Front Matter for Volume 7800
Image Reconstruction from Incomplete Data VI

Philip J. Bones
Michael A. Fiddy
Rick P. Millane
Editors

2–3 August 2010
San Diego, California, United States
Contents

vii Conference Committee
ix Introduction

SESSION 1 TOMOGRAPHY WITH LIMITED DATA

7800 02 Structure from random snapshots (Invited Paper) [7800-01]
A. Ourmazd, P. Schwander, Univ. of Wisconsin-Milwaukee (United States); G. N. Phillips, Jr., Univ. of Wisconsin-Madison (United States)

7800 03 A layered media approach to photoacoustic tomography [7800-02]
R. W. Schoonover, Pritzker Institute of Biomedical Engineering and Science, Illinois Institute of Technology (United States); M. A. Anastasio, Pritzker Institute of Biomedical Engineering and Science, Illinois Institute of Technology (United States) and Illinois Institute of Technology (United States)

7800 04 Investigation of limited-view image reconstruction in optoacoustic tomography employing a priori structural information [7800-03]
C. Huang, Medical Imaging Research Ctr., Illinois Institute of Technology (United States); A. A. Oraevsky, TomoWave Labs., Inc. (United States); M. A. Anastasio, Medical Imaging Research Ctr., Illinois Institute of Technology (United States)

7800 05 Sampling rates and image reconstruction from scattered fields [7800-04]
U. Shahid, M. A. Fiddy, The Univ. of North Carolina at Charlotte (United States); M. E. Testorf, Dartmouth College (United States)

SESSION 2 IMAGE RECOVERY AND SENSING I

7800 06 Reconstructing MR images from under- or unevenly-sampled k-space [7800-05]
L. Vu, A. R. Hajian, P. H. Calamai, A. T. Cenko, S. Rasheed, Univ. of Waterloo (Canada); J. K. Kim, Thunder Bay Regional Research Institute (Canada); C. Piron, Sentinelle Medical Inc. (Canada); S. S. So, J. T. Meade, Univ. of Waterloo (Canada); K. H. Knuth, Univ. at Albany (United States)

7800 07 Imposing spatio-temporal support in magnetic resonance angiographic imaging [7800-06]
P. J. Bones, B. Valadar, R. Watts, Univ. of Canterbury (New Zealand); B. Wu, Duke Univ. (United States)

7800 08 Weighted least-squares image reconstruction in phase-contrast tomography [7800-07]
P.-Y. Huang, C.-Y. Chou, National Taiwan Univ. (Taiwan)

7800 09 Three-dimensional image visualization by maximum a posteriori estimation photon-counting integral imaging [7800-08]
C. M. Do, Univ. of Connecticut (United States)
In situ determination of wind fields from sailplane flight data [7800-09]
N. Zhang, R. P. Millane, Univ. of Canterbury (New Zealand); A. J. Hunter, Univ. of Bristol (United Kingdom)

SESSION 3 IMAGE RECOVERY AND SENSING II

7800 0B Information theoretic characterizations of compressive-sensing-based space object identification [7800-10]
S. Prasad, D. Hope, Univ. of New Mexico (United States)

7800 0E Continuous surface fitting to spatial optical interferometer data [7800-13]
S. Rasheed, A. R. Hajian, Univ. of Waterloo (Canada); C. Tycner, Central Michigan Univ. (United States); L. Vu, Univ. of Waterloo (Canada)

SESSION 4 ALGORITHMS AND IMPLEMENTATION

7800 0F Compressive phase contrast tomography [7800-15]
F. Maia, A. MacDowell, S. Marchesini, H. A. Padmore, D. Y. Parkinson, Lawrence Berkeley National Lab. (United States); J. Pien, CUDA Consultant (United States); A. Schirotzek, C. Yang, Lawrence Berkeley National Lab. (United States)

7800 0G Rethinking image registration on customizable hardware [7800-16]
D. Bowman, M. Tahtali, A. Lambert, UNSW@ADFA (Australia)

7800 0H Graphics processing unit restoration of non-uniformly warped images using a typical frame as prototype [7800-17]
M. Tahtali, A. J. Lambert, D. Fraser, UNSW@ADFA (Australia)

SESSION 5 HIGH RESOLUTION IMAGING

7800 0I Multiple image reconstruction for high-resolution optical imaging using structured illumination (Invited Paper) [7800-18]
S. Usuki, Shizuoka Univ. (Japan); R. Kudo, S. Takahashi, K. Takamasu, The Univ. of Tokyo (Japan)

