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Introduction 

 
This proceedings volume contains accepted papers from the SPIE conference on 
Photomask Technology 2009. The conference was arranged through the Bay 
Area Chrome Users Society (BACUS) and held as part of the 29th International 
Symposium on Photomask Technology, 14–17 September 2009 in Monterey, 
California, USA. 
 
This year’s conference broadened its venue by including four sessions on Nano-
Imprint and Patterned Media Technology. The four sessions addressed the latest 
work performed in template manufacturing, inspection and repair as well as 
overviews of patterned magnetic data storage media manufacture and 
challenges. The data recording media industry is moving towards lithographically 
patterning magnetic media in order to achieve 1Tb/sq inch bit densities. One of 
the leading lithography candidates to achieve these bit densities is nano-imprint 
lithography.  
 
As in past years the conference covered a broad range of the latest research 
and ongoing issues in the photomask industry with international representation 
from Europe, North America, and Asia. The year that transpired since the 2008 
Photomask Technology conference has been an exceptional one not only for the 
electronics industry but also the worlds financial and manufacturing communities 
as well. Although the electronics industry was faced by the greatest decline in 
growth on record to date, the mask making industry persisted in driving 
technology forward at an impressive rate as evidenced by the papers presented 
at this year’s conference. 
 
This year’s Special Session, “Commodity or Technology? Sub-20nm Mask Making 
at Yet Another Crossroad” was organized by cochair M. Warren Montgomery 
and Wolfgang Staud. They assembled a panel of industry experts from around 
the world to address the issues facing the mask industry and infrastructure in light 
of a possible bifurcation by the industry between EUV and Nano-Imprint 
lithography.  
  
I thank all of the authors, particularly the keynote speaker Dr. Michael Polcari, 
President and CEO of SEMATECH, for providing his insight on collaborative 
approaches in the mask industry so as to drive EUV mask making to production 
readiness. I also thank all the members of the program committee for their hard 
work in helping to make this year’s conference a success through their efforts 
ranging from reviewing abstracts through chairing sessions. I owe a special thanks 
to my cochair M. Warren Montgomery for his help and hard work in making this 
year’s conference a success. Our sponsors also deserve special thanks for their 
continued support of Photomask Technology especially this year when the norm 
for many elsewhere in the industry was to decrease or eliminate budgets related 

xix



to conference activities. The SPIE staff has my gratitude for their tireless efforts in 
organizing the conference and ensuring that things ran smoothly as well as their 
efforts to provide for a timely publication of these proceedings. 
 
I hope you find the papers contained in this proceeding informative and helpful 
in your professional endeavors.  

 
Larry S. Zurbrick 
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ABSTRACT 

The mask error budget continues to shrink with shrinking DRAM half pitch and MPU gate size year by year. The ITRS 
roadmap calls for mask CDU to be cut in half by 2014[1]. Both mask maker and mask user must take advantage of 
various mask properties, OPC strategies and resolution enhancement techniques to drive improvements. Mask material 
selection impacts both lithographic performance and mask manufacturability. In turn mask material properties and 
manufacturing techniques impact our ability to meet the technology roadmap. Studies have shown the advantages of 
polarized light[2,3] as well as the impact of various mask materials on high NA lithography[4]. In this paper we select the 
recently introduced binary mask material made from a MoSi absorber called Opaque MoSi On Glass (OMOG) for 
comparison with the conventional 6% att. PSM and 20% att. MoSi PSM. Through simulation and wafer prints, we 
optimized mask feature from viewpoint of MEEF and maximum exposure latitude (EL). The MoSi att. PSMs suffer from 
higher MEEF, which is attributed to the negative effect of TE polarization for mask duty cycle of 50% for 50 nm half 
pitch and below. Therefore a lower mask duty cycle is required for att. PSM to bring the MEEF performance back to 
acceptable levels. Experimental results confirm simulation results. As a result of the lower mask duty cycle, the att. MoSi 
PSMs exhibit poor Sub Resolution Assist Feature (SRAF) printability. On the contrary, the MoSi binary mask delivers 
both acceptable MEEF and acceptable SRAF printing performance.  Moreover, we found that the mask structure impact 
of OMOG to wafer CD is smallest among three masks. OMOG gives the best combination of lithographic performance 
and delivery compared to the MoSi att. PSMs. 

