Front Matter: Volume 7289

Event: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, 2009, San Diego, California, United States
Behavior and Mechanics of Multifunctional Materials and Composites 2009

Zoubeida Ounaies
Jiangyu Li
Editors

9–12 March 2009
San Diego, California, United States

Sponsored by
SPIE

Cosponsored by
American Society of Mechanical Engineers (United States)

Cooperating Organizations
Intelligent Materials Forum (Japan)
Jet Propulsion Laboratory (United States)
National Science Foundation (United States)

Published by
SPIE

Volume 7289
Contents

ix Symposium Committee
xi Conference Committee

xiii Energy harvesting: small scale energy production from ambient sources (Plenary Paper) [7288-103]
 E. M. Yeatman, Imperial College London (United Kingdom)

xxi Paleoaerodynamic exploration of the evolution of nature’s flyers and man’s aircraft and
options for future technology innovations (Plenary Paper) [7288-104]*
 B. M. Kulfan, The Boeing Co. (United States)

*This is an abridged version of Brenda Kulfan’s plenary paper. A full-length version, including
figures, is published in volume 7288. The CID number is 728803.

SESSION 1 FERROELECTRIC CERAMICS I: MODELING THE HYSTERESIS BEHAVIOR

7289 02 Efficient algorithms for implementation of hysteresis models [7289-01]
 L. Downen, North Carolina State Univ. (United States); T. Glover, Albany State Univ. (United States);
 L. Hallock, Univ. of Wisconsin, La Crosse (United States); S. King, North Carolina State Univ. (United States);
 J. Shor, Princeton Univ. (United States); J. Wallace, Virginia Polytechnic Institute and State Univ. (United States);
 R. C. Smith, North Carolina State Univ. (United States)

7289 03 An electro-mechanically coupled 1-D polycrystalline model for piezoelectric stack actuators [7289-02]
 A. York, S. Seelecke, North Carolina State Univ. (United States)

7289 04 Efficient parameter estimation techniques for hysteresis models [7289-03]
 J. M. Ernstberger, LaGrange College (United States); R. C. Smith, North Carolina State Univ. (United States)

7289 05 One-dimensional switching model for major and minor hysteresis loops in ferroelectric materials [7289-04]
 T. Ikeda, K. Yoshida, T. Ueda, Nagoya Univ. (Japan)

SESSION 2 APPLICATIONS OF PIEZOELECTRIC, FERROELECTRIC, AND MULTIFUNCTIONAL MATERIALS

7289 09 Study of temperature dependent polarization behavior of cellulose [7289-80]
 G.-Y. Yun, J.-H. Kim, J. Kim, Inha Univ. (Korea, Republic of)

7289 0B Construction of compatible microstructures for tetragonal ferroelectric single crystals [7289-08]
 N. T. Tsou, J. E. Huber, Univ. of Oxford (United Kingdom)
A cognitive compensation mechanism for deformable antennas [7289-81]
S. A. Long, G. H. Huff, Texas A&M Univ. (United States)

SESSION 3 FERROELECTRIC CERAMICS II: MODELING OF FERROELECTRIC AND PIEZOELECTRIC CERAMICS

Computational phase-field modeling of defect interactions in ferroelectrics [7289-10]
A. Kontsos, W. Li, C. M. Landis, The Univ. of Texas at Austin (United States)

A finite element formulation for piezoelectric shells with well balanced approximation functions [7289-12]
S. Klinkel, D. Legner, Univ. Karlsruhe (Germany)

Challenges associated with three dimensional phase field modeling of ferroelectric single crystal phase transformations [7289-14]
C. S. Lynch, Univ. of California, Los Angeles (United States)

A constitutive model for temperature dependent behavior of ferroelectric materials [7289-16]
K. Yoshida, T. Ikeda, T. Ueda, Nagoya Univ. (Japan)

SESSION 4 SHAPE MEMORY MATERIALS I: SHAPE MEMORY ALLOYS

Pseudo-creep in Cu-Al-Ni single crystal shape memory alloys [7289-20]
G. K. Kannarpady, M. Wolverton, V. R. Russailan, A. Bhattacharyya, Univ. of Arkansas at Little Rock (United States); S. Pulnev, Ioffe Physico-Technical Institute (Russian Federation)

Experimental investigation and 3-D modeling of rate-dependent irrecoverable deformation in shape memory alloys (Best Student Paper Award) [7289-18]
D. J. Hartl, D. C. Lagoudas, Texas A&M Univ. (United States)

