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ABSTRACT

Ab initio quantum trajectory simulations of a cavity QED system comprising an atomic beam traversing a
coherently driven standing-wave cavity are carried out. The intensity correlation function in transmission is
computed and compared with the experimental measurements of Rempe et al. [Phys. Rev. Lett. 67, 1727 (1991)]
and Foster et al. [Phys. Rev. A 61, 053821 (2000)]. It is shown that atomic beam density fluctuations induced
by the motion of the atoms can account for the reported disagreement of the experimental results with theory
(by an overall scale factor of 2 to 4). Moderate misalignments of the atomic beam produce large intracavity
photon number fluctuations which significantly degrade the quantum correlations. One parameter fits to the
experimental data are made in the weak-field limit with the adjustable parameter being the atomic beam tilt.
Departures of the experimental conditions from the weak-field limit are discussed.
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1. INTRODUCTION

Atom-cavity systems have been studied extensively, first to explore the differences between classical and quantum
phenomena and also for their possible application in quantum information science. To observe their quantum
fluctuations in the optical regime, experimental measurements of the intensity correlation function1–4 and con-
ditional homodyne correlations5–7 have been performed. Such measurements reveal various features of cavity
QED dynamics, e.g., the so-called vacuum Rabi oscillation.8,9 More importantly, nonclassical correlations are
observed, providing unequivocal evidence of quantum field effects in cavity QED.10–13

Most such experiments use thermal atomic beams1–3 and accurately modeling these experiments is a chal-
lenging task. The atomic beam typically carries hundreds of atoms into the interaction volume. Thus, the
theoretical description is contained within an enormous Hilbert space; the Hilbert space grows and shrinks with
the number of atoms, which inevitably fluctuates over time, and the atoms traverse a spatially varying cavity
mode so their coupling strengths change in time. A realistic model must take all of these effects into account.
Considering the weak-field limit, a minimal truncation of the Hilbert space at the two-quanta level may be made.
If the atomic motion is then neglected, relatively simple analytic formulas can be derived,10, 12 including, most
generally, different coupling strengths for different atoms.1 Such weak-field formulas that neglect atomic motion
form the basis of all previous comparisons of theory with experimental results.1, 3, 14

Despite the popularity and qualitative correctness of these formulas, a persistent quantitative discrepancy with
the measurements remains unexplained. The first experimental results were slightly shifted and the amplitude
of the Rabi oscillation scaled down by a factor of 4 in order to achieve reasonable agreement with the theory;1

scaling down by a factor of more than 2 is needed for more recent data sets3 (see Fig. 1). While Foster et
al.3 achieved a reasonable fit by introducing detunings into the theory to account for Doppler broadening, it is
questionable whether their procedure accurately represents the conditions in a standing-wave cavity.

In this paper we attempt to explain the persistent disagreement between theory and experiment by including
the one feature omitted by the previous theoretical treatment: the motion of the atoms and the atomic beam
density fluctuations induced by that motion. In this regard, any misalignment of the atomic beam from perpen-
dicular to the cavity axis is of paramount importance, since it gives rise to atomic motion through the standing
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wave—an amplitude modulation of the dipole coupling strength. For misalignments on the order of 10mrad a
significant enhancement of the background fluctuations of the intracavity photon number can result. We propose
this as a feasible mechanism underlying the observed degradation of the quantum correlations. In support of the
proposal we report excellent fits to the experimental data obtained from ab initio quantum trajectory simulations
made with only one adjustable parameter, the tilt of the atomic beam.

We present our physical model and review the weak-field theory without atomic motion in Sec. 2. The quan-
tum trajectory treatment including atomic motion is introduced in Sec. 3. Here we demonstrate the importance of
density fluctuations by calculating semiclassical intensity correlation functions that include the effects of atomic
motion but omit the quantum jump that accompanies each photon detection in the full quantum calculation.
We show that in the presence of a moderate atomic beam tilt the internal system state fails to follow the density
fluctuations adiabatically, which contributes significantly to the degradation of the quantum correlations.

The results of full ab initio quantum trajectory simulations are presented in Sec. 4. Best one parameter fits to
sample data sets from the experiments of Rempe et al.1 and Foster et al.3 are shown. Good agreement is obtained
in the former case, and excellent in the latter, using atomic beam tilts on the order of 10mrad. The simulations
are carried out in the weak-field limit using a two-quanta truncation of the Hilbert space (approximately 20,000
equations for 200 atoms).

Based on the photon counting rates reported, the experiments are carried out in the vicinity of, but strictly
outside, the weak-field regime. Spontaneous emission is then an important consideration since the two-quanta
truncation of the quantum trajectory equations assumes that no emissions, either spontaneous or from the
cavity, other than the “start” and “stop” emissions triggering the time-to-digital converters, occur within a few
correlation times of any “start”. It would appear that this is not true in the experiments. Spontaneous emissions
do occur; for strong coupling and weak excitation, they are far more likely than emission from the cavity. This
requires the quantum trajectory equations to take into account sequences of three or more quantum jumps, for
which a minimal truncation of the Hilbert space at three or more quanta is needed. We present results in Sec. 4
based on a three-quanta truncation (approximately 1,000,000 equations for 200 atoms). They are consistent with
the photon counting rates reported by Rempe et al.1 but the intensity correlation function is significantly altered
at the count rates reported by Foster et al..3 Our conclusions are presented in Sec. 5.

