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Liquid Crystalline Nonlinear Optical Metamaterials with Low-Loss 
Tunable Negative-Zero-Positive Refractive Indices 

 
I. C. Khoo, A. Diaz, D. -H. Kwon and D. H Werner 

Electrical Engineering Department, Pennsylvania State University, University Park, PA 16802 
 
 

ABSTRACT 
 
 We describe a class of liquid crystalline photonic metamaterials that exhibit tunable negative-zero-positive refractive 
indices. As a result of the extreme sensitivity of the nematic liquid crystal constituent, these metamaterials also exhibit 
extraordinarily large optical nonlinearities associated with the optical field induced director axis reorientation and 
birefringence change. Incorporation of a gain medium such as laser dye reduces losses of the metamaterial. 
 
 
Keywords: Liquid crystals, nano-spheres, supra optical nonlinearity, negative and zero index, tunable metamaterials 
 
 

1.  INTRODUCTION 
 
 Current material systems that exhibit negative index properties tend to be passive and highly lossy. Recently, 
we demonstrated two types of nano-dispersed liquid crystalline metamaterials [1, 2] whose effective refractive index can 
be tuned from negative through zero to positive values over a very wide spectral range. The tunability is provided by 
incorporating electro-optics active and nonlinear-optical nematic liquid crystals [3].  In this paper, we also explore the 
ultimate optical nonlinearity possible in such metamaterials due to the supra-nonlinear optical properties of the nematic 
liquid crystal constituents. Furthermore, we demonstrate that one could reduce the loss associated with the dielectric 
resonances by introducing laser dye in the system.  
  
  

2. NANO-SPHERES DISPERSED LIQUID CRYSTALLINE METAMATERIALS   
 

Fig 1 shows a schematic of an aligned 
nematic liquid crystal doped with randomly 
dispersed core-shell nano-spheres. The nematic 
liquid crystal can be in pure or doped (e.g. by 
Methyl-Red) forms, while the nano-spheres can 
be in the form of simple single constituent metallic 
(gold, silver, semiconductor) spheres or core-shell 
structures. The electromagnetic analysis for such 
metamaterials is considerably simpler than other 
schemes involving metallic spheres dispersed in 
liquid crystal waveguides as we can employ the 
effective medium approach.  
 
 We have studied a variety of nano-

spheres in various combinations and liquid 
crystal alignments. Here we summarize the 
principal results for the case of core-shell 
polaritonic and Drude-type nano-spheres 

discussed in the literature [1, 4]. All constituent materials are non-magnetic with relative permeability equal to 1. For a 
polaritonic core, its permittivity is given by:  
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Fig 1.  Schematic depiction of nematic liquid crystal containing nano-
spheres and a ‘blow-up’ view of the core-shell nano-spheres.   
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where ε(∞) is the high-frequency limit of the permittivity, ω is the incident frequency, ωT is the transverse optical 
phonon frequency, ωL is the longitudinal optical phonon frequency, and γ1 is the damping coefficient.  
The shell can be a polaritonic or a Drude material with a permittivity of the form:  
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2

2

2 1
ωγω

ω
ε

i
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+
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where ωp is the plasma frequency and γ2 is the damping term. The optical permittivity of the host nematic liquid crystal 
(NLC) for a linearly polarized light incident at an oblique angle θ  is given by [3] 
 

  3 2 2cos sin
e o

e o

ε ε
ε

ε θ ε θ
=

+
 (3) 

where eε  and oε  are the respective permittivities for light polarized parallel and perpendicular to the director axis n̂ , 

and θ is the angle made by the director axis with the optical wave vector 0k . Note that ε3 does not carry any resonant 
dependence except for some small variation over the optical- infrared wavelength regime of interest here.   
 
