition to the "wave" basis we often use also the "voltage-current" basis,
namely g(z), comprising the field components normal to the direction of
propagation. The relationship between g(z) and a(z) is defined by

g(z) = Qa(z) (4)

where
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Q=_i_ (5)
v tY—vY

The voltage—current basis has the advantage of beeing continuous at dielectric
interfaces, whereas the wave basis allows one to evaluate performance
characteristics such as insertion loss and return loss. The port designations
arid the nomenclature for the waves, voltages and currents for a fourport
device are given in Fig.2.

Devices consist usually of concatenated elements, it Is therefore necessary to
represent components by transfer matrices. Of these, we use most often the
Impedance transfer, or matrix, denoted Q for brevity, and the scattering
transfer matrix, denoted A. Referring to Fig.2 and suppressing the omnipresent
expjkx) factor, these representations are defined by

g(O) = Qg(1) and a(O) Aa(1) (6)

where, for the left hand terminal vectors

g(O)[i112E (0) ij1"2E (0) ....,1/2ff(o) rhi'2H(O)lT0 y 0 x 0 0
+ + - T Tand

a(O)=[a1(O) a1(O) a2(O) a2(O)1 =[a b1 a2 b2]

and corresponding definitions apply to the right hand terminal vectors at z=1.
To give the student greater flexibility in analysis and design, and to prepare
her for the diverse approaches encountered In the literature, we introduce
some variants of the scattering transfer matrix A, namely N=A1 and 'I', the
latter beeing defined by

[a1 a2 b1 b2]T T1b3 b1 a3 a4]1 (7)

Note, that T=TTATI where 11 is the permutation matrix obtained by switching

columns 2 and 3 of the 4x4 identity matrix. As part of the introductory
excercises, the student is given a conversion table for the 2x2 and 4x4
representations and invited to prepare a computer program to implement It.

To analyze distributed parameter systems incremental descriptions are used. On
a wave basis, the set of first order differential equations, expressing the
incremental variation of the coupled modes is

8a(z)/ôz = aa (8)
whereas the corresponding set of linear differential equations, on a voltage-
current basis is

ôg(z)/8z = -JR g(z) (9)

Here R and Rg are the appropr late 4x4 I ncremertta I , or coupi Ing matr i ces which

account for the coupling mechanism.

Optical devices usually satisfy certain conservation properties such as
losslessness, reciprocity and bidirectional symmetry. These properties are
reflected In the structure of their matrix representations.9 Thus, for
example, the scattering matrix of a reciprocal circuit is symmetric, that of a
lossless circuit is unitary and the B matrix of a bilaterally symmetric

a
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four—port must satisfy

0100 0100
— 1000 1000R— oooi R oooi (10)

0010 0010
These criteria are built into our simulation programs to provide an automatic
checking facility for any undue violation of the conservation laws caused by
programming or arithmetic errors.

Another fundamental concept is the principle of resonance. Resonance is the
operating condition of lasers, Fabry-Perot cavities and, In the cross
sectional Jane guiding structures. In the latter case we speak of transverse
resonance. The principle of resonance can be conveniently expressed in terms
of a transfer matrix. When, for example, a two—port circuit resonates as a
result of reflective terminations as shown in Fig.1, then

A +A -r'A -rrA =0 (11)11 R12 L21 LR22

must be satisfied, where A are the elements of A and r and r are the
Ii L R

reflection coefficients of the left and right terminations, respectively. The
resonance criterion in (10) can be readily generalized to four-port circuits,
as illustrated In Fig.2. In this case, F'L and rR are 2x2 matrices defined by

{::} TL[J
arid

[2;] rR{] (12)

and the condition of resonance becomes

detiT +T V -r' T -r T r ] = 0 (13)
A SR LC LUR

where the 4x4 T matrix of the circuit has been partitioned into 2x2
submatrices according to

TT
T= A B

(14)
TTCD

The threshold of oscillation in a gain medium for example, is reached when the
existence of outgoing waves does not depend on he presence of incoming waves.
In this case r' =r =o and resonance sets in when

L

det[TJ=TT-TT =0 (15)
A 1122 1221

In the following section we describe some of the applications presented to the
student during the course.

. APPLICATIONS

The first application introduced is the transfer matrix of the interface
between two dielectric regions, denoted 1 and 2. Since the boundary condition
requires that g(1)=g(2) and considering that g(i)=Q(i)a(i), 1=1,2 therefore
a(1)=Aa(2), where
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v'r + v-T
A = f1(1)g(2) = ! 1 2 1 2 1 2 1 2

(16)2
12 12 12 12

The determinant of A is unity. Expression (16) applies regardless of the
polarization of the incident plane wave. Using the conversion table the
student calculates the scattering matrix of the interface and verifies whether
it coincides with that obtained from first principles, namely

=[ 11 (17)
I i: -p •

fY1 cos( ) J7'
where, for TE modes t=Jjt1 . p=r1 and for TM modes c, 'iV pr11 , The

Fresnel formulas provide t and r for both polarizations, power conservation,
p2+t2=1, remains always valid.

