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ABSTRACT 
 
Over the course of his long and productive career, Dr. Robert F. Wagner built a framework for the evaluation of imaging 
systems based on a task-based, decision theoretic approach.  His most recent contributions involved the consideration of 
the random effects associated with multiple readers of medical images and the logical extension of this work to the 
problem of the evaluation of multiple competing classifiers in statistical pattern recognition.  This contemporary work 
expanded on familiar themes from Bob’s many SPIE presentations in earlier years.  It was driven by the need for 
practical solutions to current problems facing FDA’S Center for Devices and Radiological Health and the medical 
imaging community regarding the assessment of new computer-aided diagnosis tools and Bob’s unique ability to unify 
concepts across a range of disciplines as he gave order to increasingly complex problems in our field. 
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1. BACKGROUND 
 
Robert F. Wagner began his career at the FDA in the early 1970s.  He arrived with a recent Ph.D. in nuclear physics and 
a charge to build a medical imaging program at a time of tremendous innovation in this early field.  Bob approached this 
charge in a fashion that was to be a standard modus operandi for his professional life: he sought out experts in related 
fields (Otto Schade and other TV picture quality gurus of the time, in this case1) and worked to translate and adapt 
relevant concepts to his area of application.  His first SPIE paper2 laid the groundwork for what was to come, as he 
summarized the assortment of image quality indexes for radiographic film-screen combinations in existence at the time 
and wondered publicly – could they be resolved?  For the next 35 years, he endeavored to build the science of image 
assessment, tackling first the issue of quantum noise and film mottle in medical images and taking on problems of 
greater complexity and clinical relevance over time.  From the outset, he wrote and spoke prolifically, allowing great 
transparency into his forming ideas and methods.  His great passion for technical exchange played a significant role in 
the formation of the SPIE Medical Imaging Conference.  Each year he came with his latest update, giving over sixty 
SPIE Medical Imaging conference papers in all.  It was this meeting that singularly afforded Bob the opportunity to 
nurture life-long friendships with colleagues, discuss his latest insights, and work toward the development of consensus.    

 
2. THE ASSESSMENT OF QUANTUM-LIMITED MEDICAL IMAGES 

 
As described in the companion paper in this proceedings volume by David Brown,3 Bob’s earliest work considered the 
quantum-limited performance of medical imaging systems.4,5  In their 1985 Physics in Medicine and Biology paper, 6 
Wagner and Brown presented a “Unified SNR analysis of medical imaging systems,” which laid out a general 
information-theoretic form for imaging performance for all the major medical imaging modalities of the time.  This 
landmark paper was one of the first of many significant works in Bob’s career in which he revealed an order across 
complex and distinct phenomena, in this case, the commonalities found in the assessment of the detectability of simple 
structures in quantum-limited images across the wide variety of physics processes that can be harnessed in the formation 
of medical images. 
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Bob’s unified SNR approach to medical imaging assessment was in terms of the best possible observer, the Bayesian 
observer, for simple detection of classification tasks.  The question naturally arises regarding how well human observers 
are able to realize these upper-bound performance predictions.  Art Burgess, then of the University of British Columbia,  
Canada, spent some sabbatical months with Bob in 1980, during which time they submitted a paper to Science, along 
with coauthors Bob Jennings and Horace Barlow, on the detection efficiency of human observers relative to the ideal 
observer.7  This first comparison of human and ideal observers in quantum-limited images showed that humans were 
remarkably efficient, operating at about 50% efficiency for simple detection tasks in white noise.   
 