 For a fixed incident angle, the director axis orientation θ with respect to the optical wave vector can be modulated 
either electrically [by an ac bias field] or optically [through the optical intensity dependent director axis reorientation 
effect (3)].  In both cases, the maximum reorientation angle is π/2, corresponding to an extraordinary refractive index 
change from no ~ 1.4 [θ = 0] to ne ~ 2 [θ = π/2] i.e. permittivity change from εo = 2 to εe = 4 (εe for extraordinary and εo 
for ordinary waves). Such changes in the host index give rise to large changes in the effective refractive index of the 
nano-dispersed liquid crystal (NDLC) that in many cases. We have previously shown that the effective refractive indices 
of these metamaterials could be unusual negative-zero regions in some cases.   
 The effective refractive index of the nano-dispersed NLC is calculated by using the Maxwell Garnet mixing rule [5].  

We begin by calculating the effective permittivity and permeability eff
rε  and eff

rµ for NDLC as follow. 
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In equations (4a-4b), 1a  and 1b are the MIE scattering coefficients of the coated dielectric sphere [5], N is the volume 

density of the spheres ( 3
23 / 4N f rπ= ) and f is the filling fraction of the composite. Note that the Maxwell Garnett 

mixing method is valid only for small filling fractions, i.e. f <<1. 
 Some exemplary results for the effective refractive indices are shown in Fig. 2 calculated with the set of parameters 
for the constituent core, shell and host medium [1, 4]: ( )ε ∞ = 17, / 2Lω π =570 THz, / 2Tω π = 240 THz, 1 / 2γ π =2.5 

THz, 1 2 3 1µ µ µ= = = , 2γ = / 60pω , / 2pω π =134 THz, r1= 0.13 µm, r2 = 0.143 µm and a filling fraction f =0.1. In 
general, as a result of incorporating nano-spheres with higher dielectric constants than the host nematic liquid crystals 
(NLC), the effective birefringence ne – no of the metamaterial is larger than the birefringence of the host liquid crystal (ne 
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– no)NLC , which is assumed to be 0.59 in these calculations [corresponding to the NLC dielectric constants varying from 
2 to 4]. In the low-loss frequency regime (around 50 – 70 THz) where the imaginary component of neff is small, the 
effective [real part] refractive index change ∆n is ~ 0.75 [at 50 THz] or 0.9 [at 70 THz] as the NLC permittivity is varied 
from 2 to 4. At 80 THz, where the loss is still acceptably low, the effective index change is even larger [~1.1].   
 It is interesting to note that for some frequency interval around 106 THz, the effective refractive index of the liquid 
crystal metamaterial can be negative and is tunable from negative, through zero, to positive values as the host NLC 
dielectric constant (birefringence) is varied. For other parameter sets and filling fractions, the operating frequencies for 
these negative-zero-positive tunable refractive indices could be anywhere from the visible, near-, mid and far-IR region 
through THz and into the microwave regime, mainly due to the extremely broadband and large birefringence of the 
nematic liquid crystal host. 
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Fig. 2 Real [left] and Imaginary [right] parts of the complex effective refractive index of the core-shell nano-spheres 
dispersed nematic liquid crystals showing tunable refractive index from negative to positive values. 

 
 

3. LOSS REDUCTION WITH GAIN (DYE-DOPED LIQUID CRYSTAL HOST) 
 
  In spite of these unusual and remarkable properties of the liquid crystalline metamaterials, there is the 
inevitable presence of high optical losses in the same frequency region. The inevitability is associated with the 
relationship [Kramers-Kronig] between the real and imaginary part of the susceptibility of the medium. Nevertheless, 
within the constraint of the Kramers-Kronig relationship, one could ascertain an operation parameter set in which the 
loss is minimal, while the real part of the index is in the desirable range. We have investigated the possibility of reducing 
the loss by introducing laser dyes in the host liquid crystal matrix to provide gain [6]. Although the actual molecular 
levels and transitions in dye molecules are much more complex, we illustrate the effects by a two-level inverted system 
characterized by a susceptibility of the form g g giχ χ χ′ ′′= + . Accordingly, the dielectric constant of the host [liquid 

crystal] becomes 3h gε ε χ= + . Following Yariv [7], the imaginary part of the susceptibility χg is given by (with an 
appropriate change of sign because of different conventions used here): 
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3 30 0