2. MODEL AND REVIEW

Atomic beams provide a convenient means of delivering atoms into an interaction volume. They have been used
extensively for experiments in cavity QED at both optical and microwave frequencies. Typically, the beam is
generated from an atomic vapor produced in a small oven, from which atoms escape via a collimated opening.
Atoms exit the oven at some average rate, but otherwise in a random fashion, with speeds governed by the
Maxwell-Boltzmann distribution modified by a velocity factor to account for the likelihood of escape. Thus,
experiments have control over the mean density, average speed, and direction of the atomic beam, but not over
the exact number of atoms in the interaction volume, or the speeds and locations of the atoms. Fluctuations in
the number and locations of the atoms are rather easily taken into account, and were included in the earliest
comparisons of measured intensity correlation functions with theory.1 The role of atomic motion is not so easily
discerned.

Atomic beam fluctuations are particularly significant at low densities.15 The densities of concern to us are
quite high, characterized by the parameter N̄eff = 18 in the experiment of Rempe et al.16 and N̄eff = 13 in
the experiment of Foster et al.,17 where N̄eff is the average number of atoms located within the cavity mode
waist. Although the number of atoms contributing to the interaction is larger than N̄eff by approximately a
factor of ten,15 and therefore on the order of 150 atoms, we find, nevertheless, that fluctuations of the atomic
density produce fluctuations of the intracavity photon number that are far larger than the quantum fluctuations
to be measured. The reason for this is the atomic motion; in particular the fact that this motion is not slow
compared to the time scales governing the internal cavity QED dynamics (vacuum-Rabi frequency and damping
rates). Fast moving density fluctuations excite vacuum Rabi oscillations, but with a classical (bunched) rather
than nonclassical (antibunched) signature in the intensity correlation function. Significant degradation of the
measured quantum correlations results. We model this behavior on the basis of a master equation that includes
the motion of each atom parametrically.
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2.1. Master Equation for Cavity QED with Atomic Beams

We consider a collimated atomic beam traversing a standing-wave cavity, driven coherently at the resonant
frequency of the TEM00 mode. At time t there are N(t) atoms within the interaction volume, which we define
by15

VF ≡ {(x, y, z) : g(x, y, z) ≥ Fgmax}, (1)

with cut-off parameter F < 1 and

g(x, y, z) = gmax cos(kz) exp
[−(x2 + y2)/w2

0

]
, (2)

where gmax is the atomic dipole coupling constant at an antinode of the cavity mode, k = 2π/λ is the wavenumber,
λ the resonant wavelength, and w0 is the cavity mode waist. The N(t) two-state atoms are resonant with the
cavity field, and the atom-cavity interaction is described by the master equation in the interaction picture

ρ̇ = E [â† − â, ρ] +
N(t)∑

j=1

g(rj(t))[â†σ̂j− − âσ̂j+, ρ]

+κ
(
2âρâ† − â†âρ− ρâ†â

)
+
γ

2

N(t)∑

j=1

(2σ̂j−ρσ̂j+ − σ̂j+σ̂j−ρ− ρσ̂j+σ̂j−) , (3)

where rj(t) is the location of atom j, E is the strength of the external field, γ is spontaneous emission rate, κ
is the damping rate of the cavity field, â† and â are creation and annihilation operators for the cavity mode,
and σ̂j+ and σ̂j− are creation and annihilation operators for atom j. Both N(t) and {rj(t); j = 1, . . . , N(t)} are
changing in time in accord with the stochastic model set out in Sec. 3.1.

2.2. Weak-field Formula without Atomic Motion

The implementation of our model, even as a quantum trajectory simulation, faces serious technical difficulties
due to the enormous size of the Hilbert space. We anticipate that for N̄eff = 18 and F = 0.1 the number of
atoms in the interaction volume commonly exceeds N(t) = 200; in fact, for the simulations reported in Sec. 4.1 a
cut-off F = 0.01 was used and N(t) commonly exceeded 400 atoms. The solution to this problem is to truncate
the Hilbert space at the two-quanta level, the minimum permitted if two-photon correlations are to be addressed.
The truncation may be justified by expanding the density matrix in powers of E/κ;18,19 to dominant order, the
density matrix may be factorized as a pure state ρ = |ψ〉〈ψ|.10, 12

