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ABSTRACT  

In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting 
integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-
limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging 
of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane 
rotated objects. 

Keywords: Automatic target recognition, Pattern recognition and feature extraction, Rotation-invariant pattern 
recognition, Three-dimensional image processing, Photon counting, Integral imaging, Passive sensing. 

1. INTRODUCTION 

Pattern recognition in scenes has been researched in military and industrial applications [1-4]. In integral imaging (II), 
three-dimensional (3D) information of rays is recorded using a micro-lenslet array [5-7]. Each micro-lenslet generates an 
elemental image with different perspective of objects. 3D scenes can be reconstructed optically or numerically in the 
opposite way of the recording. The object recognition and depth estimation using II have been researched in the literature 
[8-11]. For photon-counting imaging, there have been various applications such as night vision, laser radar imaging, 
radiological imaging, stellar imaging, and medical imaging [12-24]. Photon-counting imaging systems in general require 
less power than the conventional imaging systems that generate irradiance images.  
In this keynote address, we present 3D distortion-tolerant classification using photon counting II [24]. The photon 
counting linear discriminant analysis (LDA) is discussed to classify out-of-plane rotated objects [24]. In the photon-
counting LDA, we train the irradiance images of the objects and recognize the objects using the photon counts detected. 
The photon-counting LDA maximizes the Fisher’s criterion in the Fisher’s LDA [25,26] using photon-limited images. 
Euclidean distance between unknown input vector and the trained class-conditional mean vectors is adopted for decision 
making. The discrimination capability is evaluated by the correct and false classification rates as a function of varying 
number of photons. The experimental and simulation results show the photon-counting LDA can classify the distorted 
objects with a low level of photons. 
The organization of this paper is as follows. In Section 2, we briefly review the advantages of II. The photon-counting 
LDA is discussed with the decision rule and performance metrics in Section 3. Experimental and simulation results are 
presented in Section 4. Conclusions follow in Section 5. 

2. INTEGRAL IMAGING 

In II sensing, we use a micro-lenslet array to record irradiance and directional information of rays from 3D objects. II 
reconstruction is the reverse of the recording process. We can perform optical and numerical reconstruction from 
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elemental images. Multiple-perspective imaging is possible by a single shot to build a compact 3D recognition system. In 
this paper, photon-limited scenes are assumed to be generated by a photon-counting detector for the decision making. 
Photon-limited scenes with multiple perspectives are recorded according to the corresponding lenslet as shown in Fig. 
1(a).  

3. CLASSIFICATION OF PHOTON-LIMITED IMAGES 

In this section, we discuss the photon counting LDA and the decision rule [24]. Let a column vector composed of the 
irradiance values of the pixels be one realization of a random vector x Rd 1, where Rd 1 is d-dimensional Euclidean 
space, and d is the number of pixels in the scene. For photon-limited images, a random vector y is composed of numbers 
of photons detected. Each component of y follows independent Poisson distribution. In the experiments, the random 
vectors x and y, respectively are the irradiance and the photon event vectors corresponding to one elemental image. The 
following relationships hold for the first and the second moments between the irradiance random vector x and the photon 
event random vector y:
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where x  and y  are the mean vectors of x and y, respectively, xx  and yy  are the covariance matrices of x and

y, respectively, and NP is an expected number of photon-counts in the scene. The within-class covariance matrix and the 
between-class covariance matrixes of y are, respectively derived as 
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The photon counting LDA is defined as 
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where
PW  maximizes the following criterion which is the same with the Fisher’s LDA: 
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does not suffer from the singularity problem to obtain the inverse of W
yy . Therefore, the photon-counting LDA can 

handle a high dimensional images without any dimensional reduction process. 
Euclidean distance between unknown input vector and the trained class-conditional mean vectors is chosen for the 
decision metric. In the experiments, the photon-limited integral image (a set of elemental images from one lenslet array) 
is obtained from different object orientations. During the test, the multiple photon event vectors are used to take 
advantage of the multiple perspective imaging, thus, the test vector for an unknown input scene is 
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where ytest(n) is the photon event vector corresponding to the n-th photon-limited elemental image and ntest is the number 

of elemental images tested. We classify a vector ztest as the member of class ĵ  if 
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where  stands for Euclidean norm, and 
jwz|
 is the class-conditional mean vector. Assuming the distribution of ytest

is of the same as the distribution of the images y used for training, we can show that 
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Two performance measures are calculated: correct classification rate and false classification rate which are, respectively 
defined as  
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4. EXPERIMENTAL AND SIMULATION RESULTS 