Keywords: MoSi binary mask, OMOG, 6% attenuated PSM, 20% attenuated PSM, Double patterning 

1. INTRODUCTION 
Since the introduction of 193nm lithography, the 6% att. PSM mask has been the standard material for critical layers.  

Now with the development phase for 32nm and 22nm nodes well underway, we see that lithography conditions are much 
different from the initial introduction of 193nm lithography.  The increase in NA, the adoption of immersion lithography 
and the use of polarized light make it interesting and meaningful to compare lithographic performance between binary 
and att. PSM masks. 

MoSi binary mask called Opaque MoSi On Glass (OMOG) has been developed [5]. A thin Cr is used as a hard mask to 
minimize loading effects[5]. The thin hard mask enables us to reduce resist thickness.  This in turn improves resolution 
capability. Moreover it was reported that exposure latitude (EL) and MEEF of OMOG was better than Cr binary mask[5]. 
Then OMOG was focused as a binary mask.  In addition to the OMOG (binary) and 6% att. PSM, we also evaluated a 
20% att. PSM to investigate the impact of att. PSM transmission on lithographic performance. 

 Lithographic performance of OMOG, 6% att. PSM and 20% att. PSM in both bright field and dark field was 
simulated. Firstly we optimized mask feature at minimum pitch from viewpoint of maximum EL and Mask Error 
Enhancement Factor (MEEF). The resulting optimized mask features were different among three masks. We believe that 
the observed differences in optimal mask bias between materials are attributed to the differences in the degree of 
polarization induced by each material. 

Generally, Sub Resolution Assist Feature (SRAF) use is an indispensable technique to provide adequate depth of focus 
(DOF) for larger pitches on layers with lithography settings that are optimized for denser pitches. But SRAF width will 
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be critical issue with shrinking design rule. Next we investigated the impact of the optimized mask feature size on 
through pitch performance that includes the use of SRAF. SRAF printability between materials and across various 
pitches through simulation and experimental wafer results were compared. Wafer CD error was estimated to decide 
which mask was best. Finally, mask cycle time to further differentiate the mask materials were compared. 

2. SIMULATION AND EXPERIMENTAL CONDITION 
Lithographic performance of line and space such as MEEF, maximum EL and depth of focus (DOF) was calculated 

with rigorous simulation. Prolith version 11 (KLA Tencor) using Maxwell Simulation Mode and a 3D mask structure 
was selected for all simulations.  Structures from half pitch (hp) 60 nm to hp 22 nm were simulated. Table 1 summarizes 
the lithographic condition of each hp.  

 

 

 

 

 
Table 1. Exposure method and optical conditions. 

NA was increasing with shrinking hp. An annular illumination type was selected for hp 60nm. However, cQuad 
illumination was selected for 50nm hp and below to obtain higher resolution capability. As for hp 38nm, dipole 
illumination setting was also used because hp 38nm was considered to be severe for single exposure. CD target on wafer 
was basically equal to hp. Generally resolution limitation was defined in Equation (1)[6]; 

� � � � � � � � � � � � � � Resolution Limit  = �/4NA = hp 35.7 nm �            �                                         (1) 

Based on Eq. 1, the resolution limit is 35.7nm hp when �is 193nm and NA is 1.35. Therefore double pattering is 
required to achieve hp 32nm and hp 22nm.  The final target pitch is doubled for each lithography step in double 
patterning. Thus, the actual half pitch is two times larger than each hp. Wafer target CD was also optimized. Final target 
wafer CD could be achieved through etch slimming in bright field and certain shrinking techniques in dark field[7,8] . 
MEEF, EL, and DOF were simulated. EL and DOF were calculated based on �10% CD variations.  

