
PROCEEDINGS OF SPIE 

Volume 7360 
 
 

Proceedings of SPIE, 0277-786X, v. 7360 
 

SPIE is an international society advancing an interdisciplinary approach to the science and application of light. 
 

EUV and X-Ray Optics: Synergy 
between Laboratory and Space 

René Hudec 
Ladislav Pina 
Editors 
 
 
20–22 April 2009 
Prague, Czech Republic 
 
 
Sponsored by 
SPIE Europe 
 
Cooperating Organizations 
Institute of Physics, Academy of Sciences (Czech Republic) 
Department of X-Ray Lasers, Institute of Physics (Czech Republic) 
Czech and Slovak Society for Photonics  
Photonics Society of Poland (Poland) 
 
Published by 
SPIE 
 
 
 



The papers included in this volume were part of the technical conference cited on the cover and 
title page. Papers were selected and subject to review by the editors and conference program 
committee. Some conference presentations may not be available for publication. The papers 
published in these proceedings reflect the work and thoughts of the authors and are published 
herein as submitted. The publisher is not responsible for the validity of the information or for any 
outcomes resulting from reliance thereon. 
 
Please use the following format to cite material from this book: 
   Author(s), "Title of Paper," in EUV and X-Ray Optics: Synergy between Laboratory and Space, 
edited by René Hudec, Ladislav Pina, Proceedings of SPIE Vol. 7360 (SPIE, Bellingham, WA, 2009) 
Article CID Number. 
 
ISSN 0277-786X 
ISBN 9780819476340 
 
Published by 
SPIE 
P.O. Box 10, Bellingham, Washington 98227-0010 USA 
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445 
SPIE.org 
 
Copyright © 2009, Society of Photo-Optical Instrumentation Engineers 
 
Copying of material in this book for internal or personal use, or for the internal or personal use of 
specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by 
SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this 
volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright 
Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made 
electronically through CCC Online at copyright.com. Other copying for republication, resale, 
advertising or promotion, or any form of systematic or multiple reproduction of any material in this 
book is prohibited except with permission in writing from the publisher. The CCC fee code is 
0277-786X/09/$18.00. 
 
Printed in the United States of America. 
 
Publication of record for individual papers is online in the SPIE Digital Library. 

 
SPIEDigitalLibrary.org 
 
 
 
 

 
Paper Numbering: Proceedings of SPIE follow an e-First publication model, with papers published 
first online and then in print and on CD-ROM. Papers are published as they are submitted and meet 
publication criteria. A unique, consistent, permanent citation identifier (CID) number is assigned to 
each article at the time of the first publication. Utilization of CIDs allows articles to be fully citable as 
soon they are published online, and connects the same identifier to all online, print, and electronic 
versions of the publication. SPIE uses a six-digit CID article numbering system in which: 

 The first four digits correspond to the SPIE volume number.  
 The last two digits indicate publication order within the volume using a Base 36 numbering 

system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 
05, 06, 07, 08, 09, 0A, 0B … 0Z, followed by 10-1Z, 20-2Z, etc. 

The CID number appears on each page of the manuscript. The complete citation is used on the first 
page, and an abbreviated version on subsequent pages. Numbers in the index correspond to the 
last two digits of the six-digit CID number. 



  Contents 

 
 ix Conference Committee 
 
 xi Introduction 
 
 xiii Photon physics: from wave mechanics to quantum electrodynamics (Plenary Paper) 

[7355-100]  
O. Keller, Aalborg Univ. (Denmark) 

 
 
 SESSION 1 EUV AND X-RAY OPTICS I  
 
 7360 03 EUV off-axis focusing using a high harmonic source [7360-02] 
  B. Mills, E. T. F. Rogers, J. Grant-Jacob, S. L. Stebbings, M. Praeger, Univ. of Southampton 

(United Kingdom); A. M. de Paula, Federal Univ. of Minas Gerais (Brazil); C. A. Froud, 
Rutherford Appleton Lab. (United Kingdom); R. T. Chapman, T. J. Butcher, W. S. Brocklesby, 
J. G. Frey, Univ. of Southampton (United Kingdom) 

 
 7360 04 Material analysis with EUV/XUV radiation using a broadband laser plasma source and 

optics system [7360-03] 
  A. Bayer, F. Barkusky, J.-O. Dette, S. Döring, B. Flöter, C. Peth, K. Mann, Laser-Lab. Göttingen 

e.V. (Germany) 
 
 7360 05 Two magnification steps EUV microscopy with a Schwarzschild objective and an adapted 

zone plate lens [7360-04] 
  L. Juschkin, R. Freiberger, RWTH Aachen Univ. (Germany) 
 
 7360 06 Imaging properties of a spherical compound refractive x-ray lens [7360-05] 
  C. Huang, B. Mu, Z. Wang, L. Chen, Tongji Univ. (China); Y. I. Dudchik, Belarus State Univ. 

(Belarus); G. Pan, Univ. of Science and Technology of China (China) 
 
 
 SESSION 2 EUV AND X-RAY OPTICS II  
 
 7360 07 Active microstructured x-ray optical arrays [7360-06] 
  A. G. Michette, S. J. Pfauntsch, S. Sahraei, M. Shand, G. R. Morrison, D. Hart, King's College 

London (United Kingdom); B. Vojnovic, King's College London (United Kingdom) and Univ. of 
Oxford (United Kingdom); T. Stevenson, W. Parkes, C. Dunare, Scottish Microelectronics Ctr. 
(United Kingdom); R. Willingale, C. H. Feldman, Univ. of Leicester (United Kingdom);  
T. W. Button, D. Zhang, D. Rodriguez-Sanmartin, Univ. of Birmingham (United Kingdom);  
H. Wang, Diamond Light Source, Ltd. (United Kingdom); A. D. Smith, STFC Daresbury Lab. 
(United Kingdom) 

 

iii



 7360 08 Active x-ray optics for the next generation of x-ray telescopes [7360-07] 
  C. Atkins, Univ. College London (United Kingdom); H. Wang, Univ. College London (United 

Kingdom) and Diamond Light Source, Ltd. (United Kingdom); P. Doel, D. Brooks,  
S. Thompson, Univ. College London (United Kingdom); C. Feldman, R. Willingale, Univ. of 
Leicester (United Kingdom); T. Button, D. Rodriguez Sanmartin, D. Zhang, Univ. of Birmingham 
(United Kingdom); A. James, C. Theobald, G. Willis, Univ. College London (United Kingdom); 
A. D. Smith, STFC Daresbury Lab. (United Kingdom) 

 
 7360 09 Active x-ray optics [7360-08] 
  R. Hudec, Astronomical Institute (Czech Republic) and Czech Technical Univ. (Czech 