Local deformation behavior arising in NiTi plate and its influence on macroscopic deformation behavior [7289-19]
G. Murasawa, Yamagata Univ. (Japan); K. Kitamura, Nagano National College of Technology (Japan); S. Miyazaki, Univ. of Tsukuba (Japan); A. Nishioka, K. Miyata, T. Koda, Yamagata Univ. (Japan)

Creep behavior in TiPdNi high temperature shape memory alloy [7289-21]
P. K. Kumar, D. C. Lagoudas, Texas A&M Univ. (United States)

Parametric study and characterization of the isobaric thermomechanical transformation fatigue of nickel-rich NiTi SMA actuators [7289-22]
O. W. Bertacchini, J. Schick, D. C. Lagoudas, Texas A&M Univ. (United States)

Effects of phase inhomogeneity and boundary conditions on the dynamic response of SMA wire actuators [7289-23]
K. Dasharathi, D. Roy Mahapatra, Indian Institute of Science (India)
SESSION 5 SHAPE MEMORY MATERIALS II: SHAPE MEMORY ALLOYS

7289 OR

A comparison of FE beam and continuum elements for typical nitinol stent geometries [7289-24]
W. Ballew, S. Seelecke, North Carolina State Univ. (United States)

7289 OS

Finite element analysis of SMA beam bending using COMSOL [7289-25]
S. Yang, North Carolina State Univ. (United States) and Northwestern Polytechnical Univ. (China); S. S. Seelecke, Q. Li, North Carolina State Univ. (United States)

7289 OT

Electro-mechanical behavior of a shape memory alloy actuator [7289-26]
M. E. Pausley, S. J. Furst, North Carolina State Univ. (United States); V. Talla, North Carolina State Univ. (United States) and Indian Institute of Technology (India); S. Seelecke, North Carolina State Univ. (United States)

7289 OU

A constitutive model for high temperature SMAs exhibiting viscoplastic behavior [7289-27]
G. E. Chatzigeorgiou, D. C. Lagoudas, Texas A&M Univ. (United States)

SESSION 6 SHAPE MEMORY MATERIALS III: SHAPE MEMORY POLYMERS

7289 OX

Shape memory epoxy: a systematic study of their performance [7289-30]
I. A. Rousseau, T. Xie, General Motors Corp. (United States)

7289 OZ

Investigation of mechanical behavior of epoxy shape memory polymers [7289-32]
X. Wu, Y. Liu, J. Leng, Harbin Institute of Technology (China)

7289 10

Shape recovery performances of a deployable hinge fabricated by fiber-reinforced shape-memory polymer [7289-33]
X. Lan, X. Wang, H. Lu, Y. Liu, J. Leng, Harbin Institute of Technology (China)

7289 11

Influence of radiation dose on shape memory effect of styrene copolymer [7289-34]
D. Zhang, Harbin Institute of Technology (China) and Northeast Forestry Univ. (China); Y. Liu, J. Leng, Harbin Institute of Technology (China)

7289 12

Shape memory miscible blends for thermal mending [7289-35]
E. D. Rodriguez, X. Luo, P. T. Mather, Syracuse Univ. (United States)

SESSION 7 ACTIVE COMPOSITES

7289 13

Modeling the nonlinear behavior of macro fiber composite actuators [7289-36]
M. Stuebner, R. C. Smith, North Carolina State Univ. (United States); M. Hays, W. S. Oates, Florida State Univ. (United States)