SRAF width for isolated patterns was evaluated. Isolated pattern was defined as follows; 

Isolated pitch  =  ( Anchor pattern pitch +10 nm ) � 5                                              (2) 

Anchor pattern is the dense line and space pattern for each hp. Two SRAFs were placed beside main pattern. The pitch 
between main pattern and SRAF and the pitch between the two SRAFs was the anchor pattern pitch plus 10nm. Target 
wafer CD was hp plus 10nm in dark filed.  This takes into consideration the CD shift between resist CD and etch CD. 
The large as possible SRAF that show good printing performance was chosen. SRAF printability was evaluated over a 
CD�15% process window. The DOF of the isolated pattern was compared for each material. Next we estimated CD 
error on wafer. We assumed �1% as exposure dose variation and �2 nm as mask global CD error and quartz depth 
variation. Finally, the impact of mask quartz depth variations on printed CD was also simulated. Experiments to confirm 
the simulation results were run using the ASML XT:1900i for both hp 45nm and hp 40nm conditions. Optical conditions 
were matched with simulation settings. MEEF and maximum EL between experiment and simulation was compared. 
SRAF printability was also demonstrated experimentally. SRAF rule is shows in table 2.  

 

 

 

 

Table 2. Pitch ranges for through pitch evaluation. 

Pitch Range (nm) SRAFs Selected Pitches (nm)
Minumum Pitch No 90

Mid Range No 100-150
Mid Range Yes 180-190

200's Yes 240-270
400's Yes 400-480

hp(nm) 60 50 45 40 38 38 32 22
Exposure Method

Actual hp(nm) 60 50 45 40 38 38 64 44
NA 1.2 1.1 1.35

Illumination Annular Dipole Annular cQuad
Outer � 0.85 0.85 0.85 0.98 0.98 0.98 0.85 0.98
Inner � 0.65 0.65 0.65 0.81 0.81 0.83 0.65 0.81

Blade Angle(°) 30 20 20 20 40 20

1.35
cQuad

Single Exposure Double Patterning
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3. SIMULATION RESULTS 
3.1 Maximum EL and MEEF of hp 45nm 

At first we optimized mask feature from the viewpoint of maximum EL and MEEF. Figure 1 shows the maximum EL 
and MEEF as a function of mask feature (x1) for 45nm hp. For bright field features the flat part of the OMOG MEEF 
curve extends just beyond a 45nm mask feature or 50% duty cycle (DC).  The OMOG maximum EL peak occurs beyond 
this point of the steeper part of the MEEF curve.  Thus, we selected an optimized mask feature around 50% duty cycle 
for OMOG which occurs on the flat part of the MEEF curve.  The flat part of the PSM MEEF curve occurs at a lower 
duty cycle. Here we choose 35nm mask feature for the 6% att. PSM and a 30nm mask feature for the 20% att. PSM 
respectively. 

The tendency of dark field is the reverse of bright field. Again we find that a 45nm mask feature is optimal for OMOG 
while a 55nm mask feature is optimal for the 6% and 20% PSM masks.  Table 3 contains a summary of the optimized 
mask features used in our simulations. 

 

 

 

 

 

 

 

 
Figure 1  Maximum exposure latitude and MEEF as a function of mask feature size: dots represent optimized mask feature. 

 

 

Table 3. Optimized mask feature size (nm). 

3.2 Degree of polarization 

Polarized illumination leads to an increase in contrast for hyper-NA immersion lithography[3].  All the components 
within the optical path, including the mask, must be compatible with this resolution enhancement technique. In order to 
explain the reason why the optimized mask features are different among three masks, the degree of polarization (DOP) 
was simulated. DOP is defined as follows: 

� DOP  = ( ITE – I TM)/( ITE + I TM)� � � � � �                                                  (3) 

Figure 2 shows DOP through mask feature for the OMOG and PSM masks. The more positive DOP the larger amount 
of TE polarized light.  Conversely the more negative the DOP the larger amount of TM polarized light. TE polarized 
light is preferred over TM polarized light for imaging[9]. OMOG has less effect on degree of polarization through mask 
feature then either PSM masks.  The PSM masks tend to result in TM polarized light (more negative DOP).  For the PSM 
masks, the mask feature size where 0th order DOP starts to decrease rapidly corresponds to the rapid decline predicted 
for maximum EL and increase in MEEF shown in Figure 1. PSMs have the effect of stronger TM polarization at higher 
duty cycles.  This is considered to be the reason for the deterioration in EL and MEEF for the PSM higher DC for bright 
field. 
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Figure 2  DOP through mask feature.  