Republic); M. Hromcik, Czech Technical Univ. (Czech Republic); M. Elvis, 
Harvard-Smithsonian Ctr. for Astrophysics (United States); O. Gedeon, Institute of Chemical 
Technology (Czech Republic) 

 
 7360 0A Alignment system for full-shell replicated x-ray mirrors [7360-09] 
  M. Gubarev, B. Ramsey, NASA Marshall Space Flight Ctr. (United States); W. Arnold, Jacobs 

ESTS Group, NASA Marshall Space Flight Ctr. (United States) 
 
 7360 0B Development of high-resolution and light-weight x-ray optics with deformed silicon wafers 

[7360-39] 
  Y. Ezoe, T. Shirata, T. Ohashi, Tokyo Metropolitan Univ. (Japan); M. Ishida, K. Mitsuda, Japan 

Aerospace Exploration Agency (Japan); K. Fujiwara, K. Morishita, Tohoku Univ. (Japan);  
K. Nakajima, Tokyo Metropolitan Univ. (Japan) 

 
 7360 0C Novel ultra-lightweight and high-resolution MEMS x-ray optics [7360-40] 
  I. Mitsuishi, Japan Aerospace Exploration Agency (Japan); Y. Ezoe, U. Takagi, Tokyo 

Metropolitan Univ. (Japan); M. Mita, Japan Aerospace Exploration Agency (Japan);  
R. Riveros, H. Yamaguchi, Univ. of Florida (United States); F. Kato, S. Sugiyama, 
Ritsumeikan-Global Innovation Research Organization (Japan); K. Fujiwara, K. Morishita,  
K. Nakajima, S. Fujihira, Y. Kanamori, Tohoku Univ. (Japan); N. Y. Yamasaki, K. Mitsuda, Japan 
Aerospace Exploration Agency (Japan); R. Maeda, National Institute of Advanced 
Industrial Science and Technology (Japan) 

 
 
 SESSION 3 X-RAY OPTICS I  
 
 7360 0D History of grazing incidence x-ray optics in the Czech Republic (Invited Paper) [7360-10] 
  R. Hudec, Astronomical Institute (Czech Republic) and Czech Technical Univ. (Czech 

Republic) 
 
 7360 0E Requirements on hard x-ray grazing incidence optics for European XFEL: analysis and 

simulation of wavefront transformations [7360-11] 
  L. Samoylova, H. Sinn, European XFEL (Germany); F. Siewert, Helmholtz Zentrum Berlin, 

BESSY-II (Germany); H. Mimura, K. Yamauchi, Osaka Univ. (Japan); T. Tschentscher, 
European XFEL (Germany) 

 
 7360 0F Lobster eye: technology and imaging properties [7360-12] 
  L. Sveda, Czech Technical Univ. in Prague (Czech Republic) and Elya Solutions s.r.o (Czech 

Republic); R. Hudec, Astronomical Institute (Czech Republic) and Rigaku Innovative 
Technologies Europe s.r.o. (Czech Republic); L. Pina, Czech Technical Univ. in Prague 
(Czech Republic) and Rigaku Innovative Technologies Europe s.r.o. (Czech Republic);  
V. Semencova, A. Inneman, Rigaku Innovative Technologies Europe s.r.o. (Czech Republic) 

iv



 7360 0G Replicated grazing incidence micromirrors [7360-13] 
  R. Hudec, Astronomical Institute (Czech Republic) and Czech Technical Univ. in Prague 

(Czech Republic); L. Pína, Rigaku Innovative Technologies Europe (Czech Republic) and 
Czech Technical Univ. in Prague (Czech Republic); A. J. Inneman, V. Semencova, Rigaku 
Innovative Technologies Europe (Czech Republic); L. Sveda, Czech Technical Univ. in 
Prague (Czech Republic) 

 
 SESSION 4 IXO  
 
 7360 0H Off-plane x-ray grating spectrometer for the International X-ray Observatory [7360-14] 
  R. L. McEntaffer, Univ. of Iowa (United States); N. J. Murray, A. Holland, Open Univ. (United 

Kingdom); C. Lillie, S. Casement, D. Dailey, T. Johnson, Northrop Grumman Aerospace 
Systems (United States); W. Cash, P. Oakley, Univ. of Colorado at Boulder (United States) 

 
 7360 0J Mirror technology development for the International X-Ray Observatory (IXO) mission 

[7360-46] 
  W. W. Zhang, J. Bolognese, NASA Goddard Space Flight Ctr. (United States); G. Byron, Stinger 

Ghaffarian Technologies, Inc. (United States); K. W. Chan, NASA Goddard Space Flight Ctr. 
(United States) and Univ. of Maryland, Baltimore County (United States); D. A. Content, NASA 
Goddard Space Flight Ctr. (United States); T. J. Hadjimichael, C. Hewitt, Ball Aerospace & 
Technologies Corp. (United States); M. D. Hill, NASA Goddard Space Flight Ctr. (United 
States); M. Hong, Stinger Ghaffarian Technologies, Inc. (United States); J. P. Lehan, NASA 
Goddard Space Flight Ctr. (United States) and Univ. of Maryland, Baltimore County (United 
States); L. Lozipone, J. M. Mazzarella, R. McClelland, Stinger Ghaffarian Technologies, Inc. 
(United States); D. T. Nguyen, NASA Goddard Space Flight Ctr. (United States); L. Olsen, 
Stinger Ghaffarian Technologies, Inc. (United States); R. Petre, D. Robinson, S. O. Rohrbach, 
NASA Goddard Space Flight Ctr. (United States); R. Russell, Stinger Ghaffarian Technologies, 
Inc. (United States); T. T. Saha, NASA Goddard Space Flight Ctr. (United States); M. Sharpe, 
Stinger Ghaffarian Technologies, Inc. (United States); M. V. Gubarev, W. D. Jones, S. L. O'Dell, 
NASA Marshall Space Flight Ctr. (United States); W. Davis, D. R. Caldwell, M. Freeman,  
W. Podgorski, P. B. Reid, Smithsonian Astrophysical Observatory (United States) 

 
 7360 0L Back-up technologies for IXO [7360-18] 
  R. Hudec, Astronomical Institute (Czech Republic) and Czech Technical Univ. (Czech 

Republic); J. Sik, M. Lorenc, ON Semiconductor (Czech Republic); L. Pina, Rigaku Innovative 
Technologies Europe (Czech Republic) and Czech Technical Univ. (Czech Republic);  
V. Semencova, Rigaku Innovative Technologies Europe (Czech Republic) and Institute of 
Chemical Technology (Czech Republic); M. Mika, Institute of Chemical Technology (Czech 
Republic); A. Inneman, Rigaku Innovative Technologies Europe (Czech Republic);  
M. Skulinova, Astronomical Institute (Czech Republic) 