The physical basis of this weak-field approximation is made clear by a quantum trajectory unraveling of
the master equation dynamics. If we assume that for a few correlation times before and after a “first” photon
emission from the cavity (the “start” to the time-to-digital converters) there are no spontaneous emissions or
further cavity emissions, then the quantum state is determined by the between-jump evolution only; thus, it is
pure and satisfies the standard non-unitary Schrödinger equation [Eq. (22)]. The weak-field approximation is
therefore justified so long as the scattered photon flux is much less than the inverse of the intensity correlation
time. It allows us to write the conditional system state as

|ψREC(t)〉 = |00〉 + α(t)|10〉+
N∑

j=1

βj(t)|0j〉 + η(t)|20〉 +
N∑

j=1

ζj(t)|1j〉 +
N∑

j>k=1

ϑjk(t)|0jk〉, (4)

where |00〉 is the ground state (no photons in the cavity and no atoms excited), |n0〉 has n photons in the cavity
and no atoms excited, |1j〉 is the two-quanta state with one photon in the cavity and the j th atom excited, and
|0jk〉 is the two-quanta state with no photons in the cavity and the j th and kth atoms excited. Neglecting the
atomic motion and considering a fixed spatial configuration {rj} of N atoms, the intensity correlation function
obtained from Eqs. (3) and (4) is1, 10

g
(2)
{rj}(τ ) =

{
1 − [1 + ξ(1 + C{rj})]S{rj} − 2C{rj}

1 + (1 + ξ/2)S{rj}
e−

1
2 (κ+γ/2)τ

[
cos

(
Ω{rj}τ

)
+

1
2(κ + γ/2)

Ω{rj}
sin

(
Ω{rj}τ

)
]}2

, (5)
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with vacuum Rabi frequency

Ω{rj} =
√
N

{rj}
eff g2

max − 1
4 (κ− γ/2)2, (6)

effective number of atoms in the interaction volume

N
{rj}
eff =

N∑

j=1

g2(rj)/g2
max, (7)

and

S{rj} ≡
N∑

j=1

2C1j

1 + ξ(1 + C{rj}) − 2ξC1j
, (8)

where we define

C{rj} ≡
N∑

j=1

C1j, C1j ≡ g2(rj)/κγ, ξ ≡ 2κ/γ. (9)

In reality the configuration {rj(t)} and number of atomsN(t) are both functions of time. Atoms are delivered
to the interaction volume by the atomic beam at mean density15

� = 4N̄eff/πw
2
0l, N̄eff = N

{rj}
eff , (10)

where l is the atomic beam width and the overbar denotes the ensemble average over configurations and number
of atoms. Previously it has been assumed that the average speed of the atoms is sufficiently low for the system
state to adiabatically follow the spatial configuration. Under this assumption, the intensity correlation function
is written as the ensemble average20

g(2)(τ ) =
〈â†(0)â†(τ )â(τ )â(0)〉{rj}

(
〈â†â〉{rj}

)2 , (11)

or in terms of the normalized correlation function (5),

g(2)(τ ) =

(
〈â†â〉{rj}

)2

g
(2)
{rj}(τ )

(
〈â†â〉{rj}

)2 , (12)

with mean photon number under the two-quanta truncation10

〈â†â〉{rj} =
( E/κ

1 + 2C{rj}

)2

. (13)

Figure 1 compares the intensity correlation function obtained from Eq. (12) with two experimental data sets,
one each from the experiments of Rempe et al.1 and Foster et al..3 These experimental results and the parameters
under which they were obtained (see the captions to Figs. 2 and 3) are adopted for all future comparison between
experiment and theory. With the atomic motion neglected, the main disagreement is the smaller amplitude of
the measured vacuum Rabi oscillation. It is smaller by a factor of 4 in Fig. 1(a), as the authors of the original
publication noted,1 and by a factor of a little more than 2 in Fig. 1(b); there is also a significant difference of
shape near the origin in Fig. 1(b). Though a smaller effect, note also that neither the experimental result nor the
theoretical curve appears to be asymptotic to g(2)(∞) = 1 in Fig. 1(a); the same is true for the theoretical curve
in Fig. 1(b). Here is the only hint of the significant role of atomic beam density fluctuations. The approximation
made by Eq. (11) gives these fluctuations an infinite correlation time, and for this reason the correlation function
is not asymptotic to g(2)(∞) = 1.20 The deviation of the asymptote from unity is rather small; but as we show
in Secs. 3 and 4, the density fluctuations are the cause of the loss of vacuum Rabi amplitude as well.
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Figure 1. Comparison of the intensity correlation function computed from the two-quanta truncation without atomic
motion [Eq. (12)] and the experimental measurements of Rempe et al.16 (a) and Foster et al.17 (b). The parameters are:
(a) N̄eff = 18, gmax/κ = 3.56, and γ/κ = 5.56; (b) N̄eff = 13, gmax/κ = 1.47, and γ/κ = 0.77.