The optical set-up is composed of a micro-lenslet array, an imaging lens, and a CCD camera. The focal length of each 
micro lenslet is about 3 mm, the focal length of the imaging lens is 50 mm, and the f-number of the imaging lens is 2.5. 
The imaging lens is placed between the lenslet array and the CCD camera due to the short focal length of the lenslets. 
Three classes of toy cars are used in the experiments as shown in Fig. 1(b). The size of three toy cars is about 2.5 cm 
2.5 cm  4.5 cm. The distance between the CCD camera and the imaging lens is about 7.2 cm, and the distance between 
the micro-lenslet array and the imaging lens is about 2.9 cm. Integral images of the toy cars are gathered at rotation 
angles of 30º, 33º, 36º, 39º, 42º, and 45º. Rotation is with respect to the perpendicular to the optical axis of the micro-
lenslet array. Thus, six integral images for each toy car are obtained; one at each of the six different out-of-plane rotation 
angles. Captured irradiance images are the same ones in [11] except that 30 (5 by 6) elemental images located in the 
center are used. The reference elemental image for the alignment is the central elemental image in the integral image of 
the object rotated at 36  for each class. After the alignment, each elemental image is cropped by 60 125 pixels 
considering the computational load and accuracy of computing the linear discriminant function. Therefore, the dimension 
(d) of the vectors x and y is 7500 (=60 125). The sizes of the integral image in the row and the column directions are 
300 (=60 5) and 750 (=125 6), respectively. Figure 2 shows the integral images for toy cars with a rotation angle of 36º.  
For training, only one integral image is used for each class (object). That image is the one associated with a rotation 
angle of 36º. The other five integral images for each class are used only for testing. The integral image used for training 
in each class is composed of 30 elemental images, thus, the number of vectors (nj) associated with training from each 
integral image is 30. The number of classes (nc) is 3 so the total number of vectors (nt) used in training process is 90 
(=30 3).  
For the test, all of 18 integral images are used, including the three integral images used in training. Each integral image is 
considered an unknown input scene. 1000 photon-counting scenes are generated for each integral image and the correct 
and false classification rates are obtained from these 1000 realizations. The photon number is simulated by the Poisson 
random number generator in MATLAB with Np = 3 for each elemental image normalized. The number of test elemental 
images, ntest is 30 since each integral image is composed of 30 elemental images. Therefore, the mean number of photon-
counts (Np ntest) in the entire scene (integral image) is 90 (=3 30). The averaged classification results are illustrated in 
Fig. 3. The training and test are repeated with Np = 5 and 10 when the corresponding mean numbers of photon-counts are 
150 and 300, respectively. The averaged classification results are presented in Figs. 4 and 5, respectively. As illustrated 
in Figs. 3 to 5, a low level of photons can classify the distorted objects. The averaged correct classification rates increase 
when a larger number of photons are used while the averaged false classification rates decrease.  
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5. CONCLUSIONS 

In this keynote address, a distortion-tolerant automatic recognition system using the photon-counting integral imaging is 
discussed. The photon-counting detector combined with the micro-lenslet array generates photon-limited multi-view 
scenes. Photon events are modeled by Poisson distribution. The photon-counting LDA is reviewed for the classification 
of photon-limited images. In the photon-counting LDA, the irradiance values are used for training while photon-limited 
images are tested to classify unknown input objects. A compact 3D information processing is possible and the 
performance can be enhanced by means of the multiple perspective photon-limited scenes of II.  
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Fig. 1. (a) schematic diagram of photon counting integral imaging system, (b) three toy cars used in the experiments; car 1, 2 and 3 are 
shown from right to left. 

(a)        (b) 

(c) 
Fig. 2. Integral images of three objects associated with a rotation angle of 36 , (a) class 1, (b) class 2, (c) lass 3. 
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(a)     (b) 
Fig. 3. Classification results when the mean photon number in the test scene is 90. (a) averaged correct classification rate for each 
class over 1000 runs, (b) averaged false classification rate for each class over 1000 runs. ‘Avg’ denotes the average value of 6 rotation 
angles. 
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(a)     (b) 
Fig. 4. Classification results when the mean photon number in the test scene is 150. (a) averaged correct classification rate for each 
class over 1000 runs, (b) averaged false classification rate for each class over 1000 runs. ‘Avg’ denotes the average value of 6 rotation 
angles. 
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Fig. 5. Classification results when the mean photon number in the test scene is 300. (a) averaged correct classification rate for each 
class over 1000 runs, (b) averaged false classification rate for each class over 1000 runs. ‘Avg’ denotes the average value of 6 rotation 
angles. 
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