3.3 Expansion of EL and MEEF evaluation to various half pitch features. 

Evaluation to different hp from 60nm to 22nm was expanded. Figure 3 shows maximum EL and MEEF through mask 
feature for various hp.  The illumination conditions for the various half pitches are shown in Table 1. 

For bright field features the optimized mask feature for OMOG shifts to higher duty cycles for the 60nm hp as shown 
in Figure 3.  We observed similar shift away from 50% DC but in the opposite direction for the dark field features. We 
also see for the hp 60nm that the optimal mask feature for the 6% & 20% att. PSM shift towards lower duty cycles for 
bright field and higher duty cycle for dark field.  The same tendency was seen for hp 50nm. As for 40nm hp and below, 
the optimal mask feature for OMOG is around 50% duty cycle. The optimal mask feature for 6% and 20% PSM continue 
to shift to small duty cycles for bright field and larger duty cycles for dark field. This trend is observed for both cQuad 
and dipole illumination. 
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Figure 3  Maximum exposure latitude and MEEF as a function of mask feature size: dots represent optimized mask feature. 

� An ultimate resolution limitation is considered to be hp 35.7nm for NA1.35. We simulated lithographic performance 
of hp 32nm and 22nm with double patterning technique. The actual hp is 2 times larger than the final hp. But it seems to 
be difficult that we make CD target on wafer hp. Typically a wafer CD shrink technique such as etch slimming in bright 
field and shrinking in dark field can be used to adjust litho CD targets to final CD targets. We attempt to optimize both 
wafer CD and mask feature simultaneously. Figure 4 shows the dependence of MEEF, maximum EL and DOF on wafer 
CD and mask feature for the 32nm hp bright field case. The horizontal axis shows mask feature while the vertical axis 
shows the wafer CD. The actual pitch is 128nm. The optimum wafer CD for all masks is around 52nm because the DOF 
is at a maximum.  The optimal mask feature was selected based on MEEF and maximum EL. Figure 5 shows dark field 
case. Here a 72nm wafer CD was selected for the dark field case. The optimized wafer CD in dark field is larger than 
that in bright field. Figure 6 shows hp 22nm bright field case. The actual pitch is 88nm. Here we see that the optimal 
wafer CD and mask CD are different for all three masks.  For OMOG we choose a 34nm wafer CD with a 48nm mask 
feature. The optimum combination for 6% att. PSM is 36nm wafer CD and a 36nm mask feature.  The 20% att. PSM 
requires a 42 nm wafer CD with a 30nm mask feature.  Figure 7 shows dark field case of hp 22nm. We decided 52nm 
wafer CD is optimized value. We also optimized mask feature from viewpoint of MEEF and maximum EL.  

0%

4%

8%

12%

16%

20 25 30 35 40 45 50 55

Mask Feature(nm)

M
AX

 E
L

0

3

6

9

12

M
EE

F

0%

4%

8%

12%

16%

20 25 30 35 40 45 50 55 60

Mask Feature(nm)

M
AX

 E
L

0

3

6

9

12

M
EE

F

0%

4%

8%

12%

16%

15 20 25 30 35 40 45 50 55

Mask Feature(nm)

M
AX

 E
L

0

3

6

9

12

15

18

M
EE

F
0%

4%

8%

12%

16%

25 30 35 40 45 50 55 60 65

Mask Feature(nm)

M
AX

 E
L
0

3

6

9

12

15

18

M
EE

F

0%

4%

8%

12%

16%

20 25 30 35 40 45 50 55

Mask Feature(nm)

