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ABSTRACT

The present paper shows mathematical foundations of ICA (independent component analysis) and related sub-
jects of signal representations. Information geometry plays a basic role for elucidating the structure of the
problem underlying signal representation and decomposition. The method of estimating function is used for the
analysis of errors and stability for various ICA algorithms. The nonholonomic method is of particularly interest.

1. INTRODUCTION

There are abundant of signals which we should analyze in the real world. Observed signals are in many cases
mixtures of various components, and we need to decompose these hidden components. Various techniques
have been so far been proposed. The Fourier analysis and wavelets analyses are classical analytical techniques,
and PCA is also a classical statistical technique. Independent component analysis (ICA) is a relatively new
technique which has become popular for these ten years, and its applications are expanding.1, 2 The idea of
ICA opened a way to fortify methods of signal processing, and new techniques are emerging in this field inspired
by ICA, such as sparse component analysis,3 non-negative matrix factorization4 and others. It is important
to understand mathematical structures of these techniques. The present paper intends to summarize their
mathematical foundations, and to overview these new emerging techniques from the mathematical point of view,
based mostly on information geometrical ideas5 of the present author.

2. BASES AND DECOMPOSITION OF SIGNALS

Let us consider vector signals x = (x1, · · · , xn)T ∈ Rn of n dimensions. Signals can be functions x(t) of time,
x(u, v) of space, or y = x(ξ) of input vectors. These functions are infinite-dimensional signals, but similar
treatments are possible. We show various types of representations of signals.

1. Fixed bases
Signals x are decomposed by using a fixed basis {a1, · · · , am}, x =

∑
siai.

The Fourier basis, wavelet basis, and spline basis are well known examples.

2. Variable bases under stochastic criteria
Given a set of observed signals x’s, we search for the basis {ai},

x =
∑

siai, (1)

such that the decomposed signal s = (s1, · · · , sm)T has a specific property. Eq.(1) is represented by the
matrix-vector notation as

x = As, (2)

where A is an n × m matrix. Here, we assume E[x] = E[s] = 0.
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2-1. PCA (Principal Component Analysis):
PCA searches for an orthonormal basis {ai}, satisfying

{
aT

i aj = δij

}
, (3)

such that the decomposed signals si become uncorrelated,

E [sisj ] = 0. (4)

When x, and hence s, are subject to Gaussian distributions, all the components si are independent.
However, they are in general dependent in non-Gaussian cases. Orthonormal bases {ai} are con-
nected by orthogonal transformation (“rotation” of basis), so that PCA is a statistical technique of
decorrelating components by rotations of a basis. The power of a signal is kept invariant,

∑
x2

i =
∑

s2
i (5)

by rotation.
2-2. ICA (Independent Component Analysis):

There are cases where observed signals x are linear mixtures of independent signals s,

x = As =
∑

siai. (6)

In such a case, {ai} are not necessarily orthogonal. ICA is a new framework searching for a linear basis
{ai} such that si become not only uncorrelated but independent. When observations x1, · · · , xt are iid
subject to a Gaussian distribution, the basis {ai} is unidentifiable, having infinitely many solutions.
Hence, we need to use the non-Gaussian structure such as higher-order cumulants, temporal structure
of signals such as temporal correlations or variations of amplitudes over time, etc.
ICA provided a new perspective with signal processing, and stimulated emergence of new ideas and
techniques. The present article focuses on the mathematical structure underlying ICA.

2-3. Adaptive filter:
Given a stationary temporal signal x(t), one may decompose it into

x(t) =
∫

h(t − τ)s(τ)dτ (7)

such that s(τ) is a white sequence. When the signal is a vector,

x(t) =
∫

H(t − τ)s(τ)dτ, (8)

where H(t) is the transfer function matrix. The problem is very similar to the standard ICA, and
some techniques are common.

3. Variable bases under non-stochastic criteria

3-1. Sparse Component Analysis (SCA):
Given x, one may search for a representation

x =
∑

siai (9)

such that many of si are zero or nearly zero. In other words, we search for a basis {ai} such that
non-zero components of s are “sparse”. This is called sparse component analysis.