Bob continued to work on problems related to machine classifiers and human observer performance for the rest of his 
career.  He was tremendously interested in understanding for what tasks humans were efficient and when they were not, 
how ideal observer models might be “handicapped” to better approximate human performance (and how such handicaps 
might be motivated by known mechanisms of the human visual system), and when computer-assist devices might 
improve human performance.   I first got to know Bob through discussions of these topics during my graduate school 
days at the University of Arizona in the early 1980s, when Harry Barrett and I were investigating the impact of high-
frequency noise on human detection performance.  We were greatly influenced by Bob’s work on the use of ideal-
observer SNRs for image quality, and Art Burgess’ results on human signal detection efficiency in CT noise.8  We 
developed an experiment that allowed the probing of the impact of noise correlations on human detection performance 
for higher noise powers, and found that the human efficiency dropped precipitously as the power of the noise increased.  
Furthermore, we found that the data were well modeled by a non-prewhitening ideal observer, that is, one suffering from 
a reconstruction penalty, as it was referred to in Wagner and Brown’s paper.  Our line of experimental inquiry, which led 
to the conception of a channelized ideal observer9 as an alternative to the non-prewhitening matched filter, was greatly 
inspired by the work of Bob and his collaborators. 
 
In 1987, not long after I graduated from the University of Arizona, I had the opportunity to come to the Center for 
Devices and Radiological Health to work as Bob’s junior research colleague.  It was an opportunity I couldn’t pass up! 
Since that time, I have had many people relate similar stories of how generous Bob was with the time he spent getting to 
know them and their work during their student days.  He was extraordinarily generous in terms of the time he spent with 
students at their conference posters, taking an interest in their work and offering encouragement early in their careers.  
Bob had a tremendous heart for young people.  Back at the office he preferred to supervise one young investigator at a 
time, either a grad student or fairly recent graduate, who would have the amazing opportunity to work one-on-one with 
Bob for hours daily over the course of several years.  I consider myself truly blessed for having been a link in that chain 
of Bob’s young investigators. 

 
3. THE NEXT LEVEL OF COMPLEXITY: BIOLOGICAL VARIABILITY 

 
Realistic images have complicated background structures, and may have random signals, too.  Thus, once Bob had 
unified image evaluation for the “signal-known-exactly, background-known-exactly” (SKE/BKE) paradigm, he and his 
colleagues turned to more complicated and realistic imaging tasks involving random backgrounds and variable signals.  
Much of the motivation for the early work on image performance evaluation in the presence of a lumpy background (see 
the companion paper in this proceedings by H.H. Barrett10) came from passionate discourse between Bob, Harry, and 
others regarding the sometimes surprising and counterintuitive results of system optimization studies for tasks involving 
known signals and backgrounds.  Bob and Harry were coauthors on several papers related to this topic, extending the 
decision-theoretic framework of image assessment to allow for statistical backgrounds, and in the process, demonstrating 
Bob’s remarkable capacity for engaging his colleagues in passionate and sometimes heated debate, while maintaining 
mutual respect and collegiality.   
 
Bob took great pride in those times in his career when he challenged someone’s viewpoint, even if in the end it was 
revealed that, for example, because a study he had published was somewhat unrepresentative of clinical practice it had 
resulted in peculiar conclusions.  In this case, the SKE/BKE paradigm was found to be flawed, but the pay off in terms 
of new models for tasks and evaluation strategies was enormous.  A number of unifying outcomes from this period in the 
field of medical image assessment continue to be important today, largely as a result of Bob’s influence through his own 
research and his impact on the work of others.   In particular, it is now widely appreciated that the evaluation of a 
medical imaging system must consider tasks involving statistical backgrounds.  While this reality brings complexity to 
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the image evaluation process, a beautiful order can be found in the resulting extensions to the expressions for the SNR of 
the ideal observer and the ideal Hotelling observer in the presence of background variability.11   
 
 

4. ARTIFACT-LIMITED IMAGES 
 
Bob Wagner first considered the role of image reconstruction in tomographic imaging in the late 1970s, refuting the 
claims of some investigators who believed they could greatly reduce the dose of CT through efficient algorithms.3,12  
Bob and his colleagues demonstrated that CT was inherently a high-dose modality (relative to the planar x-ray imaging 
methods that preceded it).   Even so, the potential for effective limited-angle tomography appealed to Bob, who 
championed methods for the task-based assessment of potential geometries in CT and MRI.   
 