 
 
 SESSION 5 MULTILAYERS  
 
 7360 0M Angle alignment method for soft x-ray using double-periodic multilayer [7360-19] 
  B. Mu, L. Jiang, S. Yi, J. Zhu, X. Wang, Q. Huang, M. Tan, X. Wang, J. Xu, Y. Yao, Y. Huang,  

H. Liu, Z. Wang, L. Chen, Tongji Univ. (China) 
 

v



 7360 0N Spectroscopic characterization of novel multilayer mirrors intended for astronomical and 
laboratory applications [7360-20] 

  E. N. Ragozin, P. N. Lebedev Physical Institute (Russian Federation) and Moscow Institute of 
Physics and Technology (Russian Federation); K. N. Mednikov, A. A. Pertsov, P. N. Lebedev 
Physical Institute (Russian Federation); A. S. Pirozhkov, JAEA (Japan) and P. N. Lebedev 
Physical Institute (Russian Federation); A. A. Reva, S. V. Shestov, A. S. Ul'yanov,  
E. A. Vishnyakov, P. N. Lebedev Physical Institute (Russian Federation) and Moscow Institute 
of Physics and Technology (Russian Federation) 

 
 7360 0O Optical, chemical, and depth characterization of Al/SiC periodic multilayers [7360-21] 
  P. Jonnard, K. Le Guen, M.-H. Hu, J.-L. André, Lab. de Chimie Physique, CNRS, Univ. Pierre et 

Marie Curie (France); E. Meltchakov, C. Hecquet, F. Delmotte, Lab. Charles Fabry, Institut 
d'Optique, CNRS, Univ, Paris-Sud (France); A. Galtayries, Lab. de Physico-Chimie des 
Surfaces, ENSCP, CNRS (France) 

 
 7360 0P Formation of silicides in annealed periodic multilayers [7360-22] 
  H. Maury, P. Jonnard, K. Le Guen, J. André, Lab. Chimie Physique–Matière Rayonnement, 

CNRS, Univ. Pierre et Marie Curie (France) 
 
 7360 0Q Innovative methods for optimization and characterization of multilayer coatings [7360-23] 
  M. G. Pelizzo, M. Suman, G. Monaco, National Institute for the Physics of the Matter, National 

Research Council  (Italy) and Univ. of Padova (Italy); D. L. Windt, Reflective X-ray Optics LLC 
(United States); P. Nicolosi, National Institute for the Physics of the Matter, National Research 
Council (Italy) and Univ. of Padova (Italy) 

 
 
 SESSION 6 DEPOSITIONS AND COATINGS  
 
 7360 0T Design of innovative multilayer coatings for solar imaging and spectroscopy [7360-26] 
  M. Suman, M. G. Pelizzo, National Institute for the Physics of the Matter, National Research 

Council (Italy) and Univ. of Padova (Italy); D. L. Windt, Reflective X-ray Optics LLC (United 
States); E. Gullickson, Lawrence Berkeley National Lab. (United States); P. Nicolosi, National 
Institute for the Physics of the Matter, National Research Council (Italy) and Univ. of Padova 
(Italy) 

 
 7360 0U Enabling deposition of hard x-ray reflective coatings as an industrial manufacturing process 

[7360-27] 
  D. Garoli, E. Boscolo Marchi, V. Mattarello, J. Bertoli, G. Salmaso, J. Kools, Media-Lario 

Technologies (Italy); D. Spiga, G. Tagliaferri, G. Pareschi, INAF/Osservatorio Astronomico di 
Brera (Italy) 

 
 7360 0V An auxiliary visible imaging method for alignment of x-ray Kirkpatrick-Baez optics [7360-28] 
  B. Mu, S. Yi, J. Zhu, J. Xu, X. Wang, S. Huang, M. Tan, Q. Huang, L. Bai, X. Wang, Y. Huang,  

L. Jiang, H. Liu, Z. Wang, L. Chen, Tongji Univ. (China); Y. Ding, W. Miao, J. Dong, Research 
Ctr. of Laser Fusion, CAEP (China) 

 
 7360 0W Optical constants of silicon carbide deposited with emerging PVD techniques [7360-29] 
  G. Monaco, M. Suman, M. G. Pelizzo, P. Nicolosi, Univ. of Padova (Italy) and LUXOR 

CNR-IFNM Lab. (Italy) 
 
 

vi



 SESSION 7 X-RAY OPTICS II  
 
 7360 0Y Feasibility of a spectral imager in the soft x-ray region [7360-31] 
  J. Wilcox, V. White, K. Shcheglov, Jet Propulsion Lab. (United States) 
 
 7360 0Z A generic x-ray tracing toolbox in Geant4 [7360-32] 
  G. Vacanti, E.-J. Buis, M. Collon, M. Beijersbergen, C. Kelly, cosine (Netherlands) 
 
 7360 10 Wavefront sensing of XUV beams [7360-33] 
  P. Homer, B. Rus, J. Nejdl, J. Polan, Institute of Physics (Czech Republic) 
 
 7360 11 Small x-ray telescope based on lobster eye x-ray optics and pixel detector [7360-34] 
  V. Tichý, M. Hromčík, Czech Technical Univ. (Czech Republic); R. Hudec, Astronomical 

Institute (Czech Republic); A. Inneman, Rigaku Innovative Technologies Europe s.r.o. (Czech 
Republic); J. Jakůbek, J. Maršík, L. Pína, Czech Technical Univ. (Czech Republic); V. 
Semencová, Rigaku Innovative Technologies Europe s.r.o. (Czech Republic); L. Švéda, 
Czech Technical Univ. (Czech Republic) 

 
 7360 13 Magnetic field assisted finishing of ultra-lightweight and high-resolution MEMS x-ray 

micro-pore optics [7360-42] 
  R. E. Riveros, H. Yamaguchi, Univ. of Florida (United States); I. Mitsuishi, Japan Aerospace 

Exploration Agency (Japan); U. Takagi, Y. Ezoe, Tokyo Metropolitan Univ. (Japan); F. Kato,  
S. Sugiyama, Ritsumeikan-Global Innovation Research Organization (Japan); N. Yamasaki, 
K. Mitsuda, Japan Aerospace Exploration Agency (Japan) 

 
 7360 14 A high resolution x-ray spectrometer utilizing Kirkpatrick-Baez optics and off-plane gratings 

(Invited Paper) [7360-43] 
  R. L. McEntaffer, Univ. of Iowa (United States); R. Hudec, Astronomical Institute (Czech 