7289 15

Electromechanical characterization of a single active structural fiber lamina for multifunctional composites [7289-38]
Y. Lin, H. A. Sodano, Arizona State Univ. (United States)
<table>
<thead>
<tr>
<th>Session 8</th>
<th>Active Nanocomposites I: Electromechanical Response of Carbon Nanotube-Polymer Composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>7289 16</td>
<td>A continuum model for carbon nanotube-infused polyimides [7289-39]</td>
</tr>
<tr>
<td></td>
<td>H. Wilson, North Carolina State Univ. (United States); S. Banda, Texas A&M Univ. (United</td>
</tr>
<tr>
<td></td>
<td>States); R. C. Smith, North Carolina State Univ. (United States); Z. Ounaies, Texas A&M</td>
</tr>
<tr>
<td></td>
<td>Univ. (United States)</td>
</tr>
<tr>
<td>7289 17</td>
<td>Polymer nanocomposites as electrostrictive materials [7289-40]</td>
</tr>
<tr>
<td></td>
<td>S. Deshmukh, Z. Ounaies, Texas A&M Univ. (United States); R. Krishnamoorti, Univ. of</td>
</tr>
<tr>
<td></td>
<td>Houston (United States)</td>
</tr>
<tr>
<td>7289 18</td>
<td>Piezoresistive behavior of CNT nanocomposites using atomistic and micromechanics models</td>
</tr>
<tr>
<td></td>
<td>[7289-41]</td>
</tr>
<tr>
<td></td>
<td>T. C. Theodosiou, D. A. Saravanos, Univ. of Patras (Greece)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 9</th>
<th>Active Nanocomposites II: Processing Issues and Multifunctional Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>7289 1A</td>
<td>Energy absorbing hybrid nano-composite materials [7289-43]</td>
</tr>
<tr>
<td></td>
<td>J.-S. Jang, J. Varischetti, Univ. of Nevada, Reno (United States); G.</td>
</tr>
<tr>
<td></td>
<td>W. Lee, Chonbuk National Univ. (Korea, Republic of); J. Suhr, Univ. of</td>
</tr>
<tr>
<td></td>
<td>Nevada, Reno (United States)</td>
</tr>
<tr>
<td>7289 1B</td>
<td>A study on ductility of nano-particles reinforced cement-based composites</td>
</tr>
<tr>
<td></td>
<td>[7289-44]</td>
</tr>
<tr>
<td></td>
<td>C. Lan, H. Li, H. Xiao, Harbin Institute of Technology (China); J. Ou,</td>
</tr>
<tr>
<td></td>
<td>Harbin Institute of Technology (China) and Dalian Univ. of Technology</td>
</tr>
<tr>
<td></td>
<td>(China)</td>
</tr>
<tr>
<td>7289 1C</td>
<td>Effect of aspect ratio on the electroelastic properties of piezoelectric</td>
</tr>
<tr>
<td></td>
<td>nanocomposites [7289-45]</td>
</tr>
<tr>
<td></td>
<td>C. Andrews, Y. Lin, H. A. Sodano, Arizona State Univ. (United States)</td>
</tr>
<tr>
<td>7289 1D</td>
<td>Characterization of ferrogs prepared using γ-Fe₂O₃ and Fe₃O₄ nanoparticles</td>
</tr>
<tr>
<td></td>
<td>[7289-47]</td>
</tr>
<tr>
<td></td>
<td>K. J. Suthar, M. K. Ghantasala, Western Michigan Univ. (United States);</td>
</tr>
<tr>
<td></td>
<td>D. C. Mancini, J. Ilavsky, Argonne National Lab. (United States)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session 10</th>
<th>Active Polymers</th>
</tr>
</thead>
<tbody>
<tr>
<td>7289 1E</td>
<td>Dynamic surface resistance model of IPMC [7289-48]</td>
</tr>
<tr>
<td></td>
<td>D. Pugal, Univ. of Nevada, Reno (United States) and Tartu Univ. (Estonia);</td>
</tr>
<tr>
<td></td>
<td>A. Aabloo, Tartu</td>
</tr>
<tr>
<td></td>
<td>Univ. (Estonia); K. J. Kim, Univ. of Nevada, Reno (United States)</td>
</tr>
<tr>
<td>7289 1F</td>
<td>Ion transport in ionic liquid-swollen ionic polymer transducers [7289-49]</td>
</tr>
<tr>
<td></td>
<td>J. D. Davidson, N. C. Goulbourne, Virginia Polytechnic Institute and State</td>
</tr>
<tr>
<td></td>
<td>Univ. (United States)</td>
</tr>
<tr>
<td>7289 1G</td>
<td>Disc-shaped IPMC for use in energy harvesting [7289-50]</td>
</tr>
<tr>
<td></td>
<td>R. Tiwari, K. J. Kim, Univ. of Nevada, Reno (United States)</td>
</tr>
<tr>
<td>7289 1H</td>
<td>Electro-mechanical analysis of a dielectric EAP actuator [7289-51]</td>
</tr>
<tr>
<td></td>
<td>A. York, S. Seelecke, North Carolina State Univ. (United States)</td>
</tr>
</tbody>
</table>
Observation of creep behavior of cellulose electro-active paper (EAPap) actuator [7289-52]
J.-H. Kim, S.-W. Lee, G.-Y. Yun, Inha Univ. (Korea, Republic of); C. Yang, Andong National Univ. (Korea, Republic of); H. S. Kim, Catholic Univ. of Daegu (Korea, Republic of); J. Kim, Inha Univ. (Korea, Republic of)

Covalently bonded functionalized multi-walled carbon nanotubes and cellulose for electroactive paper actuator [7289-54]
S. Yun, K. Yun, J. Kim, Inha Univ. (Korea, Republic of)