3. DENSITY FLUCTUATIONS AND ATOMIC MOTION

In this section we demonstrate the importance of atomic beam density fluctuations and atomic motion by isolating
these effects from the quantum fluctuations. We implement the model from Sec. 2.1 as a quantum trajectory
simulation and calculate the semiclassical correlation function

g(2)
sc (τ ) =

〈(â†â)(tk)〉REC〈(â†â)(tk + τ )〉REC
(
〈(â†â)(tl)〉REC

)2 , (14)

where 〈(â†â)(t)〉REC is the conditional photon number expectation, and the overbar denotes the average over a
set of sample times tk (tl). Note that Eq. (14) introduces no quantum jump at the times tk; these times are not
specifically the times of photon emission from the cavity. Thus, we omit the quantum fluctuations associated
with the backreaction from the detection of photons, but include the effects of atomic beam density fluctuations.
We compute the correlation function (14) from the full simulation of 〈(â†â)(t)〉REC, including the internal system
dynamics, and also from the adiabatic approximation

〈(â†â)(t)〉REC =
( E/κ

1 + 2C{rj(t)}

)2

, (15)

where {rj(t)} is the time-dependent configuration of atoms in the interaction volume. Correlation functions are
computed for an atomic beam aligned perpendicular to the cavity axis and for a beam with a tilt.

3.1. Quantum Trajectory Equations
Our numerical method simulates an atomic beam undergoing classical motion that runs in parallel with a quantum
trajectory simulation for the system quantum state. We first summarize our model for the atomic beam.

Applying the theory of effusive sources to a thin-walled orifice, we assume a Maxwell-Boltzmann distribution
of atomic velocities inside the source of the atomic beam, with average speed

v̄source =
√

8kBT/πM, (16)

where T is the source temperature andM is the atomic mass. To realize the density (10) corresponding to a given
N̄eff , atoms are created randomly at the source output—on the plane x = −w0

√| lnF | in the simulations—at
the rate

Ratom = 64N̄eff v̄beam/3π2w0, (17)
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where
v̄beam =

√
9πkBT/8M = (3π/8)v̄source (18)

is the average speed of an atom in the atomic beam. At its creation, creation time tj0, the jth atom is assigned
a random position and velocity, with

rj(t
j
0) =

(
−w0

√
| lnF |, yj(t

j
0), zj(t

j
0)

)
(19)

and
vj = vj (cos θ, 0, sin θ) , (20)

where θ is the tilt of the atomic beam, yj(tj0) and zj(tj0) are random variables uniformly distributed over the
intervals |yj(t

j
0)| ≤ w0

√| lnF | and |zj(t
j
0)| ≤ λ/4, and vj has probability distribution

P (vj)dvj = 2u3(vj)e−u2(vj)du(vj), u(vj) ≡ 2vj/
√
π v̄source. (21)

Subsequently, each atom moves freely across the cavity, passing out of the interaction volume when it reaches
the plane xj(t) = w0

√| lnF |; the atomic beam density is assumed low enough that collisions may be overlooked.
Atoms are created in the ground state and return to the ground state (are disentangled) on exiting the interaction
volume. The latter may be achieved by spontaneous emission or without it, the choice made by a random number
and the probability for the atom to be in the excited state (effectively a measurement of the internal atomic
state is performed).

The quantum trajectory simulation is based upon the direct photoelectron counting unraveling of master
equation (3).21–23 The system state is expanded in the two-quanta basis [Eq. (4)] with a basis size that grows and
shrinks with N(t). The between-jump evolution of the (unnormalized) conditional state satisfies the nonunitary
Schrödinger equation

d|ψ̄REC〉
dt

=
1
ih̄
ĤB(t)|ψ̄REC〉, (22)

with non-Hermitian Hamiltonian

ĤB(t)/ih̄ = E(â† − â) +
N(t)∑

j=1

g(rj(t))(â†σ̂j− − âσ̂j+) − κâ†â− γ

2

N(t)∑

j=1

σ̂j+σ̂j−. (23)

It is interrupted by quantum jumps,
|ψ̄REC〉 → â|ψ̄REC〉, (24)

and
|ψ̄REC〉 → σ̂j−|ψ̄REC〉, j = 1, . . . , N(t), (25)

which occur at the rates 2κ〈â†â〉REC and γ〈σ̂j+σ̂j−〉REC, j = 1, . . . , N(t), respectively. In the weak-field limit, all
jump rates are very small, such that the evolution under Eq. (22) continues uninterrupted most of the time—this,
again, is the justification for the pure state factorization of the density matrix argued for in Sec. 2.2. Note that
the non-Hermitian Hamiltonian (23) is explicitly time dependent and stochastic, due to its dependence on the
Monte-Carlo simulation of the atomic beam.

3.2. Semiclassical Intensity Correlations

For an atomic beam aligned perpendicular to the cavity axis, the dipole coupling constants g(rj(t)) change in
time due to motion through the Gaussian transverse profile of the cavity mode only. We may characterize the
rate of change by the cavity mode transit time, determined from the mean speed of the atoms and the cavity
mode waist. In the experiment of Rempe et al.16 the transit time is w0/v̄source = 182nsec, compared with a decay
time for the vacuum Rabi oscillation of 2(κ+γ/2)−1 = 94nsec. The corresponding numbers in the Foster et al.17