1 1 1
8 1 4 / 1 4 /

g
spont

N N
A

n t n
λ

χ
π ν ν νν ν ν ν ν ν

−
′′ = = × ×

∆ ∆+ − ∆ + − ∆
 (5) 

with 
( ) ( )

3
31 2

max 0 0 338 spont

N N c
A n

t
χ ν ν ν ν

π

−
′′= = = × ∆  where ( )max 0χ ν ν′′ = is the imaginary part of the susceptibility at the 

resonant frequency ( )max 0χ ν ν′′ = and ν∆ is the transition linewidth, and n3 is the refractive index of the surrounding 

medium. From gχ′′ , the real part of the susceptibility of the gain medium may be derived from the Kramers-Kronig 
relations (7): 
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Fig. 3 show the real and imaginary part of the 
effective refractive index of the nano- and dye-
doped nematic liquid crystals for three 
representative values of the imaginary part of the 
susceptibility at the resonant frequency χmax [0; 
0.13 and 0.26] and a similar set of core-shell anno-
spheres material parameters. It is clear that one 
could maintain negative-zero [real] refractive 
index while reducing the loss (Im[neff]) 
considerably. It is interesting to note that the real 
part of the refractive index (Re[neff]) could also be 
decreased even further with the incorporation of 
the gain medium (for χmax = - 0.13). 
   

 
4.  Liquid crystal clad metallo-dielectric 

nano-structures for tunable negative-zero-
positive refractive indices.  

 
 Another nematic liquid crystal based meta-
material [2] capable of tunable negative-zero-positive 
refractive indices we have studied is schematically 
depicted in fig. 4.  It consists of two aligned nematic 
liquid crystal layers sandwiching a metallo-dielectric 
nanostructure. The latter comprises a magnetic 
resonator made of two strips of silver of thickness 
30 nm separated by a thin layer of alumina of 
thickness 20 nm. Negative permittivity needed for 
negative-index behavior is provided by thin silver 
films bounding the periodic array of magnetic 
resonators. The space between neighboring 
magnetic resonators is filled with silica. The 
optical properties of the metamaterial are analyzed 
using a rigorous full-wave electromagnetic 
scattering analysis based on the finite-element 
boundary-integral method [8]. Electric field values 
in a single unit cell of an infinitely periodic 
structure are determined by imposing periodic 
boundary conditions in the computational domain. 
Once the complex reflection and transmission 
coefficients are determined from the numerical 

analysis, the effective complex index of refraction can be unambiguously determined from well-established inversion 
procedures [9, 10]. 
 The plots of the complex refractive index n =  n’ + n” in Fig. 4 for two different incident light wavelengths as a 
function of the liquid crystal dielectric constant εLC show dramatic changes in the effective refractive index created by 
the inclusion of these ‘resonant’ structures. For example, the lower right solid curve for incident light wavelength λ = 
1.45 µm shows that the effective index of the metamaterials changes by 1.3 [from -1 to 0.3] as the LC dielectric constant  
is tuned from 2.25 to 2.9 [LC index change of 0.2 from 1.5 to 1.7]. From the preceding discussion on the effect of gain, 
clearly if the liquid crystal is doped with a dye to provide gain, both the real and the imaginary parts of the refractive 
index could be further modified. 
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Fig. 3. Real [upper] and imaginary [lower] parts of the 
refractive index of nano-dispersed dye-doped nematic 
liquid crystals showng enhanced negative index behavior 
and a lowered loss [smaller imaginary refractive index] 
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5.  SUPRA-OPTICAL NONLINEARITY OF NANO-DISPERSED NEMATIC LIQUID 