As a demonstration effort, Bob collaborated with Ken Hanson of Los Alamos National Laboratory on a series of papers 
in the early 1990s on the evaluation of image reconstruction algorithms.  (See companion proceedings in this volume by 
Ken Hanson.13)   A variety of planar CT image acquisition geometries, noise levels, image reconstruction algorithms, 
and tasks were considered, with both human and algorithmic observers employed.  This work demonstrated the 
applicability of the same signal-detection theoretic approach to the evaluation of artifact-limited images that Bob first 
championed for simple quantum-limited images.  Furthermore, the evaluation of artifact-limited images was shown to 
require tasks with randomness in the signals and/or backgrounds (biological variability), because artifacts are only 
problematic for the ideal observer when they are randomized – the limited-angle tomographic image of a nonrandom 
object may be “artifacty” but it is still known exactly.     
  

4. THE COMPLICATION OF READER VARIABILITY 
 
The introduction of full-field digital mammography (FFDM) as an alternative to film-screen mammography (FSM) was 
greatly anticipated in the 1990s by the medical imaging community, following years of investment by industry and the 

NIH’s National Cancer Institute.  However, it became clear that a simple 
side-by-side comparison of FSM and FFDM images would not be a 
feasible means of demonstrating the effectiveness of this new FFDM 
technology, as there was no consensus on the clinical meaning of the 
resulting differences in image values.  The standard physical 
performance measures, MTF and NPS, and the associated DQE, which 
had come to be relied upon in the evaluation of FSM, also raised 
questions for some regarding the clinical significance of the differences 
in these measures found between these alternative technologies.  Hence, 
the medical community pushed for clinically relevant reader study.  
Complicating this undertaking was the quantitative measurement of 
reader variability in mammography that was published by Beam et al. in 
1996.7 
  
The complication of reader variability is dramatically demonstrated in 
Figure 1, adapted by Bob from the Beam et al. publication.  The figure 
presents the results of a study of 108 US mammographers interpreting a 
common set of mammograms.  This plot of the sensitivity-specificity 
pairs of each radiologist was a favorite figure of Bob’s.  He used it 
frequently to make the point that there is a range in both reader skill and 
reader aggressiveness, or mindset, and thus there is no single operating 
point for the mammographers participating in this study.  A reader study 
to compare the performance of two imaging modalities like FSM vs. 
FFDM must contend with the implication of this additional source of 
variability, on top of the variability that would be expected from the 
measurement noise and biological (or case) variability. 
 
 

Figure 1.  Sensitivity-specificity pairs for 
108 US mammographers in the study by 
Beam et al.14 (Adapted with permission 
from Archives in Internal Medicine, Vol. 
156, p 209-213; Copyright 1996 American 
Medical Association. All rights reserved.) 
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Figure 2 illustrates the multiple factors we have discussed that may contribute to the spread in an observer’s decision 
variable in an objective imaging performance analysis.  A figure like this appeared in ICRU Report 54, Medical Imaging 
– The Assessment of Image Quality,15 of which Bob was a principal coauthor. This document was commissioned by the 
International Commission on Radiation Units and Measurements to present the best understanding of the current 
framework, based on statistical decision theory, by which imaging system performance could be measured, optimized, 
and compared.  The report advocated the use of receiver operating characteristic (ROC) curve analysis for measurement 
of task performance by observers, but did not address the estimation of uncertainty in the resulting performance 
measures.  At the time of the report’s publication, no software tools were available for analyzing these contributions to 
the uncertainty in a figure of merit.   
 