experiment are w0/v̄source = 66nsec and 2(κ+γ/2)−1 = 29nsec. The ratio in both cases is approximately 2; thus,
an approximate adiabatic following of the atomic beam density fluctuations might be expected. Figures 2(a)
and 3(a) show examples of the fluctuations in photon number induced by the fluctuations of the atomic beam.
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Figure 2. Typical trajectory of the intracavity photon number expectation with (a) no tilt of the atomic beam and
(b) an atomic beam tilt of 9.6mrad; for the parameters of Rempe et al.16: N̄eff = 18, κ/2π = 0.9MHz, gmax/κ = 3.56,
γ/κ = 5.56, w0 = 50µm, λ = 852nm, and vbeam = 323.4m/s. The driving field strength is E/κ = 2.5 × 10−2. Cavity
emissions are imposed in accord with the sampling scheme described in Sec. 4.
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Figure 3. As in Fig. 2 but for the parameters of Foster et al.17: N̄eff = 13, κ/2π = 7.9MHz, gmax/κ = 1.47, γ/κ = 0.77,
w0 = 21.5µm, λ = 780nm, and vbeam = 384.5m/s.

The ringing at regular intervals along these curves is the transient response to enforced cavity-mode quantum
jumps [Eq. (24)] introduced to sample the quantum fluctuations (see Sec. 4). Ignoring the forced jumps for the
present, as anticipated the fluctuations induced by the atomic beam are significantly slower than the vacuum
Rabi oscillation and occur on a similar time scale to the vacuum Rabi oscillation decay.

Figures 2(b) and 3(b) introduce a tilt of the atomic beam away from perpendicular to the cavity axis. Rempe
et al.1 do not comment on the tilt that might reasonably be present in their experiment, but Foster et al.3

speak of tilts as large as 1◦ (17.45mrad). We use approximately half that value for the figures. The tilt brings
significant changes to the background fluctuations. They increase in amplitude, though by less than it might
appear from the figures. A numerically computed probability distribution over photon number shows an increase
in variance (relative to the square of the mean) by a factor of 2.25 in Fig. 2 and 1.45 in Fig. 3. The distribution
is asymmetric, however, with a long tail of fluctuations above the mean, which consequently falls above the most
probable photon number. The asymmetry is accentuated by the tilt.

More important is the increase in the frequency of the fluctuations, where again, the biggest change occurs in
the Rempe et al.1 experiment. In Fig. 2(b) the background fluctuations now have a frequency similar to that of
the vacuum Rabi oscillation, and from the combination of the increase in amplitude and frequency, the enforced
quantum jumps are completely lost in the classical background fluctuations caused by the atomic beam.
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Figure 4. Semiclassical intensity correlation functions assuming adiabatic following of the intracavity photon number
expectation (left column) and without adiabatic following (right column), with no tilt of the atomic beam [(a) and (c)]
and an atomic beam tilt of 9.0mrad [(b) and (d)]; for the parameters of Rempe et al.16 given in Fig. 2.
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Figure 5. As in Fig. 4 but with an atomic beam tilt of 10mrad [(b) and (d)] and for the parameters of Foster et al.17

given in Fig. 3.

For a quantitative characterization of these fluctuations, we carried out a quantum trajectory simulation
truncated at the one-quantum level and computed the semiclassical correlation function (14). Results for the
two experiments are displayed in Figs. 4 and 5. In each case, the correlation functions shown to the left were
obtained by assuming the photon number fluctuations adiabatically follow the fluctuations of the atomic beam
[Eq. (15)], while those shown to the right were obtained without the adiabatic approximation. The upper curves
[(a) and (c)] hold for an atomic beam aligned perpendicular to the cavity axis and the lower [(b) and (d)] for
tilted atomic beams.

A number of comments are in order. Considering first the results for a perfectly aligned atomic beam, the
correlation times are given approximately by the quoted transit times: 191nsec and 167nsec from Figs. 4(a)
and (c), respectively, compared with w0/v̄source = 182nsec; and from Figs. 5(a) and (c), 68nsec and 53nsec,
respectively, compared with w0/v̄source = 66nsec. As these numbers show, there is a small decrease in the
correlation time due to the nonadiabatic response of the photon number to the atomic beam fluctuations—by
approximately 10-20%. Along with it there is a small increase in the fluctuation amplitude.
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Considering then the tilted atomic beam, there is significant change, most evident in frame (d) of each figure.
There is first an increase in the size of the fluctuations—the factors 2.25 and 1.45 noted above. More significant,
however, is the apparent decomposition of the correlation function into two distinct pieces: a central component
with short correlation time and a much broader component with correlation time larger than w0/v̄source. In the
presence of the atomic beam tilt, the dynamics are notably nonadiabatic. There is now a velocity component in
the direction of the standing wave, with transit times through a quarter wavelength of λ/4v̄source sin θ = 86nsec
for the Rempe et al.16 experiment and λ/4v̄source sin θ = 60nsec for the Foster et al.17 experiment. Compared
with the transit time w0/v̄source, these numbers move closer to the decay times for the vacuum Rabi oscillation
of 94nsec and 29nsec, respectively. The distances traveled along the cavity axis in w0/v̄source are, respectively,
w0 sin θ = 0.53λ and w0 sin θ = 0.28λ. Under these conditions, a detailed accounting for the shape of the
correlation function is difficult to give. Broadly speaking, fast atoms produce the central component and short
correlation time, while slower atoms are responsible for the long correlation time shown by the background
(adiabatic) component. Increasing the tilt of the atomic beam brings about a greater separation between the
fast and slow correlation times.