3-2. Sparse representation under a fixed basis:
Let us consider an overcomplete basis {ai}. In such a case, there are infinitely many ways of repre-
sentations s

x =
∑

siai, (10)

because {ai} are linearly dependent. Given x, one searches for the representation s in which the
number of non-zero components is minimized.

2     Proc. of SPIE Vol. 5818



3-3. Non-negative Matrix Factorization (NMF):
There are cases where x is a linear mixture of non-negative signals. The case of visual signals is a
good example. In such a case, we have techniques of determining the basis {ai} from many observed
x’s.

4. Multilayer perceptrons:
Let us consider a multilayer perceptron, which receives input signal u and emits scalar output y. When it
includes h hidden units, the input-output relation is given by

y =
h∑

i=1

viϕ (wi · u) , (11)

where ϕ is the sigmoidal function (activation function), wi is the weight vector of ith hidden unit, and vi

is a weight from ith unit to the linear output unit. Writing the above as

y = x(u) =
∑

viai(u) (12)

where ai(u) = ϕ (wi · u), we see that {ai(u)} forms a basis in the function space of u. Here {ai(u)} is a
variable basis including adjustable parameters wi. It is known that this type of variable basis representa-
tions has merits over the fixed basis representation.

3. MATHEMATICAL STRUCTURE OF ICA

3.1. Statistical formulation

Let us consider a simplest case, where xt(t = 1, 2, · · ·) are given by

xt = Ast, t = 1, 2, · · · (13)

and A is an n×n nonsingular matrix. We further assume that the components of st are stochastically independent.
Their distributions are unknown, but do not depend on t. The problem is to estimate A and recover st from
{xt}.

The probability density function of s is factorized as

p(s) = r1 (s1) r2 (s2) · · · rn (sn) . (14)

Since x is derived from s, its probability density function is given by

p(x; A, r) = |W |r(Wx), (15)

where W = A−1 and
r(y) = r1 (y1) · · · rn (yn) . (16)

The statistical model (15) of x includes two parameters. One is A or its inverse W which we want to know. The
other is n functions r1, · · · , rn. Given t observations x1, · · · , xt, we can estimate Ŵ , and we can recover st by

yt = Ŵxt. (17)

This is a simple statistical problem when we know r, but when r is unknown, the statiscal model includes
unknown parameters of function degrees of freedom. Such a model is called a semiparametric model, which is
difficult to solve in general.
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3.2. Cost functions
In order to recover s, we use a matrix W , and put

y = Wx. (18)

If the components of y are independently distributed, W = A−1 (more precisely a rescaled and permuted version
of A−1). In this case, y gives the original signal s (except for permutation and rescaling of components).
Therefore, if we have a function l(y), whose expectation

L(W ) = E [l(y)] (19)

is a measure of independence among the components of y, we may use this as a cost function, and a gradient
descent learning algorithm follows,

∆W = −η
∂l(y)
∂W

, (20)

where η is a learning constant.

There is a number of candidates of such cost functions. One is the type derived from the probability density
functions. Assume that we know r1, · · · , rn. Then, the maximum likelihood estimator (mle)6 is the one that
maximizes the log likelihood function. Hence, its negative is

l(y) = − log p(x, W, r)

= − log |W | −
∑

log ri (yi) . (21)

This is a cost function to be minimized, because mle maximizes the log likelihood. When we do not know ri,
choose arbitrary density functions qi (yi), and define

l(y) = − log |W | −
∑

log qi (yi) . (22)

This also works as a cost function,7 and the true W is at its critical point. There is an information theoretic
interpretation on this function. But there is no guarantee that the true W minimizes it, so that one should
choose qi carefully. The stability analysis is required for this purpose.

Another idea is based on cumulants. The central limit theorem shows that, given n independent signals si,
the distribution of their linear combination or mixing

x =
∑

wisi (23)

converges to a Gaussian distribution as n tends to infinity. The Gaussian distribution has no higher-order
cumulants (higher than the second). In general, the absolute values of higher order cumulants decrease by
mixing independent signals.