To account for the kinds of variability seen in the study by Beam et al., a number of statistical solutions16-20 and related 
software21,22 were released in the 1990s, all involving so-called multiple-reader multiple case (MRMC) ROC analysis   
to account for the multiple components of the variance (cases, readers, and their interactions) observed in ROC studies.  
Bob recruited a bright young Russian mathematician, Sergey Beiden, to work with him on the development of a non-
parametric statistical analysis method based on bootstrap resampling.  Over the course of the next several years, Bob and 
Sergey released a series of papers addressing various MRMC issues related to experimental design and a problem’s 
variance structure,23-25 including the impact of continuous vs. categorical rating data,26  the difference in reader variance 
without vs. with CAD,24 and an analysis of the components of variance when CAD is used in an independent vs. 
sequential reading paradigm.27  The reference list shows that he carried out this work with a large number of prestigious 
collaborators.   He was particularly proud of the joint paper on the inter-comparison of MRMC analysis methods 
coauthored by Nancy Obuchowski and other leaders in the field,28 as well as the tutorials (Bob liked to call them “pre-
guidance”) he published with Greg Campbell (head of CDRH’s Division of Biostatistics) and Charles Metz.29-31  Charles 
was a singular source of ideas, wisdom, and feedback on these topics.  Bob might close his door, but his big laugh still 
spilled out under the door and through the walls during their frequent late afternoon conversations.   
 

 
 
 
 

 
 
 
 

 
Bob gave numerous presentations inside FDA to develop an awareness and appreciation for the MRMC methodology 
and its importance for imaging device comparison studies as he pushed for the adoption of this paradigm by the agency.  
He argued that the fully-crossed MRMC experimental design, where every reader interprets every case from two 
modalities under comparison, has the most statistical power for a given number of readers and a given number of cases 
with verified truth; thus, it’s least demanding of these resources, or “least burdensome,” in the language of the agency.  
Most notably, in March 2001 he gave a tutorial on multivariate ROC analysis to the FDA/CDRH advisory panel meeting 
convened to consider the data submitted to support the first premarket application for an FFDM imaging system,32 
followed by an update when an advisory panel convened to consider the data submitted to support the first premarket 
application for a lung nodule computer-aided detection (CAD) device.33  He ardently sought presentation slots at these 
very public meetings, knowing they offered tremendous opportunities for education of a wide audience, including the 
advisory panel and all the members of the audience who would be making similar petitions to the agency in the future.   

Figure 2.  The spread of an observer’s 
decision variable owing to the following 
factors: random noise fluctuations (- - -), 
noise and biological variability (– – –), and 
that from noise, biological variability, 
artifacts and observer variability (——). 
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5. COMPUTER-ASSIST DEVICES AND STATISTICAL LEARNING MACHINES 

 
Early on, Bob recognized the analogy that could be drawn between the sources of variability in an MRMC study 
involving human readers and the sources of variability in a study evaluating the performance of a computer-aided 
detection algorithm.  For a given type of machine classifier (fixed architecture), different training sets will result in 
different particular algorithms (different weights, for example), resulting in different levels of performance.  For both 
kinds of observers, man and machine, differences in observer skill can be attributed in part to differences in the range of 
cases in the training set.  Of course, CAD algorithms can have different mindsets, or thresholds, too, just as readers can.  
And finally, the range of test cases impacts mean performance and its variability similarly for both kinds of observers as 
well.  Thus Bob’s recent presentations routinely made the point that resampling is essential for the assessment of 
statistical learning machines, because there is uncertainty from the finite test set, the finite training set, and their 
interactions. 
 
Figure 3 shows two “learning curves” from a 1994 SPIE Medical Imaging paper Bob wrote “On combining a few 
diagnostic tests or features.”34  The x axis plots the number of patients used to train a simple Bayesian classifier (linear in 
this uncorrelated Gaussian statistics problem).  The y axis plots the mean estimate of the area under the ROC curve over 
a set of 250 Monte Carlo trials; the testing case set is very large. With this simple graph Bob was able to make several 
key points, including: limited training data negatively impacts the ability of the classifier to reach its performance 
potential; and the addition of an informative feature can improve classifier performance.  Many additional plots can be 
found in this paper, illustrating what happens in higher dimensions, or when noisier or more correlated features are 
added, for example. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When data like those shown in Fig. 3 are replotted against the reciprocal of the number of training samples, we obtain 
plots like those shown in Figure 4.35  These plots are examples of what Bob referred to as “antler diagrams,” thanks to 
the inclusion of a second set of performance data with an inverse bias to that illustrated in Fig. 3.  Specifically, Fig. 4 
demonstrates the positive bias in the performance estimate one finds when a classifier is trained and tested on the same 
samples – resubstitution, the upper antlers – as opposed to the negative bias that happens when training and testing on 
independent samples – the lower antler. 
 