Using simple functional fits we estimate the short correlation time as 40-50nsec for the Rempe et al.16

experiment [Fig. 4(d)] and 20nsec for the experiment of Foster et al.17 [Fig. 5(d)]. Consistent numbers are
recovered by adding the decay rate of the vacuum Rabi oscillation to the inverse travel time through a quarter
wavelength; thus, we obtain (1/94 + 1/86)−1nsec = 45nsec and (1/29 + 1/60)−1 nsec = 20nsec, respectively, in
good agreement with the correlation times deduced from the figures.

The last and possibly most important feature to note is the oscillation in Fig. 4(d) compared with the
monotonic decay in Fig. 5(d). The frequency of oscillation is the vacuum Rabi frequency, which shows clearly
that the oscillatory feature is caused by the nonadiabatic response of the photon number to atomic beam density
fluctuations. For the chosen atomic beam tilts, the transit time through a quarter wavelength is approximately
equal to the decay time of the vacuum Rabi oscillation in the experiment of Rempe et al.,16 while it is twice
that in the experiment of Foster et al..17 The Rempe et al. experiment is therefore further into the nonadiabatic
regime and we suggest that this is the principle reason for its greater degradation of the measured quantum
correlations (Fig. 1).

4. SIMULATION RESULTS AND DATA FITS

In this section we present the results of full ab initio simulations of the experiments of Rempe et al.16 and Foster et
al.17 with the tilt of the atomic beam chosen to optimize the fit to the experimental data. The experiments target
the weak-field limit; hence, we initially adopt the two-quanta truncation (4) with the driving field amplitude set
to yield a very low rate of photon emission from the cavity (intracavity photon numbers similar to Figs. 2 and 3)
and negligible spontaneous emission. Under these conditions, it is impractical to wait for naturally occuring
photon emissions. Instead, at regular sample times tk, emissions from the cavity are forced (see Figs. 2 and 3).
Denoting the record with the forced jumps included by REC, we compute the intensity correlation function as
the ensemble average

g(2)(τ ) =
〈(â†â)(tk)〉REC〈(â†â)(tk + τ )〉REC(

〈(â†â)(tl)〉REC

)2
, (26)

where the sample times tl in the denominator avoid the intervals (a few correlation times) immediately following
the jump times tk; thus, both ensemble averages are taken in the steady state. The cavity-mode cut-off set at
F = 0.01, in which case the number of atoms within the interaction volume typically fluctuates around N(t) ∼
400-450 atoms for the Rempe et al.16 experiment and N(t) ∼ 280-320 atoms for the Foster et al.17 experiment.
Typically, the number of state amplitudes in the two-quanta expansion is 90, 000 or 45, 000, respectively.

4.1. Weak-field Limit

From a series of simulations for various atomic beam tilts, for each experiment we have selected the result that
fits the measured correlation function most closely. The optimum tilts are 9.7mrad for the experiment of Rempe
et al.16 and 9.55mrad for the Foster et al.17 experiment. The best fits are shown in Fig. 6. For the Foster et
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Figure 6. Best fits to the experimental results of Rempe et al.16 (a) and Foster et al.17 (b). The simulations were carried
out in the weak-field limit (two-quanta truncation) using the parameters given in Figs. 2 and 3 and atomic beam tilts of
9.7mrad (a) and 9.55mrad (b). Ensemble averages of (a) 200,000 and (b) 50,000 samples were taken with a cavity-mode
cut-off F = 0.01.

al.17 experiment the fit is extremely good. The only obvious disagreement is that the frequency of the vacuum
Rabi oscillation is possibly a little low. This, however, would be corrected by a small increase in atomic beam
density, the parameter N̄eff , which is only approximately known from the experimental results. The fit to the
data of Rempe et al.16 is also good, though certainly not as good as in the previous case. In particular, there is
some suggestion that the atomic beam tilt used is a little too large; note how in Fig. 6(a) the depths of the three
central minima are almost equal, while the data suggest that the curve should follow the shape of a damped
oscillation more closely. The minimum at κτ = 0 is raised relative to those on either side. This is caused by the
sharp maximum in the semiclassical correlation function of Fig. 4(d). The trend is accentuated by increased tilt,
so that at tilts a little larger than 9.55mrad the central minimum lies above the other two. The fit of Fig. 6(a)
is nonetheless consistent with the data to within the uncertainty set by the shot noise, which introduces error
bars of a few percent (see Fig. 8). Thus, leaving aside possible adjustments due to noise sources that are omitted
from the simulations (spontaneous emission, atomic and cavity detunings), our results provide strong support
for the proposal that the disagreement between theory and experiment presented in Fig. 1 arises from an atomic
beam misalignment of approximately 0.5◦.

