High-Power Diode Laser Technology and Applications V

Mark S. Zediker
Chair/Editor

22–24 January 2007
San Jose, California, USA

Sponsored and Published by
SPIE—The International Society for Optical Engineering
The papers included in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. The papers published in these proceedings reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from this book:

ISSN 0277-786X
ISBN 9780819465696

Published by
SPIE—The International Society for Optical Engineering
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone 1 360/676-3290 (Pacific Time) · Fax 1 360/647-1445
http://www.spie.org

Copyright © 2007, The Society of Photo-Optical Instrumentation Engineers

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at http://www.copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/07/$18.00.

Printed in the United States of America.
SESSION 1 HIGH-POWER LASER DIODE BAR RELIABILITY

645602 Thermal and strain characteristics of high-power 940 nm laser arrays mounted with AuSn and In solders [6456-01]
J. L. Hostetler, C.-L. Jiang, V. Negoita, T. Vethake, R. Roff, TRUMPF Photonics (USA); A. Shroff, Institute of Optics, Univ. of Rochester (USA); T. Li, C. Miester, U. Bonna, G. Charache, H. Schlüter, F. Dorsch, TRUMPF Photonics (USA)

645603 Heat transfer and thermal lensing in large-mode high-power laser diodes [6456-02]
P. K. L. Chan, K. P. Pipe, Univ. of Michigan (USA); J. J. Plant, R. B. Swint, P. W. Juodawlkis, MIT Lincoln Lab. (USA)

645604 Robust hard-solder packaging of conduction cooled laser diode bars [6456-03]
D. Schleuning, M. Griffin, P. James, J. McNulty, D. Mendoza, J. Morales, D. Nabors, M. Peters, H. Zhou, M. Reed, Coherent, Inc. (USA)

645605 Reliability and failure mode investigation of high-power multimode InGaAs strained quantum well single emitters [6456-04]
Y. Sin, B. Foran, N. Presser, M. Mason, S. C. Moss, The Aerospace Corp. (USA)

645606 Degradation behavior and thermal properties of red (650 nm) high-power diode single emitters and laser bars [6456-05]
J. W. Tomm, T. Q. Tien, M. Ziegler, F. Weik, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (Germany); B. Sumpf, M. Zorn, U. Zeimer, G. Erbert, Ferdinand-Braun-Institut für Höchstfrequenztechnik (Germany)

645607 Highly reliable, high-power AlGaAs/GaAs 808 nm diode laser bars [6456-06]
R. Hüsewede, H. Schulze, J. Sebastian, Jenoptik Diode Lab GmbH (Germany) D. Schröder, J. Meusel, P. Hennig, Jenoptik Laserdiode GmbH (Germany)

Pagination: Proceedings of SPIE follow an e-First publication model, with papers published first online and then in print and on CD-ROM. Papers are published as they are submitted and meet publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as soon they are published online, and connects the same identifier to all online, print, and electronic versions of the publication.

SPIE uses a six-digit CID article numbering system in which:
• The first four digits correspond to the SPIE volume number.
• The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc.

The CID number appears on each page of the manuscript. The complete citation is used on the first page, and an abbreviated version on subsequent pages.
SESSION 2 HIGH-POWER LASER DIODES I

645608 Goals and status of the German national research initiative BRIOLAS (brilliant diode lasers) (Invited Paper) [6456-07]
F. Bachmann, Rofin-Sinar Laser GmbH (Germany)

645609 Recent advances in actively cooled high-power laser diode bars [6456-08]
N. P. Ostrom, S. D. Roh, D. M. Grasso, T. J. Kane, Nuvonyx Inc. (USA)

64560A 808 nm tapered diode lasers optimized for high output power and nearly diffraction-limited beam quality in pulse mode operation [6456-44]
O. B. Jensen, Risø National Lab. (Denmark); A. Klehr, F. Dittmar, B. Sumpf, G. Erbert, Ferdinand-Braun-Institut für Höchstfrequenztechnik (Germany); P. E. Andersen, P. M. Petersen, Risø National Lab. (Denmark)

64560B High-power highly reliable single emitter laser diodes at 808 nm [6456-51]
W. Gao, Z. Xu, L. Cheng, K. Luo, A. Mastrovito, K. Shen, Acel Photonics, Inc. (USA)

SESSION 3 HIGH-POWER LASER DIODES II

64560C Ongoing development of high-efficiency and high-reliability laser diodes at Spectra-Physics [6456-09]

64560D High-brightness semiconductor lasers [6456-10]
M. L. Osowski, W. Hu, R. M. Lammet, T. Liu, Y. Ma, S. W. Oh, C. Panja, P. T. Rudy, T. Stakelon, J. E. Ungar, Quintessence Photonics Corp. (USA)