Unlike Figure 3, Figure 4 also includes error bars indicating the uncertainty in the performance estimates for each 
condition.  Not long after these data were presented to the SPIE community in 1997, Bob began calling for performance 
estimates of CAD algorithms that accounted for the training uncertainty in the estimated performance of a CAD device 
or machine algorithm.  While many algorithm designers would argue that they were only interested in the performance 

Figure 3.  Mean performance of a linear classifier 
with 2 and 3 uncorrelated, Gaussian features as a 
function of the number of training cases.   

Proc. of SPIE Vol. 7263  72630H-5



0.00 0.01 0.02 0.O

1/TotaL No. of Training Samples

t.00

0.95
Resubstitutlon

0.9%

0.85
Test

0.80

0.75
3D

0.70 .

1.00

0.95

0.90

0.80

0.75

ReubstItutIon

0.70
0.00 0.01 0.02 -0.03

lITotaI No. of TraIning Samples

 

 

of their particular device, Bob was unrelenting in his campaign on this issue.  He strongly believed that a full evaluation 
of the technology, as he referred to it, required an analysis of the uncertainty owing to both the finite number of training 
and testing samples.  The particular training set is a random effect that needs to be accounted for.  In fact, Bob found that 
the finite-sample training variance frequently dominates the uncertainty in the performance difference between 
competing classifiers.36 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bob’s earliest work on classifier performance estimation focused on fairly low-dimensional problems inspired by the 
algorithms being developed for applications in mammography and other radiological data sets.  There might be a million 
pixels in a mammogram, but there is a great deal we know regarding the spatial correlations within and across organs, 
and the image features associated with the pathologies to be detected.  Early CAD development involved gathering such 
information from expert radiologists and clinicians and attempting to write code that extracted such features 
quantitatively.  In this way, a CAD algorithm would reduce those million pixels in a mammogram down to a much 
smaller feature space.  The low dimensionality of the reduced features space meant there would be reasonable hope of 
building a data base of training and testing cases with sufficient numbers of samples for device development and 
performance estimation.  
 
Most recently, Bob’s work had been devoted to the increased complexity found in the assessment of computer-aided 
diagnosis methods applied to modern multiple biomarker problems: finding genes, classifying proteins, and other so-
called “-omics” tasks using microarrays.37,38  Bob steeped himself in the contemporary literature on statistical learning 
theory, support vector machines, and the biological discoveries paving the way to the touted future of personalized 
medicine.  As he educated himself, he brought his expertise on image assessment methodologies to new audiences, 
including the multi-institutional MicroArray Quality Control Consortium,39 and supported the development of regulatory 
decision-making paradigms for related products in FDA/CDRH.   
 
The tremendous dimensionality of the data sets in modern multiple biomarker problems raises unique challenges because 
in this field, unlike medical imaging, information on the relationships between data elements is still being discovered, 
and therefore the problem of feature selection, or data mining, is significant.  Figures 3 and 4 show the performance 
characteristics of simple linear classifiers; in addition, Bob and his colleagues had investigated more complex classifiers, 
such as quadratic discriminants and artificial neural nets.40  Bob knew from these simulations and theoretical 
investigations that the slopes of the learning curves and the uncertainties associated with the finite training set increase 
with the dimensionality of the problem and the complexity of the classifier.   