7800 0J Geometric superresolution using CCD-mask [7800-19]
I. U. Haq, A. A. Mudassar, Pakistan Institute of Engineering and Applied Sciences (Pakistan)

7800 0K Ill-posedness of space-variant image deconvolution [7800-20]
M. Kieweg, H. Gross, T. Sievers, L. Müller, Carl Zeiss AG (Germany)

7800 0L 3D signal reconstruction from noisy projection data for stochastic objects as a generalization of Gaussian mixture parameter estimation [7800-21]
Y. Zheng, Lawrence Berkeley National Lab. (United States); P. C. Doerschuk, Cornell Univ. (United States)

7800 0M Scattered image reconstruction of Pulsar B0834+06 [7800-22]
J. J. Gao, B. J. Rickett, W. A. Coles, Univ. of California, San Diego (United States)
SESSION 6 MOLECULAR IMAGING

7800 0N Image reconstruction using symmetry [7800-23]
V. L. Lo, R. P. Millane, Univ. of Canterbury (New Zealand)

7800 0O Reconstruction of the electron density of molecules with single-axis alignment [7800-24]
D. Starodub, SLAC National Accelerator Lab. (United States); J. C. H. Spence, Arizona State
Univ. (United States); D. K. Saldin, Univ. of Wisconsin-Milwaukee (United States)

7800 0P Orientation determination for 3D single molecule diffraction imaging [7800-25]
C. Yang, Lawrence Berkeley National Lab. (United States); Z. Wang, Emory Univ. (United
States); S. Marchesini, Lawrence Berkeley National Lab. (United States)

7800 0Q Understanding stochastic biological macromolecular complexes by estimating a
mechanical model via statistical mechanics from cryo electron microscopy images [7800-26]
K. Wang, P. C. Doerschuk, Cornell Univ. (United States)

7800 0R Classification of cryo electron microscopy images, noisy tomographic images recorded
with unknown projection directions, by simultaneously estimating reconstructions and
application to an assembly mutant of Cowpea Chlorotic Mottle Virus and portals of the
bacteriophage P22 [7800-27]
J. Lee, The Johns Hopkins Univ. (United States); Y. Zheng, Lawrence Berkeley National Lab.
(United States); Z. Yin, GE Global Research (United States); P. C. Doerschuk, Cornell Univ.
(United States); J. E. Johnson, The Scripps Research Institute (United States)

Author Index
Conference Committee

Program Track Chair

Khan M. Iftekharuddin, The University of Memphis (United States)

Conference Chairs

Philip J. Bones, University of Canterbury (New Zealand)
Michael A. Fiddy, The University of North Carolina at Charlotte (United States)
Rick P. Millane, University of Canterbury (New Zealand)

Program Committee

Mark A. Anastasio, Illinois Institute of Technology (United States)
Emmanuel J. Candes, California Institute of Technology (United States)
David J. Brady, Duke University (United States)
Julian C. Christou, Gemini Observatory (United States)
Timothy J. Cornwell, Commonwealth Scientific and Industrial Research Organisation (Australia)
Peter C. Doerschuk, Cornell University (United States)
James Fienup, University of Rochester (United States)
Andrew J. Lambert, The University of New South Wales (Australia)
Stefano Marchesini, Lawrence Berkeley National Laboratory (United States)
Charles L. Matson, Air Force Research Laboratory (United States)
Sudhakar Prasad, The University of New Mexico (United States)
Markus E. Testorf, Dartmouth College (United States)
Kevin J. Webb, Purdue University (United States)
Jong-Chul Ye, Korea Advanced Institute of Science and Technology (Korea, Republic of)

Session Chairs

Tomography with Limited Data
Rick P. Millane, University of Canterbury (New Zealand)

Image Recovery and Sensing I
Mark A. Anastasio, Illinois Institute of Technology (United States)

Image Recovery and Sensing II
Philip J. Bones, University of Canterbury (New Zealand)
Discussion: Challenges in image recovery
Philip J. Bones, University of Canterbury (New Zealand)

Algorithms and Implementation
Peter C. Doerschuk, Cornell University (United States)

High Resolution Imaging
James Fienup, University of Rochester (United States)

Molecular Imaging
Michael A. Fiddy, The University of North Carolina at Charlotte (United States)

Computational Imaging I: Joint Session with Conference 7798
Dan Lelescu, Pelican Imaging Corporation (United States)

Computational Imaging II: Joint Session with Conference 7798
Dan Lelescu, Pelican Imaging Corporation (United States)
Introduction

Image Reconstruction from Incomplete Data VI (IRID-VI) was held 2–3 August 2010. A total of 27 papers were accepted for presentation. In addition two joint sessions with Conference 7798 (Applications of Digital Image Processing XXXIII) were scheduled and an excellent plenary address by Mohammad A. Karim on "Optics in antiquity."