Republic) and Czech Technical Univ. (Czech Republic); N. J. Murray, A. D. Holland, Open 
Univ. (United Kingdom) 

 
 
  POSTER SESSION  
 
 7360 15 Microstructured optical arrays for smart x-ray optics [7360-36] 
  C. Dunare, W. Parkes, T. Stevenson, Univ. of Edinburgh (United Kingdom); A. Michette,  

S. Pfauntsch, S. Sahraei, M. Shand, King's College London (United Kingdom); D. Zhang,  
D. Rodriguez Sanmartin, T. Button, Univ. of Birmingham (United Kingdom); C. Feldman,  
R. Willingale, Univ. of Leicester (United Kingdom); P. Doel, H. Wang, A. James, Univ. College 
London (United Kingdom) 

 
 7360 16 New lightweight x-ray optics: alternative materials [7360-37] 
  M. Skulinova, R. Hudec, Astronomical Institute (Czech Republic); J. Sik, M. Lorenc, ON 

Semiconductor (Czech Republic); L. Pina, V. Semencova, Rigaku Innovative Technologies 
Europe (Czech Republic) 

 
 7360 19 Crystal characterization for a gamma-ray Laue concentrator [7360-44] 
  M. Skulinova, C. Pelliciari, L. Hanlon, B. McBreen, F. O'Reilly, Univ. College Dublin (Ireland) 
 
  
  Author Index 

vii





Conference Committee 

 
Symposium Chairs 

Pavel Tomanek, Brno University of Technology (Czech Republic) 
Alan G. Michette, King's College London (United Kingdom) 
Bahaa E. A. Saleh, Boston University (United States) 
 

Symposium Honorary Chair 

Jan Perina, Sr., Palacký University (Czech Republic) 
 

Conference Chairs 

René Hudec, Astronomical Institute of the Academy of Sciences of the 
Czech Republic (Czech Republic) 

Ladislav Pina, Czech Technical University in Prague (Czech Republic) 
 

Program Committee 

Webster C. Cash, Jr., University of Colorado at Boulder (United States) 
George W. Fraser, University of Leicester (United Kingdom) 
Ali M. Khounsary, Argonne National Laboratory (United States) 
Milos Klima, Czech Technical University in Prague (Czech Republic) 
Alan G. Michette, King's College London (United Kingdom) 
Giovanni Pareschi, Osservatorio Astronomico di Brera (Italy) 
Yuriy Y. Platonov, Rigaku Innovative Technologies, Inc. (United States) 
Paul B. Reid, Harvard-Smithsonian Center for Astrophysics  

(United States) 
Bedrich Rus, Institute of Physics (Czech Republic) 
Peter Z. Takacs, Brookhaven National Laboratory (United States) 
Melville P. Ulmer, Northwestern University (United States) 
William W. Zhang, NASA Goddard Space Flight Center (United States) 
Josef Zicha, Czech Technical University in Prague (Czech Republic) 

 

Session Chairs 

 1 EUV and X-Ray Optics I 
René Hudec, Astronomical Institute of the Academy of Sciences of the 

Czech Republic (Czech Republic) 
 

 2 EUV and X-Ray Optics II 
Henryk Fiedorowicz, Wojskowa Akademia Techniczna (Poland) 
 

 3 X-Ray Optics I 
Alan G. Michette, King's College London (United Kingdom) 

ix



 4 IXO 
William W. Zhang, NASA Goddard Space Flight Center (United States) 
 

 5 Multilayers 
Ladislav Pina, Czech Technical University in Prague (Czech Republic) 
 

 6 Depositions and Coatings 
Libor Sveda, Czech Technical University in Prague (Czech Republic) 
 

 7 X-Ray Optics II 
Randall L. McEntaffer, University of Iowa (United States) 
 
 

x



Introduction 

 
This volume includes the papers presented at the SPIE Europe conference EUV and X-
Ray Optics: Synergy between Laboratory and Space, held in Prague during the SPIE 
Europe Optics + Optoelectronics symposium in April 2009. 
 
The topic of the conference is new in the series of such European SPIE events and 
reflects the developments in the Czech Republic over last several decades as well as 
the growing involvement of European laboratories, institutes, and companies, in both 
laboratory and astronomical x-ray optics.  
 
The developments of astronomical imaging grazing incidence x-ray optics started in 
Czechoslovakia about 40 years ago and hence has a long tradition. Later on 
applications for the laboratory started. The first Czech x-ray grazing incidence mirrors 
were manufactured by electroforming replication technology, based on 
collaboration with the gramophone industry from where the galvanoplastics 
technology was adopted.  
 
The motto of the conference was synergy between laboratory and space in the field 
of x-ray optics. We believe this is especially important today as future space x-ray 
astronomy missions such as the International X-Ray Observatory (IXO), in consideration 
jointly by European, U.S., and Japanese space agencies ESA/NASA/JAXA, require 
development of completely novel technologies and achieving fine angular 
resolution, and similar requirements also exist in the field of synchrotron and laboratory 
x-ray optics. It is obvious that some efforts can be shared between the two x-ray 
optics communities. 
 
The conference was held during the Czech presidency of the European Union and 
only five months after Czech Republic became a full member of the European Space 
Agency ESA. This means there will be new conditions for Czech institutes participating 
in design and development of space x-ray optics. 
 
Despite the newness of the topic, the response was large and we received almost 50 
contributions (oral and posters) with over 80 participants from Europe, U.S., Japan, 
China, and other countries. 
 
We thank all who contributed to this fruitful conference. 
 

René Hudec 
Ladislav Pina 

xi





PHOTON PHYSICS:
FROM WAVE MECHANICS TO QUANTUM

ELECTRODYNAMICS

Ole Keller

Institute of Physics and Nanotechnology, Aalborg University, Denmark

ABSTRACT

When rewritten in an appropriate manner, the microscopic Maxwell-Lorentz equations appear as a wave-
mechanical theory for photons, and their quantum physical interaction with matter. A natural extension leads
from photon wave mechanics to quantum electrodynamics (QED). In its modern formulation photon wave me-
chanics has given us valuable new insight in subjects such as spatial photon localization, near-field photon
dynamics, transverse photon mass, photon eikonal theory, photon tunneling, and rim-zone electrodynamics. The
present review is based on my plenary lecture at the SPIE-Europe 2009 Optics and Optoelectronics International
Symposium in Prague.