As a second application We treat a length of possibly lossy uniform dielectric
with partially reflecting interfaces. This is a generic model for a number of
optical components, such as the thick mirror, the Fabry-Perot etalon, a length
of fiber, or the gap region of a prism coupler or FTIR filter. The transfer
matrix of this device is obtained simply by multiplying the transfer matrices
of the left interface (A1), the delay line (AD) and the right interface (Ar)

in that order. Thus, assuming bilaterally symmetric construction for
simplicity, the transfer matrix of the mismatched delay line of complex phase

delay (p=(u+ffl)J is

A=AAA_1=L11p11e0J11 1-p1IDI 2 1P1i1° e JLP lj
2

.1+p . 2p
cosç + j sinq -..j sinç2 2

1-p 1-p (18)
. 2p .1+p2

.) 2 sinq cosç - j • 2sinç
1.-p 1—p

and the corresponding scattering matrix is

. 2pJ— sinç 1

I 1—p2s= (19)
.1+p2 2p

cos(p + 1 —sinç 1

i-p 1-p

Next the student is introduced to the modelling of forward (codirectional) and
backward (contradirect ional ) couplers . These can be lumped or di str Ibuted , A
beamsplitter e.g. , is a lumped element backward coupler, whereas two channel
waveguides in close proximity constitute a distributed forward coupler.
Numerous other examples from optics, microwaves and ultrasonics can be I isted.
For lumped element couplers, as shown schematically in Fig.3, the scattering
matrix can be obtained by simple inspection, after explaining to the student
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usIn both a physical (referring to microwave couplers) arid an analytic
(SxS 1 ) argument, that the coupled and the uncoupled outputs must be in phase

quadrature. Thus, assuming matched ports and infinite directivity. 1he
scattering matrices of a forward and a backward coupler are, respectively,

0 0 Vf:kj/k o jVk VTi 0

S = vr:;; 0 0 u/k VF
and S = fi-:: jik 0 0 vi-::K

(20)
F' vi-::k jvi 0 0

B vi-::k o 0

j'/R bfi:•R o 0 0 VT:;jV o
where K is the coupling coefficient and ' (04<1) allows for loss.

Distributed couplers are approached via the incremental description given in
(8) which accounts for the evolution of a(z) between z and z+dz. For a matched
forward coupler with perfect directivity and a coupling coefficient c

1
R = 0 C (21)a _ '2

0 C 0

indicating, that the coupled guides are not necessarily Identical (fi13),

thereby allowing to treat electrooptic couplers. The differential equation is
solved by determining the four e igenvectors and e igenva lues of R : U1 and

,c,

1=1 to 4, respectIvely, and writing the solution for a coupler of length I in
the form

aLl) = M(1)a(0) (22)

where W( 1 )UA( 1 )U1 , U is the common modal matrix of R and K, whose columns

are u1, and A(z)=diagEexp(-jK1z) exp(-.jK2z) exp(-j.c3z) eXP(-JK4Z)]. Evaluation
of H and subsequent conversion to the scattering representation yields

0 0 S S
13 14

S = 0 S
S24 (23)F

0 0
13 14

S S 0 0

where S13=exp(-ffl01 ) (cos(1 )jsin(1 )) S24=exp(ffl01 ) (cos(J )+jsin(1 )),

and S1=jexp(ffl01 )sin(1 ) , with ' and =J [) +K2 A

similar route is taken to obtain the transfer and scattering matrices of
distributed backward couplers.

At this point we digress to note, that a homogeneous anisotropic medium of
thickness 1 can also be modelled as a distributed four-port coupler, mixing TE
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and TM modes. The incremental matrix which describes electromagnetic wave
propagation in the x afld z directions through an anisotropic layer with
interfaces in the y—z plane Is obtained from the Maxwel]4equations. For a
dielectric medium in the so-called longitudinal orientation

'3TE

R = •!TEC C
(24)a

C f3
C C 0

indicating, that there is coupling between it and TM modes in both forward and
backward directions. It turns out, that solutions In closed form for MU) and
S can be obtained with relative ease for most uniaxial and biaxial media
encountered In technology. This advanced subject with many of its significant
consequences is brought into reach of students by the elegant circuit
modelling method.