We should make one more observation regarding the atomic beam tilt used in Fig. 6(a). Figure 7(b) replots
the best fit for the Rempe et al.16 experiment over a larger range of time delay. For comparison, frame (a)
of the figure plots the correlation function obtained from our simulations for a perfectly aligned atomic beam.
Aside from the reduced amplitude of the vacuum Rabi oscillation in the presence of the tilt, the correlation
function for the 9.7mrad atomic beam tilt exhibits a broad background due to density fluctuations, which is
absent for the aligned atomic beam. The experimental data exhibits just such a background (Fig. 3(a) of
Ref. [1]), and an estimate of the long correlation time from Fig. 7(b) yields approximately 400nsec, consistent
with the experimental measurement. It is significant that this number is more than twice the transit time
w0/v̄source = 182nsec.24 The broad background mimics the feature associated with slow atoms in Fig. 4(d) and
appears to arise specifically from the discussed separation of adiabatic and nonadiabatic responses to density
fluctuations for a tilted atomic beam.

4.2. Intracavity Photon Number and Spontaneous Emission

The fits displayed in Fig. 6 were obtained using a two-quanta truncation of the Hilbert space premised upon the
weak-field limit. The strict definition of this limit given in Sec. 2.2 sets a severe constraint on the intracavity
photon number. To quantify the constraint we may use Eq. (15) to obtain an estimate of the typical photon
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Figure 7. Simulation of the intensity correlation function using the parameters of Rempe et al.16 given in Fig. 2 with
no tilt of the atomic beam (a) and an atomic beam tilt of 9.7mrad (b). Ensemble averages of (a) 15,000 and (b) 200,000
samples were taken with a cavity-mode cut-off F = 0.01. The data are plotted with the simulation result in (b).

emission rate from the cavity (into all output channels)

Rcavity = 2κ〈(â†â)(t)〉REC = 2κ
( E/κ

1 + 2C{rj(t)}

)2

. (27)

Observing then the corresponding estimate of the spontaneous emission rate10, 12

Rspon = γ

N(t)∑

k=1

〈(σ̂k+σ̂k−)(t)〉 = γ

N(t)∑

k=1

(
g(rk)
γ/2

E/κ
1 + 2C{rj(t)}

)2

= 2C{rj}2κ〈(â†â)(t)〉REC, (28)

we arrive at the ratio of spontaneous to cavity emission

Rspon

Rcavity
= 2C{rj} =

2N{rj}
eff g2

max

κγ
∼ 2N̄effg

2
max

κγ
. (29)

Now for the two-quanta truncation to be justified, the greater of these emission rates should be much smaller
than the inverse of the vacuum Rabi oscillation decay time—i.e., the time for the between-jump evolution to
recover the steady state after a photon emission. If this is not so, sequences of three or more quantum jumps
can occur too closely spaced in time, thus introducing errors at dominant order in the truncated state. Under
the conditions of the experiments, the spontaneous emission rate is the greater by a factor of 70-80; thus, the
constraint on intracavity photon number is

〈(â†â)(t)〉 
 1 + γ/2κ
8N̄effg2

max/κγ
. (30)

From the numbers given in the captions to Figs. 2 and 3, the right-hand side evaluates as 1.2 × 10−2 for the
Rempe et al.16 experiment and 4.7× 10−3 for the experiment of Foster et al.17; the intracavity photon numbers
deduced from the experimental count rates are, respectively, 3.8× 10−2 and 7.6 × 10−3. It follows that neither
experiment is strictly in the weak-field limit, and it becomes important to ask how spontaneous emission might
affect the good agreement in Fig. 6.

In order to address this issue, we have extended our simulations beyond the weak-field limit using a three-
quanta truncation of the Hilbert space. To reduce the computational effort, the cavity-mode cut-off is changed
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from F = 0.01 to F = 0.1; thus, the typical number of atoms within the interaction volume is reduced by a
factor of approximately two, to N(t) ∼ 180-220 atoms for the Rempe et al.16 experiment and N(t) ∼ 150-170
atoms for the Foster et al.17 experiment. With the inclusion of the three-quanta states, the number of state
amplitudes increases to 1, 300, 000 and 700, 000, respectively. This change to the cavity-mode cut-off introduces
minimal error, reducing N̄eff , hence the vacuum Rabi frequency, by only one or two percent.

One more approximation is needed. At the excitation strengths used for the experiments, even a three-quanta
truncation has limited validity, since clumps of spontaneous emissions occur that can result in three or more
quantum jumps very closely spaced in time. In order to minimize the error introduced by such events, we impose
a restriction on the number of quantum jumps permitted within a given time interval. For the three-quanta
truncation, the accepted number was set at two and the time interval at 1κ−1 in simulations of the Rempe et
al.16 experiment and 3κ−1 in simulations of the Foster et al.17 experiment. With these settings, approximately
10% of the spontaneous emissions were neglected at the highest excitation levels considered.