This conference continues those of the same name held at the SPIE Annual Meetings in San Diego in 2000, Seattle in 2002, Denver in 2004, and at SPIE Optics + Photonics in San Diego in 2006 and 2008. Conferences on this foundational topic of imaging when measured data are limited, noisy or corrupted somehow have a long history with SPIE under the auspices of the Mathematical Imaging Program. Early meetings on this subject include Applications of Mathematics in Modern Optics (Vol. 358), chaired by W.H. Carter in 1981 at which 29 papers were presented and Inverse Optics I (Vol. 413), edited by A. J. Devaney in 1982 which had 30 papers. The objective of these meetings and the twenty or so that have followed has been to bring together those working on a variety of imaging and inverse problems from a broad range of disciplines. The underlying mathematical structures to image reconstruction and restoration methods are widely applicable to a number of quite different imaging modalities, and the cross fertilization of ideas between those working in these diverse areas is always very stimulating.

In addition to the half day joint session on computational imaging with Applications of Digital Image Processing XXXIII, this year’s conference was divided into sessions on tomography with limited data, algorithms and implementation, high resolution imaging, molecular imaging, and two sessions on imaging and sensing. The opening invited presentation by Abbas Ourmazd, “Tomography with random snapshots of faint non-stationary objects” set the scene very well for the conference. The talk illustrated key challenges that attendees and others in the field of image recovery are facing, namely how to combine noisy data sets together, with the help of constraints to generate useful images of either identical or different objects. A number of other papers presented complimented this theme. In the second invited presentation, Usuki et al. described adding redundancy, or additional information, by using structured illumination for optical microscopy of semiconductor wafers. The role of symmetry received particular attention from a number of presenters and in discussions. As in previous years, a wide range of applications from astronomy to imaging viruses, demonstrated the commonality of many imaging problems when using incomplete data.

During this conference there was an opportunity to have an open discussion about challenges and future directions in the field. This took place in session 3 under the themed title of “Challenges in Image Recovery”. The conversation was wide ranging and identified several of the factors which in 2010 are generating
challenges. Despite the advances which have been made in digital processing and methodology, it was recognized that ever more difficult imaging problems meant that the field is still faced with many more challenges. The discussion can be summarized by the following bullets:

• Fewer and fewer measurements:
 o the need to reduce acquisition time (e.g. MRI)
 o sparse data collection as an economic or technical necessity (e.g. radio astronomy)
 o fewer measurements require a more trustworthy model

• High noise environments:
 o low dose (e.g. cryoEM, X-ray CT)
 o more extreme experimental requirements (e.g. exploding molecules)
 o need to move away from Gaussian models

• Multiple object classes:
 o different conformations
 o different configurations
 o different orientations
 o different objects (e.g. before and after a reaction, evolving objects)

• Cheaper & cheaper “optics”:
 o availability of adaptive systems
 o smart optics
 o new sensors
 o ‘no optics’ optics
 o driven by the cost of high quality optics

• Maybe we do not need an image at all (!):
 o parameters, not pictures
 o decisions, not pictures
 o meaning comes from the dataset
 o What is an image? (When is a set of numbers an image?)

• Need to evaluate image quality:
 o probably has to be task specific
 o need to design experiments (e.g. how much data are needed to achieve a specific goal, what types, what quality?)

• Exploiting prior knowledge:
 o Is symmetry the most powerful prior knowledge?
 o How to best identify available priors?
 o How to optimally incorporate priors into the recovery process?
The quality of the presentations was high and interactions between participants were productive. The chairs would like to thank the participants, authors, and the program committee members, for their part in making this meeting so successful. Special thanks also go to the professional and efficient staff at SPIE for their assistance over the last year. We look forward to IRID-VII in 2012.

Philip J. Bones
Michael A. Fiddy
Rick P. Millane