Having developed the modelling of couplers we turn our attention to composite
devices. In particular to couplers with feedback, performing as ring
resonators or interferometers. The circuit models of these either consist of a
four-port with two ports connected by a possibly mismatched and lossy delay
line, like that descrthed by (18) and (19), or it consists of a coupler with
arms terminated by partially transmitting mirrors. The former configuration is

used in ring interferometErs15 and fiber-optic lattice signal processors16 the
latter In optical sensors1 and fiber amplifiers .

By manipulating the linear equations Involving the scattering transfer matrix
of the coupler, we find that the 2x2 A matrix of the two—port that results
when two of the coupler ports, say 2 and 4, are connected by a delay line is

A =
{AA

+
AB (A1 —As) '4A]

(25)

where A is the 2x2 transfer matrix of the feedback circuit, and the 4x4 A
2

matrix of the coupler has been partitioned much like T in (14). ExpressIons
similar to (25) are obtained when the feedback path connects ports 2 and 3, or
3 and 4. The coupler can be forward or backward, lumped or distributed. The
resultant transfer and scattering matrices allow the student to simulate the
wavelength characteristics and to optimize the device with respect to
fabrication parameters such as coupling coefficient, delay line length, etc.

With respect to resonator configurations using partially reflecting mirrors,
the student begins with the generic model shown in Fig. 4. The mirrors, with
reflection coefficients p1 as seen from the coupler, are distanced from the

coupler by delays ço=(a+jf3)1, i=1 to 4. The transfer matrix of the entire

resonator is

AAA AAA
A=AAA = 1A3 1B4

(26)LMR AAA AAA2C3 2D4
where A, the transfer matrix of the coupler has been partitioned as in (14),
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A=dIag [A1 A2] , A=d1agIA3 A41,

1 f exp(j1 2 2exp(-jp1 2A = —--- I
' ,

1,2
V(1—p2) —p12exp(jç12) exp(—j12)

and

I exp(jç3 4) P3 4exp(j3 4)
A = __________ , ,

3,4
v(1.-p:,4) p34exp(—jç34) exp(—jp34)

The analysis of more sophist icated opt ical , microwave and ul trasonic devices,
such as sensors consisting of cascaded Fox-Smith resonators, channel selection
filters, ultrasonic surface wave resonators or Bragg reflectors fabricated
with isotropic or anisotropic media, including ferromagnetics, are assigned to
the student as a term paper. Below we describe some of their results.

In Fig.5 the insertion loss in dB is plotted vs. the phase delay for couplers
with matched feedback. ILl applies to a lumped forward coupler where ports 2
and 3 have been connected, or to a lumped backward coupler where the
connection is between ports 3 and 4. 1L2 applies to lumped couplers regardless
of directionality with ports 2 and 4 connected as in a Sagnac interferometer.
For both curves the coupling coefficient is K0.6, the loss coefficient is
r=O , 1 and the loss coefficient of the delay 1 me is 0 .95.

Fig.6 simulates a ring resonator using a lumped element backward coupler where
ports 3 and 4 are linked by a partially reflecting transmission line, i.e.,
one including imperfect mirrors. The coupling coefficient is K=O.84 and the
reflection coefficient is p=O.2. The diagram shows the insertion loss (IL) and
the return loss (RL) in dB, as a function of the normalized frequency (a).
Notice, that the insertion loss reaches very large values within very narrow
ranges of wavelength. The insertion loss maxima can be shifted by adjusting
the value of p. Results have also been obtained on the distributed $ coupler,
on cascaded Mach-Zehnder interferometers and on resonant tunelling through a

superlattice.
19

.. cONCLUSIONS

An outline for teaching modern optical devices to electrical engineering
students has been presented. The methodology relies heavily on schematic
circuit representation and 4x4 matrix algebra. The treatment is compact,
elegant and produces useful results rapidly. Interested educators are invited
to evaluate the efficiency of our method on published analyses.
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Fig.3. Schematic diagrams of a) forward and b) backward directional couplers

Fig.4. Model of a coupler terminated by partially reflecting mirrors
(reflection coefficient p, as seen from the coupler), distanced from
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Fig.1. Schematic representation of a two—port device with terminal parameters
and reflective terminations
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Fig.2. Schematic representation of a four-port device with terminal parameters

and reflective terminations

—0

—0

1

2

3

4

A A A
L N R

the coupler by delays q=(a+jf3)1 , i1 to 4.
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Fig.5. Insertion loss vs. phase delay for a coupler with two ports

connected by a matched delay line. ILl: lumped forward coupler,
ports 2 and 3 connected, 1L2: lumped forward coupler, ports
2 and 4 connected. In both cases K=0.6, =0.1, transmission
coefficient of delay line: 0.95.
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Fig.6 Insertion loss and return loss vs. B for a ring resonator
consisting of a lumped element backward coupler with ports
3 and 4 connected by a mismatched delay line. K=0.84, p=0.2.
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