Hence, one may use the cumulant, such as
∑

Cum
[
y4

i

]
,

∑
Cum [yi, yj , yk, yl] , etc. (24)

as a cost function,8 together with some constraints on the magnitude of W . Here, cum denotes the cumulant
function, for example

Cum [yi, yj, yk, yl] = E [yiyjykyl]
− E [yiyj ] E [ykyl] − E [yiyk] E [yjyl] − E [yiyl] E [yjyk] . (25)

In any case, for a function f(y) of y, we have its gradient or the total differential df with respect to W by

df(y) = df(Wx) = f ′(y)dWx = f ′(y)dWW−1y. (26)

The gradient ∇f(y) = ∂f(y)/∂W is easily calculated from this. This is a useful formula leading to various
learning algorithms.
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3.3. Natural gradient algorithm9

The gradient of a function ∇l(W ) represents the steepest direction in which f(W ) changes, provided the space
of parameters W is an orthonormal Cartesian coordinate system in a Euclidean space. However, here is the
space of all non-singular matrices W , called the general linear group Gl(n), in the present case. It is a Lie group,
which is not a Euclidean but Riemannian space.

Let dW be a small change of W at point W . We want to have an invariant metric to define the squared
length of dW . We map W to the unit matrix I by multiplying W−1 from the right. Then W +dW is mapped to

(W + dW )W−1 = I + dWW−1 = I + dX, (27)

so that dW at W corresponds to
dX = dWW−1 (28)

at I. We postulate that squared lengths of dX and dW are the same,

‖dX‖2
I = ‖dW‖2

W . (29)

Moreover, because of the isotropy of I, it is natural to define

‖dX‖2
I = tr

(
dXT dX

)
. (30)

Then, we have
‖dW‖2 = tr

(
W−T dWT dWW−1

)
. (31)

This is an invariant Riemannian metric in the space of W .

The steepest direction of function l(y) is given by the natural gradient, which, in this case, is given by

∇̃l(y) = ∇l(W )WT W. (32)

This is the Riemannian gradient, called the natural gradient.10 The learning algorithm based on the natural
gradient in general takes the form

∆Wt = −ηt

(
I − ϕ(y)yT

)
W , (33)

where ηt is learning constant, ϕ(y) = (ϕ1 (y1) , · · · , ϕn (yn))T ,

ϕi (yi) = − d

dyi
log qi (yi) . (34)

The performance of the natural gradient is equivariant,11 that is, its dynamic behaviour is the same whichever
the true W is. Hence, even when W is close to a singular matrix, it works well.

4. MATHEMATICAL FOUNDATION BY ESTIMATING FUNCTIONS

4.1. Estimating functions
An unbiased estimating function12 gives a universal technique to obtain an estimator in a semiparametric sta-
tistical model. Consider a matrix function F (x, W ) of x and W , which does not depend on unknown r1, · · · , rn.
When it satisfies

EA [F (x, W )] = 0, (35)

when W = A−1, and is not equal to 0 when W is different from A−1 in a neighbourhood of the true A−1,
whichever r1, · · · , rn one chooses, the matrix function F (x, W ) is called an unbiased estimating function.13

Here, EA denotes expectation is taken with respect to p
(
x; A−1, r

)
.

When an estimating function exists, given observations x1, · · · , xt, we have the estimating equation

t∑

i=1

F (xi, W ) = 0, (36)

Proc. of SPIE Vol. 5818     5



because the right-hand side approximates t times the expectation with respect to the true distribution. We can
also have the related learning algorithm

∆Wt = −ηtF (xt, Wt) . (37)

It is easily proved that
F (x, W ) = I − ϕ(y)y, (38)

where y = Wx, is an estimating function.

There are many estimating functions. Let R(W ) be a reversible linear operator which maps a matrix to a
matrix depending only on W . Then,

F̃ (x, W ) = R(W ) ◦ F (x, W ) (39)

is again an estimating function.14 The estimating equations are the same for both F and F̃ , but the dynamic
properties are quite different for the learning algorithms using F and F̃ . In particular, for some R, the true
solution is a stable equilibrium while it is unstable (saddle) for other R.