M
AX

 E
L

0

3

6

9

12

M
EE

F

0%

4%

8%

12%

16%

25 30 35 40 45 50 55

Mask Feature(nm)

M
AX

 E
L

0

3

6

9

12

M
EE

F

hp 40 nm 

hp 38 nm 
cQuad 

hp 38 nm 
Dipole 

Bright Field Dark Field EL OMOG
EL 6% PSM
EL 20% PSM
MEEF OMOG
MEEF 6% PSM
MEEF 20% PSM

EL OMOG
EL 6% PSM
EL 20% PSM
MEEF OMOG
MEEF 6% PSM
MEEF 20% PSM

EL OMOG
EL 6% PSM
EL 20% PSM
MEEF OMOG
MEEF 6% PSM
MEEF 20% PSM

Proc. of SPIE Vol. 7379  73791L-5

xxvii



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  MEEF, max. EL and DOF through mask feature on hp 32nm in bright field: dots represent optimized mask feature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  MEEF, max. EL and DOF through mask feature on hp 32nm in dark field: dots represent optimized mask feature. 

Mask Feature Mask Feature Mask Feature
W

af
er

 C
D

 (
nm

)

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

Mask Feature Mask Feature Mask Feature

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

Mask Feature Mask Feature Mask Feature

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

OMOG 6% PSM 20% PSM 

MEEF 

Max. EL (%) 

DOF (um) 

OMOG 6% PSM 20% PSM 

MEEF 

Max. EL (%) 

DOF (um) 

Mask Feature Mask Feature Mask Feature

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

Mask Feature Mask Feature Mask Feature

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

Mask Feature Mask Feature Mask Feature

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

W
af

er
 C

D
 (

nm
)

Proc. of SPIE Vol. 7379  73791L-6

xxviii



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  MEEF, max. EL and DOF through mask feature on hp 22nm in bright field: dots represent optimized mask feature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 MEEF, max. EL and DOF as through mask feature on hp 22nm in dark field: dots represent optimized mask feature. 
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3.4 Lithographic performance 

Figure 8 shows duty cycle of each hp for bright field and dark field. The order of higher DC for bright field features 
was OMOG, 6% att. PSM and 20% att. PSM. On the contrary, the order in dark field was 20% att. PSM, 6% att. PSM 
and OMOG. DC of OMOG was around 50% except hp 60nm in both bright field and dark field and hp 32nm in bright 
field.  

 

 

 

 

 

 

 

 
Figure 8  Duty Cycle: 38D represents hp 38nm with dipole illumination. 

MEEF is shown in Figure 9. MEEF of hp 38nm with cQuad illumination is very large. Even with dipole illumination, 
the MEEF is larger than other hp. The MEEF for the 20% att. PSM shows higher MEEF for hp 40nm and below when it 
is compared to the other materials. The MEEF for OMOG is comparable with 6% att. PSM across the entire range. 
Figure 10 shows maximum EL. Maximum EL shrinks with decreasing hp. The maximum EL for PSMs is slightly larger 
than for OMOG. The DOF, shown in Figure 11, is calculated based on 5% EL. The DOF differences are very small 
between the three masks. On the other hand, there is big difference between hp 50nm and hp 45nm due to the same NA 
used for both cases. We could not obtain hp 38 nm DOF with cQuad illumination. It can be said that cQuad is not 
practical use on hp 38nm. Contrarily, wide DOF was obtained with dipole illumination.  

 

 

 

 

 

 

 

Figure 9  MEEF on various hp: 38D represents hp 38nm with dipole illumination. 

 

 

 

 

 

 

 

 

Figure 10 Maximum EL (CD�10%) on various hp: 38D represents hp 38nm with dipole illumination. 
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Figure 11 DOF of dense line of 5% exposure latitude on various hp: 38D represents hp 38nm with dipole illumination. 

