Contents

vii Conference Committee

ix Introduction

BEYOND ORDER: RANDOM, APERIODIC, AND DISORDERED ACTIVE MATERIALS

7756 02 Demonstration of laser action in a pseudo-random medium (Invited Paper) [7756-01]
J.-K. Yang, Yale Univ. (United States); S. V. Boriskina, Boston Univ. (United States); H. Noh, M. J. Rooks, Yale Univ. (United States); G. S. Solomon, Joint Quantum Institute, NIST and Univ. of Maryland (United States); L. Dai Negro, Boston Univ. (United States); H. Cao, Yale Univ. (United States)

7756 03 Second harmonic generation in random nanostructures [7756-02]
D. Felbacq, C. Ciraci, Univ. Montpellier 2 (France); E. Kling, Sagem (France); M. Centini, Univ. degli Studi di Roma La Sapienza (Italy)

NOVEL ELECTROMAGNETIC PHENOMENA FOR ACTIVE CONTROL OF LIGHT

7756 08 Dielectric optical invisibility cloaks [7756-07]
J. Blair, Georgia Institute of Technology (United States); V. A. Tamma, W. Park, Univ. of Colorado at Boulder (United States); C. J. Summers, Georgia Institute of Technology (United States)

HARNESSING PHOTONS FOR ENERGY CONVERSION AND THERMAL CONTROL

7756 0A 3D photonic crystals for photon management in solar cells (Invited Paper) [7756-09]
J. Üpping, A. Bielawny, Martin-Luther-Universit Halle-Wittenberg (Germany); C. Ulbrich, Forschungszentrum Jülich (Germany); M. Peters, J. C. Goldschmidt, Fraunhofer Institute for Solar Energy Systems (Germany); L. Steidl, R. Zentel, Johannes-Gutenberg-Univ. of Mainz (Germany); T. Beckers, A. Lambertz, R. Carius, U. Rau, Forschungszentrum Jülich (Germany); R. B. Wehrspohn, Martin-Luther-Univ. Halle-Wittenberg (Germany) and Fraunhofer Institute for Mechanics of Materials, Halle (Germany)

7756 0B Thermal emission from finite photonic crystals (Invited Paper) [7756-10]
C. J. Schuler, C. Wolff, K. Busch, Karlsruhe Institute of Technology (Germany); M. Florescu, Princeton Univ. (United States)

NON-LINEAR PHENOMENA AND DEVICES I

7756 0D Photonic crystal enabled THz sources and one-way waveguides (Invited Paper) [7756-12]
Z. Wang, Y. Chong, A. Rodriguez, J. B. Abad, S. G. Johnson, J. D. Joannopoulos, M. Soljačić, Massachusetts Institute of Technology (United States)
Metallodielectrics as metamaterials (Invited Paper) [7756-14]
J. W. Haus, N. Katte, J.-B. Serushema, Univ. of Dayton (United States); M. Scalora, Charles M. Bowden Research Ctr., RDECOM (United States)

The nonlinear optical response of transparent silver/gold multi-metal layers [7756-15]
C. Fuentes-Hernandez, D. Owens, J. Hsu, A. R. Ernst, J. M. Hales, J. W. Perry, B. Kippelen, Georgia Institute of Technology (United States)

NON-LINEAR PHENOMENA AND DEVICES II

Optofluidic applications with lithium niobate nanowires (Invited Paper) [7756-16]
R. Grange, Ecole Polytechnique Fédérale de Lausanne (Switzerland); J.-W. Choi, C.-L. Hsieh, Ecole Polytechnique Fédérale de Lausanne (Switzerland) and California Institute of Technology (United States); Y. Pu, D. Psaltis, Ecole Polytechnique Fédérale de Lausanne (Switzerland)

A comprehensive study of the contributions to the nonlinear optical properties of thin Ag films [7756-19]
D. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, B. Kippelen, Georgia Institute of Technology (United States)

FABRICATION OF ACTIVE PHOTONIC CRYSTALS

High aspect ratio nanoscale metallic structures as transparent electrodes (Invited Paper) [7756-21]
P. Kuang, J.-M. Park, Ames Lab. (United States) and Iowa State Univ. (United States); W. Leung, Ames Lab. (United States); T.-G. Kim, Korea Univ. (Korea, Republic of); K.-M. Ho, K. Constant, Ames Lab. (United States) and Iowa State Univ. (United States)

QUANTUM DOTS: FABRICATION AND PROPERTIES

Mid-infrared surface plasmon coupled emitters utilizing intersublevel transitions in InAs quantum dots (Invited Paper) [7756-25]
E. A. Shaner, B. S. Passmore, Sandia National Labs. (United States); D. Adams, T. Ribaudo, Univ. of Massachusetts Lowell (United States); S. A. Lyon, Princeton Univ. (United States); W. Chow, Sandia National Labs. (United States); D. Wasserman, Univ. of Massachusetts Lowell (United States)