A computational model for domain structure evolution of nematic liquid crystal elastomers [7289-55]
H. Wang, W. S. Oates, Florida Agricultural and Mechanical Univ. (United States) and Florida State Univ. (United States)

SESSION 11 MAGNETO-ACTIVE MATERIALS I: MAGNETIC SMAs

A preliminary look at how geometry influences the magneto-mechanical behavior of magnetic shape memory alloys [7289-57]
C. Ciocanel, H. P. Feigenbaum, Northern Arizona Univ. (United States)

Magnetic field-induced reversible phase transformation in magnetic shape memory alloys [7289-58]
D. C. Lagoudas, B. Kiefer, K. Haldar, Texas A&M Univ. (United States)

SESSION 12 MAGNETO-ACTIVE MATERIALS II: MAGNETOELECTRIC COUPLING

Magnetoelastic device demonstrating nanoscale magnetic domain control [7289-62]
T.-K. Chung, S. Keller, G. P. Carman, Univ. of California, Los Angeles (United States)

SESSION 13 MAGNETO-ACTIVE MATERIALS III

Lumped parameter modeling of the actuator behavior of ferrogels [7289-63]
L. E. Faidley, E. J. McLaurin, Iowa State Univ. (United States)

Magnetoelastic solid composites based on ionic liquids [7289-64]
C. Guerrero-Sanchez, Eindhoven Univ. of Technology (Netherlands), Dutch Polymer Institute (Netherlands), and Ioniqa Technologies (Netherlands); C. Fabrie, Eindhoven Univ. of Technology (Netherlands); U. S. Schubert, Eindhoven Univ. of Technology (Netherlands), Dutch Polymer Institute (Netherlands), and Friedrich-Schiller-Univ. Jena (Germany)

Effect of magnetic field on the bending response of magnetostrictive/piezoelectric laminated actuators [7289-65]
F. Narita, Y. Shindo, K. Mori, Tohoku Univ. (Japan)

Predicting magnetorheological fluid flow behavior using a multiscale kinetic theory-based model [7289-66]
M. Mahboob, F. Ahmadkhanlou, C. Kagarise, G. Washington, S. Bechtel, K. Koelling, The Ohio State Univ. (United States)
Measurement and modeling of magnetomechanical coupling in magnetostrictive iron-gallium alloys [7289-67]
P. G. Evans, M. J. Dapino, The Ohio State Univ. (United States)

Mechanical behavior and auxetic properties of galfenol [7289-68]
H. M. Schurter, Univ. of Maryland, College Park (United States); Y. Zhang, R. Wu, Univ. of California, Irvine (United States); A. B. Flatau, Univ. of Maryland, College Park (United States)

Effects of particle size on magnetostrictive properties of magnetostrictive composites with low particulate volume fraction [7289-70]
X. Dong, Dalian Univ. of Technology (China); X. Guan, Harbin Institute of Technology (China); J. Ou, Harbin Institute of Technology (China) and Dalian Univ. of Technology (China)

Development of proton exchange membrane from bisphonol S for using in direct methanol fuel cell [7289-73]
S. Changkhamchom, A. Sirivat, Chulalongkorn Univ. (Thailand)

Material property measurement of bio-structures using digital image correlation technique [7289-75]
T. Jin, N. S. Goo, S.-C. Woo, H. C. Park, Konkuk Univ. (Korea, Republic of)

Temperature-pressure characteristics of SMH actuator system using hydrogen-absorbing alloys [7289-76]

Research on natural characteristics of magnetostrictive actuators [7289-84]
L. Li, Y. Yang, Beijing Univ. of Aeronautics and Astronautics (China)

Author Index
Symposium Committee

Symposium Chairs

Alison B. Flatau, University of Maryland, College Park (United States)
George Y. Baaklini, NASA Glenn Research Center (United States)
Donald J. Leo, Virginia Polytechnic Institute and State University (United States)
Kara J. Peters, North Carolina State University (United States)