Figure 4.   Mean area under the ROC curve, Az, and estimates of its uncertainty for a linear classifier in a Gaussian-
distributed multiple-feature problem, as a function of the reciprocal of the number of training samples.  The upper plot 
in each graph shows the performance bias when the classifier is tested on the same cases used in its training.  The lower 
plot shows performance for a classifier trained and tested on independent cases.  The left plot is for a 3-D feature space; 
the right plot shows the results for a 12-D feature space.  Bob referred to plots like these as antler diagrams. 
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Formal definitions of the complexity of a classifier exist, related to the ability of the classifier to partition data sets of 
given statistical properties.41 Related to classifier complexity is 1) the amount of data required to train the classifier in 
order for its performance to approach its large-training-sample performance and 2) the stability of the classifier’s 
performance estimate with respect to different training sets of fixed size.  The analogies Bob had drawn earlier regarding 
readers and training cases, patients and testing cases, and imaging systems and algorithms apply all the more so to the 
multiple biomarker problem.  Bob’s research goal was to develop practical assessment tools and paradigms for users of 
these emerging technologies.  He continued to advocate for an estimation of the total uncertainty from both the finite 
training dataset and the finite testing dataset.42,43  He laid out a three-stage process of classifier development and 
assessment, to be followed once preclinical biological, chemical, pharmacogenomic, etc., research had suggested the 
possible utility of an array of biomarkers: 

 
Level 0: Data-mining 
 Select features (biomarkers) 
 Select classifier architecture 
 
Level 1:  Pilot Study 
 Collect new samples  
 Estimate the mean performance and total uncertainty (from finite trainers and testers) 
 Estimate how to scale up to a pivotal study that would yield desired confidence levels 
 
Level 2: Pivotal Study 
 Collect more samples (can incorporate samples from Level 1) 
 Divide samples into independent training and testing sets for final performance evaluation 
 

Bob hoped that, by following this 3-level approach, fewer blind alleys would stall progress in the microarray biomarker 
world.  In the years to come, as new biomarkers are discovered and related algorithms are investigated to harness their 
power to personalize medicine, we will be able to witness first hand the impact of Bob’s pioneering work on this 
promising field.   

 
6. FINAL REMARKS 

 
The title of this talk is a slight modification of the title of one of Bob’s favorite books, Order out of Chaos, by Ilya 
Prigogine.  When I arrived at the FDA to work with Bob, chaos theory was a hot topic in the physical sciences, and Bob 
read countless books on the subject.  He even arranged to give a multi-installment course on chaos to all the other 
scientists in the CDRH labs!  Such was his enthusiasm for understanding this field and passing on his excitement about it 
to others.  As a new scientist working for Bob, I was amazed by the energy he put into this side project and the way the 
whole lab stopped work for many hours to enjoy the gift of his time and teaching talent. 
 
Bob relished being able to make sense of complex processes.  The body of his professional work is filled with examples 
where he brought people from separate disciplines together, built bridges between ideas and problem areas, and worked 
to create a unified framework for understanding the world around him.  Bob once wrote: 

 
“One of the great discoveries of the post-enlightenment world (~ last 250 years or so) is that the world 
*out there* is quite complicated.   In fact, in my humble opinion it is a mark of an educated person 
that they have been exposed to the discoveries and understanding of just how complicated the world 
really is--whether it be in terms of psychology or sociology or economics or medicine or the physical 
sciences--or anything that is really at all interesting to think about.  The great challenge and fun is 
how people have been able to break complicated things down into bite-sized pieces…”  

 
This quote truly speaks to Bob’s own life –  Bob certainly challenged himself, and had fun in the process, as he broke 
down complicated problems into relatable pieces, and shared his insights and research progress at the SPIE Medical 
Imaging Symposium each year.  He had a unique ability to unify concepts across a range of disciplines, and in doing so, 
he gave order to increasingly complex problems in our field.  Along the way, he challenged us all and gave us a whole 
lot of fun, too.  This meeting, and the field, will greatly miss him.  
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