4.2. Error and stability analysis

We first show the error of estimation. Let Ŵ be the solution of the estimating equation, and W be the true A−1,
and denote the error by

∆W = Ŵ − W. (40)

We further put
∆X = ∆WW−1, (41)

which is convenient, because the error in the recovered signal is given by

∆s = ∆Wx = ∆Xs. (42)

From the Taylor expansion, we have

0 =
∑

F (xi, W + ∆XW ) =
∑

F (xi, W ) +
∂F

∂W
∆XW (43)

We use the following notation,
∂F

∂X
=

∂F

∂W
WT , (44)

and

K = E

[
∂F

∂X

]

(45)

which is a quantity having four indices, because it is the derivative of a matrix with respect to a matrix. We
then have

∆X = − 1√
t
K−1

{
1√
t

∑
F (xi, W )

}

. (46)

Since E [F (xi, W )] = 0,
1√
t

∑
F (xiW ) (47)

converges to the Gaussian distribution with mean 0 and variance-convariance matrix (having four indices)

G = E [F (x, W )F (x, W )] , (48)

and hence, the error is calculated as

E [∆X∆X ] =
1
t
K−1GK−1. (49)
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Now we use the Newton method to solve the estimating equation adaptively. We use K, and put

F ∗(x, W ) = K−1F (x, W ), (50)

which is called the standard estimating function.14 We have

K∗ =
∂F ∗

∂X
= I. (51)

Then, the error is given by

D [∆X∆X ] =
1
t
E [F ∗F ∗] , (52)

and the true W is stable.

The operator K is calculated explicitly for (21). Let us define the following quantities

ni = E
[
s2

i ϕ
′
i (si)

]
, (53)

ki = E [ϕ′
i (si)] , (54)

σ2
i = E

[
s2

i

]
, (55)

under the scale condition
E [siϕ (si)] = 1. (56)

Then, the components of the operator K is given by

Kij,kl = E
[
ϕ′

i (si) s2
j

]
δjlδik + δilδjk. (57)

We can invert K, and the standard estimating function is given by

F ∗
ij(x, W ) = cij

{
kjσ

2
i ϕ (yi) yj − ϕ (yj) yi

}
, (58)

cij =
1

kikjσ2
i σ2

j − 1
. (59)

The algorithm is always stable14, 15 whatever ϕi we choose, but we need to determine ki and σ2
i adaptively from

data.

Finally, we remark that the method of estimating function is useful even in the case where st has temporal
correlation.16 The joint diagonalization method such as JADE17 is a special example of the estimating function.

4.3. Nonholonomic algorithm
For an estimating function F (x, W ), its diagonal term Fii is used to determine the magnitute of the recovered
signals. For example, in the case of (33), the magnitude of si is determined from

E [siϕ (si)] = 1. (60)

However, the magnitudes of the source signals are not identifiable, and can be determined arbitrarily. There-
fore we may choose the diagonal terms of F or F ∗ arbitrarily. What will, then, happen if we put Fii = 0. Then,
the magnitudes are not fixed, and fluctuate arbitrarily depending on the observed x and the current state. This
is convenient for time varying source signals. Some source si(t) becomes very small or even 0 at some time
interval. If we force even such a small or 0 signal to have a fixed magnitude, this instabilizes the algorithm.
Hence, it looks better to let the magnitudes be free.

The constraints Fii = 0 correspond to

(∆X)ii =
(
∆WW−1

)
ii

= 0 (61)

in the algorithm. However, these constraints are “nonholonomic”, and allow free motions of the amplitudes.18

It is shown by computer simulations that the non-holonomic algorithm works well when the number of sources
is unknown and is smaller than that of sensors.
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5. SPARSE COMPONENT ANALYSIS

5.1. Basis of sparse representation

Given signals x, we consider the following problem of minimizing

∑

t





∣
∣
∣
∣
∣
xt −

n∑

i=1

si(t)ai

∣
∣
∣
∣
∣

2

− λ

n∑

i=1

log
(
1 + (si(t))

2
)


 . (62)

The first term is the squared error of representations of x with basis (a1, · · · , an), while the second term requires
|si| to be small, hopefully to be 0. Under this condition, Olshausen and Field19 search for the basis. Here, λ
is the Lagrangean multiplier, and when λ = 0 the problem reduces to PCA. It is possible to give the Bayesian
interpretation of this criterion.