64560E Extending the wavelength range of single-emitter diode lasers for medical and sensing applications: 12xx-nm quantum dots, 2000-nm wells, > 5000-nm cascade lasers [6456-11]
P. Crump, S. Patterson, S. Elim, S. Zhang, M. Bouger, J. Patterson, S. Das, W. Dong, M. Grimshaw, J. Wang, D. Wise, M. DeFranza, J. Bell, J. Farmer, M. DeVito, R. Martinse, nLight Corp. (USA); A. Kovsh, NL Nanosemiconductor GmbH (Germany); F. Toor, C. F. Gauchal, Princeton Univ. (USA)

64560F High-brightness high-power 9xx-nm diode laser bars: developments at Jenoptik Diode Lab [6456-12]
J. Sebastian, H. Schulze, R. Hülssewede, Jenoptik Diode Lab. (Germany); P. Herrig, J. Meusel, M. Schröder, D. Schröder, D. Lorenzen, Jenoptik Laserdiode GmbH (Germany)

64560G High-power high-efficiency laser diodes at JDSU [6456-13]
M. Peters, V. Rossin, M. Everett, E. Zucker, JDSU Corp. (USA)

64560H 10W reliable operation of 808nm broad-area diode lasers by near-field distribution control in a multistripe contact geometry [6456-14]
K. Paschke, S. Einfeldt, Chr. Fiebig, A. Ginolas, K. Häusler, P. Ressel, B. Sumpf, G. Erbert, Ferdinand-Braun-Institut (Germany)
SESSION 4 HIGH-POWER LASER DIODES III

64560I Scalable high-power (>1kW/cm^2) diode laser stacks based on silicon monolithic micro-channel coolers (Invited Paper) [6456-15]
P. Reichert, M. Fouksman, H. Zhou, D. Nabors, J. Alcala, S. Tolman, Coherent, Inc. (USA); M. Toivonen, S. Lehkonen, J. Haapamaa, Coherent Finland (Finland)

64560J Novel high peak current pulsed diode laser sources for direct material processing [6456-16]
M. Traub, M. Bock, H.-D. Hoffmann, Fraunhofer Institute for Laser Technology (Germany); M. Bartram, PicoLAS GmbH (Germany)

64560K High-power high-brightness 100W QCW diode laser at 940nm [6456-17]
C. Fiebig, G. Erbert, W. Pfitzoff, H. Wenzel, A. Maaßdorf, S. Einfeldt, G. Tränkle, Ferdinand-Braun-Institut (Germany)

64560L High-power high-brightness high-reliability laser diodes emitting at 800-1000 nm [6456-18]

64560M 100-W+ diode laser bars show > 71% power conversion from 790-nm to 1000-nm and have clear route to > 85% [6456-19]

64560N Increased power of broad-area lasers (808nm/980nm) and applicability to 10-mm bars with up to 1000Watt QCW [6456-20]
D. Schröder, J. Meusel, P. Hennig, D. Lorenzen, M. Schröder, Jenoptik Laserdiode GmbH (Germany); R. Hülsowede, J. Sebastian, Jenoptik Diode Lab. GmbH (Germany)

SESSION 5 HIGH-POWER DIRECT DIODE LASER I

64560O 11-kW direct diode laser system with homogenized 55 x 20 mm^2 Top-Hat intensity distribution (Invited Paper) [6456-22]
B. Köhler, A. Noeske, T. Kindervater, A. Wesselke, T. Brand, J. Biesenbach, Dilas Diodenlaser GmbH (Germany)

64560P High-brightness fiber coupled diode laser systems [6456-23]
S. D. Roh, D. M. Grasso, N. P. Ostrom, Nuvonyx, Inc. (USA)

64560Q Efficient high-brightness diode laser modules offer new industrial applications [6456-24]
M. Revermann, A. Timmermann, J. Meinschien, P. Brun, LIMO Lißotschenko Mikrooptik GmbH (Germany)

64560S An innovative technique for fiber-coupled laser diode arrays [6456-27]
A. Rosenberg, A. Bablumyan, K. Babajanyan, Comp Optics, LLC (USA)

64560T Novel high-brightness fiber coupled diode laser device [6456-28]
M. Haag, B. Köhler, J. Biesenbach, T. Brand, Dilas Diodenlaser GmbH (Germany)
SESSION 6 HIGH-POWER NARROW LINEWIDTH ARRAYS AND BEAM COMBINING

- **Fiber-coupled diode laser modules with wavelengths around 2 µm** [6456-29]
 M. Haverkamp, K. Wieching, M. Traub, K. Boucke, Fraunhofer Institute for Laser Technology (Germany)

- **Photosynthetically supplemental lighting for vegetable crop production with super-bright laser diode** [6456-47]
 Y. Hu, P. Li, J. Shi, Jiangsu Univ. (China)