The results of our three-quanta simulations are presented in Fig. 8, where we have used the optimal atomic
beam tilts of Fig. 6. Figure 8(a) compares the simulation with the data of Rempe et al.16 at an intracavity
photon number approximately six times smaller than that estimated for the experiment; we are unable to treat
the higher number within the three-quanta truncation. The fit overall is as good as that in Fig. 6(a), with a
slight improvement in the relative depths of the three minima at the center of the correlation function. A small
systematic disagreement does appear to remain, however, and we suspect that the tilt of the atomic beam was
in fact a little less, in the experiment, than the 9.7mrad used, while the contribution of spontaneous emission
to the damping of the vacuum Rabi oscillation was a little more. Considering the current numerical limitations,
there is little point in searching for a better fit though.
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Figure 8. Simulations outside the weak-field limit (three-quanta truncation) for the parameters given in Figs. 2 and 3
of Rempe et al.16 (a) and Foster et al.17 (b); shot noise error bars have been added to the data in (a). Mean intracavity
photon numbers are (a) 〈a†a〉 = 6.7 × 10−3 and (b) 〈a†a〉 = 2.2× 10−4, 5.7 × 10−4, 1.1 × 10−3, and 1.7× 10−3 (thickest
curve to thinest curve). Ensemble averages of 20,000 samples were taken with a cavity-mode cut-off F = 0.1. Atomic
beam tilts the same as for Fig. 6.

Figure 8(b) displays results for the parameters of the Foster et al.17 experiment. Four different intracavity
photon numbers are considered. For the lowest, 〈â†â〉 = 2.2 × 10−4, the three-quanta truncation closely re-
produces the weak-field result of Fig. 6(b). As the photon number is increased, spontaneous emission modifies
the correlation function, especially around κτ = 0, where it raises the value of g(2)(0), such that for the largest
photon number considered we find g(2)(0) > 1. Yet even this largest photon number is smaller, by a factor of five,
than the estimate for the experiment. Here, then, we find significant disagreement with the experimental results.
The simplest resolution of this disagreement would be for the estimate of the experimental photon number to
be too high. On the other hand, a reduction by more than an order of magnitude is needed, and such a large
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overestimate seems unlikely considering how the inference from the measured photon count rates is made. At
this stage the anomaly remains unresolved.

5. CONCLUSION

We have addressed the disagreement between the weak-field theory of intensity correlations in cavity QED
and experimental measurements of the intensity correlation function using thermal atomic beams. A quantum
trajectory simulation of the experiments has been developed that includes a Monte-Carlo simulation of the atomic
beam and allows for a possible tilt of the beam away from perpendicular to the cavity axis. Two experimental
data sets were selected for comparison with the simulations, one from the earliest experiment by Rempe et al.1

and a second from the recent experiment by Foster et al..3 Both measurements show disagreements with theory,
by overall scale factors of 2 to 4.

We have argued that the disagreement is due to atomic motion and its influence on the quantum correlations
through density fluctuations of the atomic beam. The possible role of atomic motion was mentioned in Ref. [1].
We find it more complex, however, than suggested there. In particular, a significant tilt of the atomic beam
is needed to bring theory and experiment into agreement. The tilt introduces a component of velocity along
the cavity axis, and by way of the resulting motion through the standing wave, a nonadiabatic response of the
intracavity photon number to density fluctuations of the atomic beam; thus, classical noise is introduced which
degrades the measured quantum correlation.

Working in the weak field limit, ab initio simulations of the experiments were performed taking the tilt of
the atomic beam as the only adjustable parameter. Excellent agreement was obtained with the experiment of
Foster et al.17 for a 9.55mrad tilt, and good agreement with the experiment of Rempe et al.16 using a tilt of
9.7mrad. Background fluctuations in the latter case agree with those seen in the experiment, both in their
magnitude and correlation time, and are consistent with our proposed mechanism for the degradation of the
quantum correlations.

We found that both experiments operate near, but not strictly in the weak-field limit. Our simulations were
therefore extended, subject to numerical constraints, to take spontaneous emission into account. This slightly
improved the fit to the data of Rempe et al.,16 and suggested that the optimal fit in this case might be obtained
with a somewhat smaller atomic beam tilt and a larger damping of the correlations by spontaneous emission; a
more efficient numerical method is needed to pursue the suggestion. Under the conditions of the Foster et al.17

experiment, spontaneous emission was highly detrimental. Even for an intracavity photon number five times
smaller than that estimated from the experimental count rates, a large disagreement with the experimental data
appeared. No explanation for this anomaly has yet been found.

Problems with atomic motion and the spatial variation of coupling strengths have plagued cavity QED at
optical frequencies for many years. As addressed in this paper, nonclassical features of the quantum correla-
tions are predicted at much larger levels than those observed, while other interesting features of the quantum
fluctuations remain inaccessible to experiment.25 For some years now, experiments in optical cavity QED have
been moving beyond the use of thermal atomic beams to cold and trapped atoms.4, 26–28 Our method of ab initio
simulation will be extended to provide a realistic modeling of experiments in this domain as well.
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