1. INTRODUCTION

The birth of quantum field radiation theory in the years 1925-30, did not cause physicists to give up the idea of
a particle concept of light. Beautiful wave mechanical theories for the photon were thus established by Landau
and Peierls in 1930,1 and by Oppenheimer2 the year after. For a brief historical review of photon wave mechanics
the reader may consult reference three.3 Over the years physicists interest in photon wave mechanics, and its
extension to the field-quantized level, has waxed and waned, but never fallen to rest.4 In the present review, I
look at this almost century old field in a modern perspective, and point out some of the modern perspectives for
low-energy physical optics.

It has been known for almost two centuries that the eikonal equation in geometrical optics is form-identical
to the Hamilton-Jacobi equation for Hamilton’s characteristic function in Newtonian mechanics.5, 6 This fact led
almost exactly a century later De Broglie and Schrödinger to the wave mechanics of massive particles.3, 5, 6 In
this perspective, it is perhaps not surprising that classical electrodynamics, based on the microscopic Maxwell-
Lorentz equations, may be looked upon as the wave-mechanical theory of the photon. Starting from the Klein-
Gordon equation, the quantum-mechanical eikonal equation for a relativistic spinless particle subjected to an
electromagnetic field is first established.

In free space various constructions (objects) can claim to represent a photon wave function. Here, we discuss
two of the most attractive suggestions: the photon energy wave function,2, 4 and a wave function based on the
transverse vector potential.7 For the potential approach, we set up the photon Schrödinger equation in both
momentum and configuration space. Afterwards, we discuss the transverse photon mass concept in diamagnetic
field-matter interaction, and the photon eikonal theory.

Modern photon wave mechanics appears to be particularly important in the quantum theory of near-field
electrodynamics.8, 9 In the rim zone of matter virtual photons play a significant role, but only in light-matter
interactions. A (new) virtual photon type called a near-field photon is introduced and its wave mechanics ana-
lyzed. The near-field photon is accompanied by a gauge photon, and the two photons place in QED is discussed.
I end the review by a brief discussion of the position operator problem for massive photons (plasmaritons), and
emphasize the importance of the rim zone in treatments of the spatial localization problem for photons emitted
from microscopic (or mesoscopic) sources.10, 11

Plenary Paper

Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing II,
edited by Ivan Prochazka, Roman Sobolewski, Miloslav Dusek, Proc. of SPIE Vol. 7355, 735502
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2. GEOMETRICAL OPTICS AND NEWTONIAN MECHANICS IN THE
HAMILTON-JACOBI FORMULATION

It has been known for almost two centuries that the dynamics of a system of interacting classical (Newtonian)
particles can be described neatly on the basis of Hamilton’s equations

q̇i =
∂

∂pi
H ({q} , {p} , t) (1)

ṗi = − ∂

∂qi
H ({q} , {p} , t) (2)

where qi is the generalized coordinate number i, and pi its associated canonical (conjugate) momentum. The dots
stand for differentiation with respect to time. As indicated, the Hamilton function H depends in general on the
full set of coordinates and momenta, and on time. By a particular canonical transformation, which generating
function involves Hamilton’s principal function S ({q}, {P}, t), the new Hamiltonian can be required to vanish
identically. This ensures that the new generalized coordinates and momenta ({P}) become time-independent,
and can be taken as the initial values of the old phase space variables. Hamilton’s principal function now must
satisfy the partial differential equation (called the Hamilton-Jacobi equation)

H

(
{q} ,

{
∂S

∂q

}
, t

)
+
∂S

∂t
= 0, (3)

and the (old) generalized momenta are identified as

pi =
∂

∂qi
S ({q}, t) , (4)

leaving out the reference to {P} from the notation. In the special but important case where H does not depend
explicitly on time, a trial solution of the form

S ({q}, t) = W ({q})− Et (5)

leads to the Hamilton-Jacobi equation

H

(
{q},

{
∂W

∂q

})
= E (6)

for Hamilton’s characteristic function, W ({q}). Usually, the constant E represents the (conserved) energy of the
system. For a single particle in a time-independent potential, V (r), the equation for Hamilton’s characteristic
function takes the following form:

∇W (r) · ∇W (r) = 2m (E − V (r)) , (7)

where m is the particle’s mass, and r its position vector. With the identification in Eq. (4), which here on vector
form gives p = ∇W , Eq. (7) expresses the fact that the particle’s total energy is the sum of the kinetic and
potential energies.

Geometrical optics deals with the phenomena for which the wavelength of light can be neglected. In this
short-wavelength limit (λ → 0) the optical laws may be formulated in the language of geometry, and the basic
quantity is the so-called eikonal S(r), which enters the various (monochromatic) electromagnetic field vectors
(V) via the ansatz V(r) = V0exp (iq0S(r)), q0 = ω/c0 being the vacuum wavenumber of light at the angular
frequency ω. The fundamental equations of geometrical optics is the eikonal equation6

∇S(r) · ∇S(r) = n2(r), (8)

where n(r) is the refractive index, which in the lowest-order approximation is taken as a real quantity. As first
noticed by Hamilton in 1827 there is a striking form-identity between the characteristic function [Eq. (7)] and
the eikonal equation of geometrical optics [Eq. (8)]. Classical electrodynamics based in the macroscopic Maxwell
equations (or in a somewhat broader perspective the microscopic Maxwell-Lorentz equations) is the covering
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theory of geometrical optics, and this fact led almost exactly one hundred years later De Broglie and Schrödinger
to the covering theory of Newtonian mechanics, i.e., quantum mechanics, as might be well-known to the reader.

For what follows it is valuable briefly to consider the quantum mechanical eikonal theory for a relativistic
spinless particle of rest mass m and charge q. Placed in an electromagnetic field described by the contravariant
four-potential {Aµ} = (A0 = Φ/c0,A) the classical relativistic Hamiltonian is

H = c0
[
(mc0)2 + (p− qA)2

]1/2
+ qΦ. (9)

The Hamiltonian in Eq. (9) has no explicit time dependence, and with p = ∇S, the equation for Hamilton’s
principal function [Eq. (3)] can be written down. All solutions to this equation will also be solutions to the
squared Hamilton-Jacobi equation, viz.,

c20(∇S − qA)2 + (mc20)
2 =

(
∂S

∂t
+ qΦ

)2

. (10)

The quantum mechanical eikonal equation for a relativistic spinless particle subjected to an electromagnetic field
is obtained starting from the Klein-Gordon equation

c20

[
(
�

i
∇− qA)2 + (mc0)2

]
Ψ(r, t) =

(
�

i

∂

∂t
+ qΦ

)2

Ψ(r, t). (11)

By inserting the eikonal ansatz

Ψ(r, t) = Ψ0exp
(
i

�
S(r, t)

)
(12)

for the wavefunction, the quantum mechanical Hamilton-Jacobi equation takes the form

(∇S − qA)2 + (mc0)2 − 1
c20

(
∂S

∂t
+ qΦ

)2

= i�

(
∇2 − 1

c20

∂2

∂t2

)
S (13)

in the Lorenz gauge. In the classical limit (� → 0), Eq. (13) is reduced to Eq. (10). In covariant notation, one
has in general

(∂µS − qAµ)(∂µS − qAµ) + (mc0)2 = i�∂µ(∂µS − qAµ), (14)

and with the Lorenz gauge condition, given by

∂µA
µ = 0, (15)

Eq. (14) is reduced to the form given in Eq. (13). The relativistic covariance of the eikonal equation is manifest
when the equation is written in the form given in Eq. (14).