Executive Committee

Mehdi Ahmadian, Virginia Polytechnic Institute and State University (United States)
Yoseph Bar-Cohen, Jet Propulsion Laboratory (United States)
Jung-Chih Chiao, The University of Texas at Arlington (United States)
Aaron A. Diaz, Pacific Northwest National Laboratory (United States)
Wolfgang Ecke, Institut für Physikalische Hochtechnologie e.V. (Germany)
Mehrdad N. Ghasemi-Nejad, University of Hawai'i at Manoa (United States)
Victor Giurgiutiu, University of South Carolina (United States)
Benjamin K. Henderson, Air Force Research Laboratory (United States)
Kumar V. Jata, Air Force Research Laboratory (United States)
Tribikram Kundu, The University of Arizona (United States)
Jiangyu Li, University of Washington (United States)
Douglas K. Lindner, Virginia Polytechnic Institute and State University (United States)
M. Brett McMickell, Honeywell, Inc. (United States)
Norbert Meyendorf, University of Dayton (United States)
Zoubeida Ounaies, Texas A&M University (United States)
Peter J. Shull, The Pennsylvania State University (United States)
Kyo D. Song, Norfolk State University (United States)
Masayoshi Tomizuka, University of California, Berkeley (United States)
Vijay K. Varadan, University of Arkansas (United States)
Dietmar W. Vogel, Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (Germany)
Thomas Wallmersperger, Universität Stuttgart (Germany)
H. Felix Wu, National Institute of Standards and Technology (United States)
Chung-Bang Yun, Korea Advanced Institute of Science and Technology (Korea, Republic of)
Conference Committee

Conference Chair
Zoubeida Ounaies, Texas A&M University (United States)

Conference Cochair
Jiangyu Li, University of Washington (United States)

Program Committee
Hilary Bart-Smith, University of Virginia (United States)
Abhijit Bhattacharyya, University of Arkansas, Little Rock (United States)
L. Catherine Brinson, Northwestern University (United States)
Gregory P. Carman, University of California, Los Angeles (United States)
Pavel M. Chaplya, Sandia National Laboratories (United States)
Constantin Ciocanel, Northern Arizona University (United States)
Marcelo J. Dapino, The Ohio State University (United States)
Daining Fang, Tsinghua University (China)
Christopher P. Henry, HRL Laboratories, LLC (United States)
Daniel J. Inman, Virginia Polytechnic Institute and State University (United States)
Marc Kamlah, Forschungszentrum Karlsruhe GmbH (Germany)
Ibrahim Karaman, Texas A&M University (United States)
Kwang J. Kim, University of Nevada, Reno (United States)
Dimitris C. Lagoudas, Texas A&M University (United States)
Chad M. Landis, The University of Texas at Austin (United States)
Kam K. Leang, University of Nevada, Reno (United States)
Donald J. Leo, Virginia Polytechnic Institute and State University (United States)
Christopher S. Lynch, University of California, Los Angeles (United States)
Karla M. Mossi, Virginia Commonwealth University (United States)
Etienne Patoor, École Nationale Supérieure d’Arts et Métiers (France)
Ralph C. Smith, North Carolina State University (United States)

Session Chairs
1 Ferroelectric Ceramics I: Modeling the Hysteresis Behavior
 Ralph C. Smith, North Carolina State University (United States)
 Stefan S. Seelecke, North Carolina State University (United States)
2 Applications of Piezoelectric, Ferroelectric, and Multifunctional Materials
Karla M. Mossi, Virginia Commonwealth University (United States)
Poorna Mane, Virginia Commonwealth University (United States)

3 Ferroelectric Ceramics II: Modeling of Ferroelectric and Piezoelectric Ceramics
Christopher L. Lynch, PerkinElmer Life and Analytical Sciences, Inc. (United States)
Marc Kamalh, Forschungszentrum Karlsruhe GmbH (Germany)

4 Shape Memory Materials I: Shape Memory Alloys
Sergio L. dos Santos e Lucato, Teledyne Scientific Company (United States)

5 Shape Memory Materials II: Shape Memory Alloys
Darren J. Hartl, Texas A&M University (United States)

6 Shape Memory Materials III: Shape Memory Polymers
Christopher P. Henry, HRL Laboratories, LLC (United States)

7 Active Composites
Zoubeida Ounaies, Texas A&M University (United States)

8 Active Nanocomposites I: Electromechanical Response of Carbon Nanotube-Polymer Composites
Pavel M. Chaplya, Sandia National Laboratories (United States)

9 Active Nanocomposites II: Processing Issues and Multifunctional Response
Henry A. Sodano, Arizona State University (United States)

10 Active Polymers
Marcelo J. Dapino, The Ohio State University (United States)
Kam K. Leang, University of Nevada, Reno (United States)

11 Magneto-Active Materials I: Magnetic SMAs
Jiangyu Li, University of Washington (United States)

12 Magneto-Active Materials II: Magnetoelastic Coupling
LeAnn E. Faidley, Iowa State University (United States)

13 Magneto-Active Materials III
LeAnn E. Faidley, Iowa State University (United States)

14 Magneto-Active Materials IV: Magnetostriction
Zoubeida Ounaies, Texas A&M University (United States)