3.5 Sub Resolution Assist Feature (SRAF) width 

Figure 12 shows the optimized SRAF width (4x) for an isolated pattern. In bright field, the SRAF width for OMOG is 
comparatively large. In spite of hp 38nm, SRAF width is larger than 60nm (15nm:1x). However, SRAF width of PSMs 
is less than 40nm (10nm:1x) on hp 40nm and 38nm. The small SRAF widths impact mask manufacturability. Both CD 
accuracy and pattern collapse during processing are concerned. It can be said that large SRAF width is benefit of OMOG. 
Although the required SRAF width for dark field structures is smaller for OMOG then PSM, the assist feature slots are 
slightly larger and are not as impacted by pattern collapse. The reason is considered that MEEF of isolated pattern with 
SRAF in bright field is larger than that in dark field. Large MEEF induces comparatively large SRAF width. The 
minimum SRAF width of OMOG in dark field is about 100nm (25nm:1x). SRAF widths in the range of 100nm 
(25nm:1x) are well within the current mask manufacturing capability. The DOF for an isolated pattern with SRAF is 
shown in Figure 13. The difference among masks is very small. If we assume DOF specs are 0.1um, DOF of hp 40nm, 
38nm and 22nm is out of specs. In order to obtain enough DOF, we must optimize illumination from viewpoint of both 
dense pattern and isolated pattern.    

 

 

 

 

 

 

 

 
Figure 12  Optimized SRAF width on various hp: printability was evaluated within process window. 

 

 

 

 

 

 

 

 

Figure 13  DOF of isolated pattern with SRAF under the condition of EL 5%. 
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3.6 Quartz depth variation impact 

Figure 14 shows the slope of wafer CD to quartz depth. The impact to wafer CD of quartz depth variation on OMOG 
is very small since there is no phase restriction. However, there is a significant impact of quartz depth variation observed 
for PSM. This is especially true for a 20% att. PSM. Small slope of OMOG is advantageous from viewpoint of CD 
control on wafer. 

 

 

 

 

 

 

 

 
Figure 14  Quartz depth variation impact on wafer CD.  

3.7 CD error on wafer 

We estimated CD error on wafer caused by global mask CD error, quartz depth variation and exposure dose variation 
from simulation results. We assumed glolbal mask CD error is �2nm, quartz depth variation is �2nm and exposure 
dose variation is �1%. CD error on wafer is shown in Figure 15. As a result, the difference of CD error among three 
masks increases with decreasing hp. The CD error observed for the 20% att. PSM is very large for 45nm hp and below.  
This is primarily driven by the wafer CD sensitivity to quartz depth variation. CD error of OMOG is slightly smaller than 
6% att. PSM. Small wafer CD error on wafer is one of benefits of OMOG.  

 

 

 

 

 

 

 

 

Figure 15 CD Error on wafer estimated from MEEF, quartz depth variation, and exposure dose variation. 

4. EXPERIMENTAL RESULTS 
Figure 16 shows MEEF and maximum EL experimental results for OMOG material for bright field features. The 

difference between experimental results and simulation is relatively small. Thus, we believe that our simulation accracy 
is high. 
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Figure 16  MEEF and maximum EL: dots represent experimental results and bars represent simulation. 

We also evaluated SRAF printability for hp 45nm through pitch on wafer. Earlier we optimized the duty cycle for the 
hp 45nm for each material. Based on the required dose to size 45nm on wafer, we expanded our evaluation through pitch 
to included pitch ranges where SRAFs are required to maintain acceptable depth of focus. Figure 17 shows the wafer 
results for the lower duty cycle (39% DC) 6% att. PSM case, the 1:1 (50% DC) OMOG case and the 1:1 (50% DC) 6% 
att. PSM case. The SRAF size and mask bias was configured to target 45nm on wafer with the required dose to size.  The 
minimum SRAF used was around 80nm at 4X. 