3. PHOTON WAVE MECHANICS

The analysis in section 2 suggests that the microscopic Maxwell-Lorentz equations somehow may be considered
as a wave-mechanical theory of the photon. This possibility was originally investigated by Landau and Peierls1

and Oppenheimer,2 and over the years physicist’s interest in photon wave mechanics has waxed and waned, but
never fallen to rest. In free space, various ”constructions” (objects) can rightly claim that they represent the
wave function of the photon. What is important physically is that the observable predictions related to the
photon-matter interaction will be identical for the various choices.

In the energy wave-function formalism two photon wave functions, f (+)
± , are defined as follows:4

f (+)
± (r, t) =

(ε0
2

)1/2 [
e(+)

T (r, t)± ic0b(+)(r, t)
]
. (16)

The superscript (+) indicates that the wave function is build from positive-frequency components of the elec-
tromagnetic field. In the language of coherence theory the f (+)

± ’s are analytical signals. The wave function of
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the antiphoton is constructed from the negative-frequency part of the field spectrum. Physically, the photon
and antiphoton are identical. This can be inferred from the Maxwell equations. Small letters eT and b have
been assigned to the (analytical) electric and magnetic fields of the photon to indicate that the wave function
has been properly normalized. To normalize the wave function of the in general non-monochromatic photon it
is necessary to adjust the amplitude of the current-density source distribution correctly.8 To emphasize that
the electrical field in free space is a transverse vector field, a subscript T has been added to e(+). As we shall
understand very soon, f (+)

+ and f (+)
− are wave functions composed of positive- and negative-helicity components.

The photon helicity is a Lorentz-invariant property.

From the free-space Maxwell equations one can establish the following quantum mechanical wave equations
for the two helicity species:

i�
∂

∂t
f (+)
± (r, t) = ±c0

(
s
�
· �
i
∇

)
f (+)
± (r, t). (17)

In Eq. (17) we have written the wave equation in Hamiltonian form. The vector s is the Cartesian spin-one
operator of the photon. In a 3× 3 matrix representation the Cartesian components of s are given by

(sk)ij =
�

i
εijk, (18)

where εijk is the Levi-Civita tensor. Since p̂ = (�/i)∇ is the photon momentum operator in configuration
space, the scalar product s · p̂ confirms that the wave functions f (+)

± (r, t) describe photons composed of positive-
and negative helicity components. Since Plancks constant (h) does not appear in the classical Maxwell-Lorentz
equations, � can of course be eliminated from Eq. (17), as the reader readily may realize. The name photon energy
wave function relates to the fact that the quantum mechanical mean value of the photon energy-momentum four
vector operator {pµ} = (�ω/c0, �q) is given by

{Pµ} =
1

�c0

∑
s=+,−

∫ ∞

−∞
{pµ}

∣∣∣f (+)
s (q; t)

∣∣∣2 d3q

(2π)3q
, (19)

where the f (+)
± (q; t)’s are the scalar photon wave functions in momentum space.

The vectorial and scalar wave functions are related by f (+)
± (q; t) = f

(+)
± (q; t)e±(q/q), where e± are the

helicity unit vectors of the + and − species. Relativistically, d3q/q is the invariant volume element on the light
cone.

It is often convenient to use spinor notation, and thus combine the two wave functions in Eq. (16) into a
single one, viz.,

Φ(r, t) =

(
f (+)
+ (r, t)
f (+)
− (r, t)

)
. (20)

The photon wave function in Eq. (20) is a six-component object.

In the present context it is useful to base photon wave mechanics on the electromagnetic potentials. In free
space only a transverse vector potential exists, and this potential is gauge invariant. The analytical part of the
transverse vector potential a(+)

T (r, t) satisfies the wave equation

�a(+)
T (r, t) = 0, (21)

where � = ∇2− c−2
0 ∂2/∂t2 is the d’Lambertian operator. Formally, one may factorize the �-operator as follows:

� =
(
i

c0

∂

∂t
+

√
−∇2

) (
i

c0

∂

∂t
−

√
−∇2

)
, (22)

and from this it appears that all solutions to

i�
∂

∂t
a(+)

T (r, t) = �c0
√
−∇2a(+)

T (r, t) (23)
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are also solutions to Eq. (21). One may consider a(+)
T (r, t) [small letter for normalization] as the vectorial

wave function for the photon in free space, and Eq. (23) as its quantum mechanical wave equation, written in
Hamiltonian form. The quantity

√−∇2 is a spatially nonlocal operator which action in Fourier (wave-vector)
space is given via √

−∇2a(+)
T (r, t) =

∫ ∞

−∞
qa(+)

T (q; t)eiq·r d3q

(2π)3
. (24)

The operator i
√−∇2 was originally introduced by Landau and Peierls in 1930 in connection with their attempt

to establish a wave equation for the light quantum (photon). In q-space, Eq. (23) takes the form

i�
∂

∂t
a(+)

T (q; t) = c0�qa(+)
T (q; t), (25)

and this equation may be considered as the vectorial wave equation for a transverse photon with momentum
p = �q and energy H = pc0. Two transverse scalar photon wave functions can be introduced in the (q; t)-domain
by expanding a(+)

T (q; t) after two orthogonal (possibly complex) unit vectors (helicity unit vectors, e.g) located
in a plane perpendicular to q.