- **Reliable operation of 785 nm DFB diode lasers for rapid Raman spectroscopy** [6456-48]
 M. Maiwald, G. Erbert, A. Klehr, B. Sumpf, H. Wenzel, Ferdinand-Braun-Institut für Höchstfrequenztechnik (Germany); T. Laurent, J. Wiedmann, eagleyard Photonics GmbH (Germany); H.-D. Kronfeldt, H. Schmidt, Technische Univ. Berlin (Germany)

- **Welding laser hosted on a THS** [6456-54]
 M. Checchetti, micrOptronics (Italy)

- **SESSION 7 IMPROVED PACKAGING OF LASER DIODE ARRAYS**

- **Elimination of deionized cooling water requirement for microchannel-cooled laser diode arrays** [6456-37]
 R. Feeler, Northrop Grumman Corp./Cutting Edge Optronics (USA); S. Coleman, Kollsman, Inc. (USA); J. Levy, E. Stephens, Northrop Grumman Corp./Cutting Edge Optronics (USA)

- **Highly reliable hard soldered QCW laser diode stack packaging platform** [6456-38]

- **Stackable air-cooled heatsinks for diode laser bars** [6456-39]
 T. R. Crum, J. Harrison, R. Srinivasan, R. L. Miller, Spectra Physics Semiconductor Lasers (USA)
Next generation of cooling approaches for diode laser bars [6456-40]
M. Leers, K. Boucke, C. Scholz, T. Westphalen, Fraunhofer Institute for Laser Technology (Germany)

Monolithically stacked high-power diode laser bars in quasi-continuous-wave operation exceeding 500 W [6456-41]
M. Müller, M. Philippens, G. Grönninger, H. König, J. Moosburger, G. Herrmann, M. Reufer, J. Luft, Osram Opto Semiconductors GmbH (Germany); M. Staiber, Dilas Diodenlaser GmbH (Germany); D. Lorenzen, Jenoptik Laserdiode GmbH (Germany)

Highly efficient and reliable 1 kW QCW laser stacks with diffraction limited fast axis beam collimation [6456-42]

Next-generation active and passive heatsink design for diode lasers [6456-43]

Non-corrosive micro coolers with matched CTE [6456-52]
T. Ebert, IQ Evolution GmbH (Germany); W. Meiners, Fraunhofer Institute of Laser Technology (Germany)

Lifetime testing of laser diode coolers [6456-46]
T. Löffler, A. Meyer, K. Schmidt, Curamik Electronics GmbH (Germany); M. Götz, Electrovac curamik GmbH (Germany); K. Credle, Curamik Electronics, Inc. (USA)

Dynamics of thermo-optical properties of semiconductor lasers [6456-50]
E. Kowalczyk, L. Ornoch, Z. Gniazdowski, B. Mroziewicz, Institute of Electron Technology (Poland)

Author Index
Conference Committee

Symposium Chairs
 Henry Helvajian, The Aerospace Corporation (USA)
 Friedrich G. Bachmann, Rofin-Sinar Laser GmbH (Germany)

Symposium Cochairs
 L. N. Durvasula, DARPA (Germany)
 Jan J. Dubowski, Université de Sherbrooke (Canada)

Program Track Chair
 E. Fred Schubert, Rensselaer Polytechnic Institute (USA)

Conference Chair
 Mark S. Zediker, Nuvonyx, Inc. (USA)

Program Committee
 Friedrich G. Bachmann, Rofin-Sinar Laser GmbH (Germany)
 Jason Farmer, nLight Corporation (USA)
 Stefan W. Heinemann, Fraunhofer USA Inc. (USA)
 Volker K. Krause, Laserline GmbH (Germany)
 Erik P. Zucker, JDS Uniphase Corporation (USA)

Session Chairs
 1 High-Power Laser Diode Bar Reliability
 Jason Farmer, nLight Corporation (USA)
 2 High-Power Laser Diodes I
 Erik P. Zucker, JDS Uniphase Corporation (USA)
 3 High-Power Laser Diodes II
 Erik P. Zucker, JDS Uniphase Corporation (USA)
 4 High-Power Laser Diodes III
 Stefan W. Heinemann, Fraunhofer USA Inc. (USA)
 5 High-Power Direct Diode Laser I
 Friedrich G. Bachmann, Rofin-Sinar Laser GmbH (Germany)
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>High-Power Narrow Linewidth Arrays and Beam Combining</td>
<td>Volker K. Krause</td>
<td>Laserline GmbH (Germany)</td>
</tr>
<tr>
<td>7</td>
<td>Improved Packaging of Laser Diode Arrays</td>
<td>Jason Farmer</td>
<td>nLight Corporation (USA)</td>
</tr>
</tbody>
</table>