Ealier we showed that both the 6% and 20% att. PSM show improved MEEF performance at lower duty cycles for hp 
45nm bright field structures. However, when we try to expand the optimized setting through pitch for the 6% att. PSM 
we find that these settings result in poor SRAF printability. We also show that shifting to a higher duty cycle (50% DC) 
for hp 45nm improves printing performance for the 6% att PSM. However, under these conditions, we expect a higher 
MEEF at the minimum pitch for hp 45nm due to the negative effects from polarization. There is trade off between MEEF 
and SRAF printability for the att PSM. On the contrary, the OMOG gives the best combination of SRAF printability and 
lower MEEF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 17  Experimental results of SRAF printability through pitch: red color represents that SRAF is printed, green color 

represents that SRAF is not printed through process window. 

 

 

P180 P190 P240 P260 P270 P400 P420

+1
0%

C
D

B
Ex

B
F

+1
0%

C
D

B
Ex

B
F

+1
0%

C
D

B
Ex

B
F

6% PSM
Lower Duty 
Cycle Case

6% PSM 1:1
Case

OMOG 1:1
Case

P180 P190 P240 P260 P270 P400 P420

+1
0%

C
D

B
Ex

B
F

+1
0%

C
D

B
Ex

B
F

+1
0%

C
D

B
Ex

B
F

6% PSM
Lower Duty 
Cycle Case

6% PSM 1:1
Case

OMOG 1:1
Case

0%

2%

4%

6%

8%

10%

12%

14%

45 40
hp(nm)

M
ax

. 
EL

0

1

2

3

4

5

45 40
hp(nm)

M
EE

F

OMOG
6% PSM

OMOG
6% PSM

Proc. of SPIE Vol. 7379  73791L-11

xxxiii



 

5. MASK CYCLE TIME 
 

Mask cycle time continues to be a critical factor for many mask users. We estimated mask cycle time for each material 
in Figure 18. The cycle time for the two PSMs is comparatively larger. Especially, the cycle time of 20% att. PSM is true 
because of additional quartz etching. The OMOG enjoys a smaller cycle time due the shorter process procedures. 
Specifically a second write is required for the PSM but not for the OMOG.  Moreover, OMOG benefits from reduced 
inspection frequency. Overall, the OMOG mask cycle time is almost 20% faster compared to the 6% att. PSM.   

 

 

 

 

 

 

 

 

 

Figure 18  Manufacturing TAT: mask material OMOG, 6% att. PSM, 20% att. PSM 

6. CONCLUSION 
We compared lithographic performance such as MEEF, EL, DOF and SRAF printability between OMOG, 6% att. 

PSM and 20% att. PSM. We showed that the various materials can deliver similar lithographic performance for both 
bright and dark field structures for hp 45 nm and below if the mask duty cycle is optimized.  However, only the OMOG 
delivers good lithographic performance at the densest pitches and acceptable SRAF printing at the larger pitches. An 
evaluation of factors that impact CD uniformity shows that the att. PSM masks are more susceptible to variations in 
quartz etch depth control. Finally the OMOG enjoys a 20% shorter mask cycle time due to the reduced processing 
content.  We concluded OMOG is promising as a mask for both single exposure and double patterning in bright field and 
dark field. 
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ABSTRACT 

 
Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the 
semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing 
applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low 
throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography 
technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are 
currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be 
expensive [1].  
 
MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam 
writing with high speed optical data transport for switching the electron beams. In this way optical columns can be 
made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can 
be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV 
alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half 
pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. 
 
In 2008 MAPPER has taken a next step in its development by building several tools. A new platform has been designed 
and built which contains a 300 mm wafer stage, a wafer handler and an electron beam column with 110 parallel electron 
beams. This manuscript describes the first patterning results with this 300 mm platform. 
 
Keywords: Maskless lithography, MAPPER, exposure results 

 
 

1. INTRODUCTION 
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Figure 1 Schematic of MAPPER’s massively parallel electron beam concept 

The MAPPER electron optics consists of a single high brightness cathode gun in space charge limit. An electrostatic 
collimator lens is used to create a collimated beam, see Figure 1. After the collimator the single beam is split up into 
13,000 beams by the aperture array. After the aperture array the beamlets are focused by the condenser lens array in the 
intermediate focus plane. In this plane the beam blanker array is placed that can deflect each individual beam away 
from a clear aperture on the beam stop array to stop the electrons and switch off the beam at the wafer. After the beam 
stop array the beams are demagnified by the projection lens array and focused in the wafer plane. A deflector array is 
positioned between the beam stop array and the projection lens array to scan the beams over a range of 2 µm 
perpendicular to the wafer stage movement at a frequency of 6 MHz with a positioning accuracy of 1 nm. 
 