4. TRANSVERSE PHOTON MASS. PHOTON EIKONAL THEORY

Let us now consider the photon propagation in a solid-state plasma (jellium), and let us limit ourselves to high
frequencies and linear photon-matter interactions. At high frequencies the particle properties of the photon
dominates over its wave properties, and the field-matter coupling is diamagnetic. In the space-frequency domain
the analytical part of the transverse vectorial potential hence satisfies the integro-differential equation12

(∇2 + q20)a(+)
T (r;ω) =

μ0e
2

m

∫ ∞

−∞

←−−→
δ T (r− r′) ·

[
N(r′)a(+)

T (r′;ω)
]
d3r′, (26)

where N(r) is the many-body electron density,
←−−→
δ T (r − r′) is the transverse delta function, q0 = ω/c0 is the

vacuum wave number of light, and e and m the electron charge and mass. In the present context there is a
particularly interesting special case of Eq. (26). Thus, if the electron density variations in space are negligible
[N(r) ∼= N0] it can be shown that a(+)

T (r, t) satisfies the equation

i�
∂

∂t
a(+)

T (r, t) = c0�

√
Q2

c −∇2a(+)
T (r, t), (27)

where the operator (Q2
c −∇2)1/2 acts as follows in Fourier space:

√
Q2

c −∇2a(+)
T (r, t) =

∫ ∞

−∞

√
Q2

c + q2a(+)
T (q; t)eiq·r d3q

(2π)3
. (28)

The quantity

Qc =
1
c0

(
N0e

2

mε0

)1/2

(29)

is the electron system’s plasma wave number. One may consider Eq. (27) as the quantum mechanical wave
equation for the transverse photon (plasmariton). In the wave-vector-time domain Eq. (27) takes the form

i�
∂

∂t
a(+)

T (q; t) = c0�
(
q2 +Q2

c

)1/2
a(+)

T (q; t), (30)

and from this one may show that the energy-momentum relation for the plasmariton takes the relativistic form

E = +
[
(pc0)2 + (Mc20)

2
]1/2

. (31)
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In a sense one may now claim that the transverse photon has acquired a finite mass

M =
�Qc

c0
(32)

in its high-frequency interaction with the jellium. The quantity Qc = Mc0/� is the Compton wave number of
the massive transverse photon.

The wave equation for the plasmariton is form-identical to the Klein-Gordon equation, and the eikonal ansatz
a(+)

T (r, t) = a(+)
T,0 exp(iS(r, t)/�) therefore leads to the following eikonal equation for the ”free” massive photon:

(∂µS)(∂µS) + (Mc0)2 = i�∂µ∂
µS. (33)

If the spatial variations in N(r) is taken into account the eikonal problem becomes more complicated.

5. THE NEAR-FIELD PHOTON CONCEPT

In near-field electrodynamics one must include two other types of photons, viz., longitudinal and scalar photons.
These so-called virtual photons, which do not exist as free particles, we hence characterize by the analytical
vector potentials a(+)

L (q; t)[a(+)
L = a

(+)
L q/q] and a

(+)
0 (q; t). Instead of using the longitudinal and scalar photon

variables it is convenient in near-field optics to introduce two new photon types via the unitary transformation9

(
a
(+)
NF (q; t)
a
(+)
G (q; t)

)
=

1√
2

(
i −i
1 1

) (
a
(+)
L (q; t)
a
(+)
0 (q; t)

)
. (34)

The quantities a(+)
NF (q; t) and a

(+)
G (q; t) are the quantum mechanical wave functions of the near-field (NF) and

gauge (G) photons. The theory for a(+)
L and a

(+)
0 , or equivalently a

(+)
NF and a

(+)
G , always is formulated in the

Lorenz gauge. The primary quantity in near-field electrodynamics is the analytical longitudinal electric field
E(+)

L (q; t) = E
(+)
L (q; t)q/q. It may be shown that the Lorenz gauge condition implies that E(+)

L (q; t) can be
expressed solely in terms of either a(+)

NF (q; t) or a(+)
G (q; t), i.e.,

E
(+)
L (q; t) =

√
2
(
c0q + i

∂

∂t

)
a
(+)
NF (q; t) = −i

√
2
(
c0q − i ∂

∂t

)
a
(+)
G (q; t). (35)

In free space the near-field and gauge photon wave functions satisfy the Hamiltonian wave equations

i�
∂

∂t
a
(+)
NF (q; t) = c0�qa

(+)
NF (q; t), (36)

i�
∂

∂t
a
(+)
G (q; t) = c0�qa

(+)
G (q; t), (37)

and since EL(q; t) = 0 in free space, Eqs. (35) and (36) imply that a(+)
NF (q; t) = 0. One cannot conclude from

these equations that the wave function of the gauge photon vanishes in free space. A gauge transformation to
a new (NEW) gauge within the Lorenz gauge can make a(+)NEW

G (q; t) = 0. The name gauge photon originates
in this property. In the presence of matter, the near-field and gauge photon variables satisfy the dynamical
equations (

c0q + i
∂

∂t

)
a
(+)
NF (q; t) =

1
i
√

2ε0

1
qc0

J
(+)
0 (q; t), (38)

(
c0q − i ∂

∂t

)
a
(+)
G (q; t) =

1√
2ε0

1
qc0

J
(+)
0 (q; t), (39)

where J (+)
0 (q; t) = c0ρ(q; t) is the μ = 0 component of the contravariant current density four-vector.
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6. RIM ZONE ELECTRODYNAMICS

The near-field photon concept connects to optical near-field interactions via Eq. (35) and (38). I shall not
here undertake a systematic analysis of this connection. The longitudinal part of the electric field, EL, plays
an important role in near-field optics, and this field relates to the near-field photon variable via the analytical
relation

E(+)
L (r, t) = c0

√
2

(
i

c0

∂

∂t
+

√
−∇2

)
a(+)

NF (r, t), (40)

where a(+)
NF (r, t) is the spatial Fourier transform of the vectorial quantity a(+)

NF (q; t)q/q. As an immediate conse-
quence of Eqs. (35) and (38) the reader may obtain the following relation between the longitudinal electric field
and the longitudinal source current density (JL):

JL(r;ω) = iε0ωEL(r;ω). (41)

In the presence of a transverse current density source, J(+)
T (r, t), the transverse photon variable satisfies the

inhomogeneous wave equation
�a(+)

T (r, t) = −μ0J
(+)
T (r, t), (42)

and from this one can obtain the integral relation

ET (r;ω) = iμ0ω

∫ ∞

−∞
g(|r− r′|;ω)JT (r′;ω)d3r′ (43)

between the transverse parts of the electric field and source current density. The quantity g(R;ω) = (4πR)−1

× exp(iq0R) is the outgoing scalar propagator. The relations in Eqs. (41) and (43) form the standard starting
point for classical near-field electrodynamics. Everywhere in space outside matter one has JL = −JT , since
J = 0. It appears from the equation

JL(r;ω) =
1
3
J(r;ω) +

1
4π
PV

∫ ∞

−∞
R−3

(←−−→
U − 3

RR
R2

)
· J(r′;ω)d3r′, (44)

where R = r− r′, and PV stands for principal value that JL is appreciably different from zero only in a narrow
zone outside a matter-filled region. This zone I have called the rim zone, and in this zone the longitudinal electric
field is nonvanishing, and satisfies

∇ ·EL(r;ω) = ∇×EL(r;ω) = 0, (45)

the last equation per definition, of course. In the language of photon wave mechanics near-field optics describes
how transverse photons via their interaction with near-field photons are generated and destroyed in space-time.