CRYSTALLINE METAMATERIALS 
  
 As remarked earlier, the refractive index [dielectric constant] of the host liquid crystal can be electrically or optically 
modified. Since electrical contacts are extremely cumbersome to incorporate in the nanostructure, optical tuning is a 
much more desirable means. We close this paper with a discussion of the possibility of achieving high supra-optical 
nonlinearity in these dye-doped liquid crystal metamaterials. Nonlinear light scatterings in liquid crystals have been 
extensively investigated over the past two decades [3, 11-36]. Perhaps the most nonlinear mechanism is the optically 
induced director axis reorientation, which is characterized by an optical index change coefficient n2 [defined by n2=∆n/I, 
where ∆n is the light induced index change and I the optical intensity]. In dye-doped nematic liquid crystals, supra-
optical nonlinearities with n2 >>1 cm2/W were first discovered [23] in methyl red dye molecules-, and subsequently also 
in C60- and carbon nanotube- doped NLC [26-28]. In this section, we re-examine the fundamental principles for such 
supra-nonlinearity and illustrate the possibility of realizing even larger optical nonlinearity with the higher-birefringence 
liquid crystal metamaterials discussed in the preceding sections.  
 Consider the basic light-LC interaction as depicted in Fig. 1. The energy density involved in reorienting the LC axis 

by an angle θ is 
2

2

erg
cm

U K L
x
θ∂

≈
∂

⎡ ⎤ ⎛ ⎞
⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

, where L is the interaction length and K the LC elastic constant [3]. In a wave 

mixing type of interaction in which the impinging optical intensity is sinusoidal, the reorientation angle θ is of the form 
θ = θ0sin (qx) where q=2π/Λ is the wave vector of the grating, and Λ is the grating constant.  In this case, we have 
ULC~K π2θ2L/Λ2. On the other hand, the energy provided by the light beam is Elight = Iτ (1-e-αL) ~ αLIτ where α is the 
loss coefficient (due to the transfer of energy from light to nematic reorientation per unit length) and τ is the response 
time for the process. Equating U and Elight by assuming complete conversion of transferred light energy to reorientation, 

   Fig. 4. Plots of real [n’ - lower two curves] and imaginary [n’’ - upper two curves] parts of the complex refractive 
index of the liquid crystal clad metallo-dielectric nano-structures for various values of the liquid crystal dielectric 

constant and two laser wavelengths.
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we get K π2θ2/αΛ2 ≈ Iτ . In the case when the liquid crystal is initially homeotropically aligned, a reorientation of angle θ 
will give rise to a change in the index experienced by the incident extraordinary-wave ∆n ~ (ne-no)θ2 ~ (ne-no) Iτ αΛ2/K. 
Writing ∆n= n2I  yields the nonlinear index coefficient n2 
 
  n2 ~ (ne-no) τ αΛ2/K π2 .   (7) 
 
 Depending on various parameters such as the birefringence and viscosity, sample thickness, and other factors like 
laser intensity, presence of other applied fields or photosensitive dopants, as well as the actual process involved, the 
value of n2 and the response time can vary considerably. In wave mixing studies, typical τ is on the order of 10’s of 
millisecond (10-2 sec), for Λ ∼ 20 µm. Using K~ 10-7 erg/cm, (ne-no) ~ 0.2, α~100 cm-1, we have n2 ~ 1 cm2/W. Even 
larger n2 values approaching 1000 cm2/W can be expected and have indeed been observed in dyed doped nematic liquid 
crystals [23, 28].  From the expression for n2, it is also clear that a larger effective birefringence provided by the liquid crystalline 
metamaterials discussed in the preceding sections would result in an enhancement of these supra-optical nonlinearities.  
Accordingly, the optical power density required to effect the desired refractive index change in these metamaterials 
could be as low as 100 nW (nanowatt) as reported before in dye-doped nematic liquid crystals [35]. 
  

 
6.  CONCLUSION 

 
 In conclusion, we have described two new forms of liquid crystalline metamaterials that possess tunable and highly 
nonlinear optical properties. By field induced reorientation of the liquid crystal host, thereby changing its permittivity, 
the material will exhibit effective refractive indices ranging from negative, through zero to positive values. The large 
effective refractive index change also results in enhancing the optical nonlinearity. The proposed structures are highly 
scalable in that the physical dimensions of its constituents can be varied over a very wide range, resulting in 
matamaterials whose operating wavelengths can cover the optical, through near- and far-IR to the microwave regimes. In 
this rather wide spectral band, nematic liquid crystals possess large birefringence and extreme photosensitivitythat would 
allow tuning with low applied field thresholds [3].  
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