Because of the second term, the selected basis gives such s of which most components are zero or small,
and only a small number of components are significant. Hence, this called the sparse representation. It is used
nonlinear denoising and others, opening a new field of signal representation.

5.2. Overcomplete basis and various solutions3

The sparse representation poses an interesting problem. Let us fix a basis {ai}, which is overcomplete, that is
it includes dependent basis vectors. For the overcomplete basis {ai}, the decomposition of x,

x =
∑

siai = As (63)

is not unique. Indeed, let r be a vector belonging to the null space N of A,

N = {r|Ar = 0} . (64)

Then, for a solution s,
s = s0 + r, r ∈ N (65)

is also a solution.

Among all the solutions, we search for the one that minimizes the p-norm,

sp = arg min
As=x

‖s‖p . (66)

The solution s2 is given by
s2 = A†x, (67)

where A† is the generalized inverse of A. The s∞ is the one that minimizes the maximum absolute value of the
components of s. The s0 is the one that minimizes

∑
|si|0 = the number of non-zero components of s (68)

Hence, s0 gives the sparsest solution.

It is interesting to know how sp changes depending on p. Let us consider the case where spi ≥ 0, that is, sp

lies in the first quadrangle (the other case can be treated in the same way). In this case, the set M of solution,

M = {s|As = x} , (69)

is a subspace passing through the first quadrangle, and whose normal vectors n satisfy ni ≥ 0.

Observations. The solution s∞ is the intersection of the 45◦ line s1 = s2 = · · · = sn and M . As p
decreases sp moves continuously, and s2 is the orthogonal projection of the origin to M . As p further decreases,
sp moves toward the corner of M at which many si = 0. When p = 1, it reaches the corner. As p further
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decreases, it stays at that corner, but there may exist a number of local minima at various corners, and the s1

can be one of the local minima of sp (p < 1).

This is understood from the following. Let us consider the p-indicatrix

sp
1 + · · · + sp

n = c. (70)

This is convex for p ≥ 1, but is concave for p < 1. When c is small, it lies below M (in the side of origin). As c
increase, it eventually touch M . This first contact point is sp.

5.3. Sparse solution

The sp (p > 1) is not sparse, because all the components of sp are not zero. However, sp (p ≤ 1) is sparse
in the sense that many components are zero. When A is n × m matrix (m > n), at most n components are
non-zero. The s1 is easy to obtain by solving the LP problem or by the gradient descent method.

The s0 is the sparsest solution. A question naturally arises: What is the condition that guarantees s1 = s0.
There are lot of interesting theories concerning this problem.20 We are searching for the following problem (Li,
Amari and Cichocki21):

Let A be a random n × m matrix (m > n), and let s∗ be a randomly chosen sparse vector which has k
non-zero components. Let s1 be the L1-solution of the problem

As = x, (71)

where x = As∗. What is the probability

P (n, m, k) = Prob{s1 = s∗} . (72)

When m = αn, k = βn, n → ∞, how is the asymptotic result,

P (α, β) = lim
n→∞P (n, αn, βn). (73)

6. NON-NEGATIVE MATRIX FACTORIZATION

When the source signals are limited in the first quadrangle, s1 ≥ 0, · · · , sn ≥ 0, and the probability density is
positive, we can use another technique (NMF) to determine A from observed x’s (x = As).

The first quadrangle of the space of s is mapped by A to the inside of the cone spanned by ai in the space
of x. This is clear from

x =
∑

siai, si ≥ 0. (74)

Hence, observing a number of x, we can estimate ai’s from the distribution of x’s without assuming independency
of si. There have been proposed a number of algorithms.

7. CONCLUSIONS

We have overviewed mathematical structures of ICA, and also new techniques of sparse component analysis and
non-negative matrix factorization. Information geometry plays a fundamental role for elucidating the math-
ematical structures. We have given a unified standpoint of analyzing the techniques of ICA searching for a
general framework for its error analysis and stability analysis. New techniques of sparse component analysis and
non-negative matrix factrization are touched upon.
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