7. NEAR-FIELD AND GAUGE PHOTONS IN QED

The wave mechanical formalism can be extended to the quantum-electrodynamic level by the standard covariant
quantization with an indefinite metric (Gupta-Bleuler formalism),13.14 The Hamilton operator of the field
becomes (in box quantization)

Ĥ =
∑
q,r

�ωqâ
†
r(q)âr(q), (46)

where ωq = c0q. The r-summation in Eq. (46) is over the two transverse modes (T1, T2), and the longitudinal
(L) and scalar (0) modes. The annihilation (âr(q)) and creation (â†r(q)) operators of the various modes satisfy
the commutation relations [

âr(q), â†s(q
′)

]
= δrsδq,q′. (47)

By extension of Eq. (34) to the operator level it is easy to show that

â†LâL + â†0â0 = â†NF âNF + â†GâG, (48)
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a relation which allows one to eliminate the longitudinal and scalar photon operators in the field Hamiltonian
in favour of the near-field and gauge photon operators. The annihilation and creation operators of these virtual
photon types satisfy the commutator relations

[
âNF (q), â†NF (q′)

]
= δq,q′, (49)

[
âG(q), â†G(q′)

]
= δq,q′, (50)

and the NF-G commutators vanish. In free space the quantum Lorenz condition leads for all q to

[âL(q)− â0(q)] |ψ〉 = âNF (q)|ψ〉 = 0, (51)

so that no physical states |ψ〉 have near-field photons. The Lorenz condition puts no restrictions on the number of
gauge photons in free space. Two different gauges within the Lorenz gauge correspond to two different excitations
of G-modes, but as in the classical theory the gauge photon plays no physical role in free space.

8. PLASMARITON POSITION OPERATOR. SPATIAL PHOTON LOCALIZATION

Let us now ask the following question: to what extend can a point particle in the form of a transverse (massive)
photon be localized in space? If a particle’s position is to be measured in quantum mechanics, the various
positions in space, r0, should be the eigenvalues of some position operator (observable), r̂. To pin down elements
of the problem, we first consider a massive relativistic particle of zero spin. For such a particle the Lorentz-
invariant scalar product is given by15

〈ψ|φ〉 =
∫ ∞

−∞
ψ∗(p)φ(p)

d3p

[p2 + (Mc0)2]1/2
(52)

in the momentum representation. In the plasmariton case the particle mass (M) is given by Eq. (32). Within
the framework of the relativistic scalar product the Hermitian operator

r̂ = i�

{
∇p − p

2[p2 + (Mc0)2]

}
(53)

turns out to be an acceptable position operator for a Klein-Gordon particle. In the non-relativistic (NR) limit one
regains the naive position operator r̂NR = i�∇p. The operator in Eq. (53) satisfies the basic dyadic commutator
relation

[̂r, p̂] = i�1̂ (54)

where 1̂ is the unit matrix operator. In the momentum representation, where the eigenvalue equation reads

r̂(p)ψr0 (p) = r0ψr0(p), (55)

the (unnormalizable) eigenfunction belonging to the eigenvalue r0 is given by

ψr0(p) =
[
p2 + (Mc0)2

]1/4
exp (− i

�
r0 · p), (56)

apart from an arbitrary multiplicative factor. In configuration space the eigenfunction takes the form

ψr0(r) = 2(2π�)−2 (Mc0)3/2

|r− r0| F (Qc|r− r0|), (57)

where
F (Qc|r− r0|) =

∫ ∞

0

x(1 + x2)1/4 sin(Qc|r− r0|x)dx. (58)

It appears that the function F only depends on the ratio between |r − r0| and the Compton wavelength of the
plasmariton, λc = h/(Mc0). Since F (z) ≈ z−5/4 exp(−z) for z >> 1, the wave function of a scalar particle
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definitely localized at r0 is smeared out in configuration space over a region of linear extension as the Compton
wavelength around the point of localization. In the massless limit (M → 0), the wave function exhibits a
power-law dependence |r− r0|−7/2 around the point of localization.

So far, we have ignored the vector character of the problem. For a transverse plasmariton we may try a
three-vector momentum space wave function of the type

ψr0(p; s) =
[
p2 + (Mc0)2

]1/4
eps exp(− i

�
r0 · p), (59)

where eps (s = 1 or 2) is one of two transverse unit vectors. The longitudinal unit vector, which points in the
p-direction, is denoted by ep3 below. When the gradient operator, ∇p, acts on the wave function, it mixes in a
longitudinal component, and this effect in itself makes it problematic (impossible) to take the r̂-operator in Eq.
(53) as the plasmariton position operator. Instead, it is perhaps natural to use the dyadic quantity

r̂ij = i�

{
δij

(
∇p − p

2[p2 + (Mc0)2]

)
−

3∑
s=1

[∇p(eps)i] (eps)j

}
(60)

as a candidate for a plasmariton position operator.7 This choice leads to problems in configuration space,
however, because the related wave function (Fourier integral transform of Eq. (59)) is not convergent. If one
tries to use the standard regularization procedure the divergence-free demand on the wave function cannot be
maintained.

The photon position operator problem cannot be detached from the spatial localization issue of photons
emitted from a source (microscopic or mesoscopic). In the field-quantized description the relation between the
transverse electric field operator, ÊT , and the transverse current density operator, ĴT , can be written as follows:

ÊT (r, t) = μ0

∫ ∞

−∞
g(|r− r′|, t− t′) · ∂

∂t′
ĴT (r′, t′)d3r′dt′. (61)

If one now replaces ĴT by Ĵ with the help of the transverse delta function the ”propagator” relation

ÊT (r, t) = μ0

∫ ∞

−∞

←−−→
DT (r− r′, t− t′) · ∂

∂t′
Ĵ(r′, t′)d3r′dt′ (62)

emerges. Here, the transverse propagator has the explicit dyadic form8

←−−→
DT (R, τ) = − 1

4πR
δ

(
R

c0
− τ

)
(
←−−→
U −R−2RR) +

c20τ

4πR3
Θ(τ)Θ

(
R

c0
− τ

)
(
←−−→
U − 3R−2RR), (63)

where Θ is the Heaviside step function. The form in Eq. (63) tells us that the transverse photon localization (in
general) is limited to the extension of the rim zone, and that one cannot maintain the Einstein causality when
compressing the source domain artificially from ĴT to Ĵ. Eq. (63) has served as a starting point for microscopic
photon tunneling analyses in near-field electrodynamics.16
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