In MAPPER’s current machine the optics contains 110 electron beams and the targeted resolution is 45 nm half pitch, 
see Figure 2. 
 
 

 

Figure 2 Overview of MAPPER’s optics column (left) and an individual projection lens array (right) 
2. EXPLANATION EXPOSURE SEQUENCE 

 
Figure 3 The arrangement of the 110 beams on the left, each exposing 130 µm x 150 µm area which is divided in 
3 µm x 3 µm patterns 
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The exposures shown in this manuscript are static exposures. An x- and an y- deflector are used to expose 110 times an 
area of 3 µm x 3 µm with all the beams simultaneously. Then the wafer stage steps 5 µm  to a new position and 110 
new 3 µm  x 3 µm areas are exposed. This is repeated 252 times resulting in 252 x 110 or 27,720 exposed patterns. 
Finally 110 SEM-markers are exposed. For every beam the 252 (3 µm x 3 µm) fields can contain different patterns, 
dose or focus settings. 
 
The resist that is used in these exposures is 50 nm HSQ (negative) on top of a PMMA bottom layer. From  Figure 4 it is 
clear that all beams print.  
 

 
Figure 4 Overview of 110 isolated, 45 nm dot patterns exposed simultaneously 
Full SEM analysis of all patterns for 110 beams is highly time consuming and therefore MAPPER has chosen for this 
manuscript to only inspect eleven, randomly selected beams : B2, B5, B6, B8, C2, E9, F8, G6, H2, K9 and K10. 
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3. EXPOSURE RESULTS 
 
Examples of exposures are 45 nm dense lines, both horizontal and vertical lines and 45 nm dense dots. All three 
exposures were exposed on the same wafer. 
 

 
Figure 5 45 nm dense vertical lines for the eleven selected beams 

 

 
Figure 6 45 nm dense horizontal lines for the eleven selected beams 
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Figure 7 45 nm dense dots for the eleven selected beams 

 
For analysis of CD/CDu, for each 3 µm  x 3 µm area five 0.47 µm  x  0.47 µm squares are drawn. Within each 
square, the line width is sampled at 3.6 nm intervals. The average of all line widths within a square is taken as the 
CD for that square. This results in the required 5 measurement points for each pattern. The average of the 5 
measurement points is the CD for that pattern for that particular beam. The average over all 11 CD’s for all beams 
is the CD for that pattern. The 3� value of the 11 CD values is the CDu.  
 
The result for the three patterns shown above is as shown in Table 1. 

 
 
 

 
 
 

4. CONCLUSIONS 
 
MAPPER has built its 300 mm platform based on 110 parallel electron beams in 2008. First exposures at 45 nm half 
pitch resolution have been performed and analyzed. On the same wafer it is observed that all beams print and based on 
analysis of 11 beams the CD for the different patterns iswithin 2.2 nm from target and the CD uniformity for the 
different patterns is better than 2.8 nm. 
 
 
 

REFERENCES 
 
[1] B. J. Lin, presentation Sematech Lithography workshop 2008, Bolton Landing 
[2] E. Slot et al., Proc. of SPIE Vol. 6921, 69211P, (2008) 

B2 B6 B8 C2

G6E9 F8 H2 K10K9

B5

Pattern
CD Mean
-to-target 

[nm]
CDu [nm]

Measured  Target Measured Measured
Dots dense 43.4 45.0 1.6 2.5
Horizontal dense 42.8 45.0 2.2 1.9
Verlines-dense 44.9 45.0 0.1 2.8

CD [nm]

Table 1 Exposure analysis results 
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