LIGHT MATTER INTERACTION: SPONTANEOUS EMISSION AND LASING II

Continuous and pulsed room temperature lasing behaviour at 1.55 µm on high quality factor photonic crystal microcavities (Invited Paper) [7756-32]
LIGHT MATTER INTERACTION: STRONG COUPLING AND CAVITY QED

7756 10 Design of dielectric photonic crystal reflector Fabry-Perot cavities [7756-35]
D. Zhao, The Univ. of Texas at Arlington (United States); Z. Ma, Univ. of Wisconsin-Madison (United States); W. Zhou, The Univ. of Texas at Arlington (United States)

ACTIVE PLASMONICS

7756 12 All-optical nonlinear switches based on Y-shaped plasmonic waveguides [7756-38]
C. Min, G. Veronis, Louisiana State Univ. (United States)

7756 13 Transparent composite with the unit refractive index [7756-39]
S. G. Moiseev, V.A. Kotelnikov Institute of Radio Engineering and Electronics (Russian Federation) and Ulyanovsk State Univ. (Russian Federation) and Ulyanovsk State Technical Univ. (Russian Federation)

ACTIVE SWITCHABLE AND TUNABLE DEVICES

7756 16 Active mid-infrared plasmonic beam steering devices (Invited Paper) [7756-41]
D. C. Adams, T. Ribaudo, Univ. of Massachusetts Lowell (United States); S. Thongrattanasiri, Oregon State Univ. (United States); E. A. Shaner, Sandia National Labs. (United States); V. A. Podolskiy, D. Wasserman, Univ. of Massachusetts Lowell (United States)

7756 17 Tunable refraction in superlattice photonic crystals [7756-42]
J. Blair, C. J. Summers, Georgia Institute of Technology (United States)

7756 1A Mechanically tunable photonic crystal lens [7756-45]
Y. Cui, Univ. of Colorado at Boulder (United States) and Univ. of Texas at Dallas (United States); V. A. Tamma, Univ. of Colorado at Boulder (United States); J.-B. Lee, Univ. of Texas at Dallas (United States); W. Park, Univ. of Colorado at Boulder (United States)

7756 1B Optical switching element based on layered nonlinear photonic crystal [7756-46]
V. A. Trofimov, A. G. Volkov, Lomonosov Moscow State Univ. (Russian Federation); S. Lan, South China Normal Univ. (China)

POSTER SESSION

7756 1C Anisotropic annular photonic crystal structure for large absolute band gap [7756-47]
Y. Li, P. Shi, Key Lab. of Quantum Information (China) and Univ. of Science and Technology of China (China); K. Huang, Univ. of Science and Technology of China (China)

Author Index
Conference Committee

Symposium Chairs

David L. Andrews, University of East Anglia Norwich (United Kingdom)
James G. Grote, Air Force Research Laboratory (United States)

Conference Chairs

Ganapathi S. Subramania, Sandia National Laboratories (United States)
Stavroula Foteinopoulou, University of Exeter (United Kingdom)

Program Committee

Paul V. Braun, University of Illinois at Urbana-Champaign (United States)
Shanhui Fan, Stanford University (United States)
Stephen H. Foulger, Clemson University (United States)
Rachel Jakubiak, Air Force Research Laboratory (United States)
Michal F. Lipson, Cornell University (United States)
Ceferino López, Consejo Superior de Investigaciones Científicas (Spain)
Michael J. Sailor, University of California, San Diego (United States)
Ralf B. Wehrspohn, Martin-Luther-Universität Halle-Wittenberg (Germany)
Pierre Wiltzius, University of Illinois at Urbana-Champaign (United States)

Session Chairs

1. Beyond Order: Random, Aperiodic, and Disordered Active Materials
 Ganapathi S. Subramania, Sandia National Laboratories (United States)

2. Novel Electromagnetic Phenomena for Active Control of Light
 Marin Soljacic, Massachusetts Institute of Technology (United States)

3. Harnessing Photons for Energy Conversion and Thermal Control
 Kai Ming Ho, Iowa State University (United States)

4. Non-linear Phenomena and Devices I
 Benjamin J. Eggleton, The University of Sydney (Australia)
5 Non-linear Phenomena and Devices II
Chih-Wei Chang, National Taiwan University (Taiwan)

6 Fabrication of Active Photonic Crystals
Willem L. Vos, University of Twente (Netherlands)

7 Quantum Dots: Fabrication and Properties
Jae-Woo Choi, Ecole Polytechnique Fédérale de Lausanne
(Switzerland)

8 Light Matter Interaction: Spontaneous Emission and Lasing I
Jeremy J. Baumberg, University of Cambridge (United Kingdom)

9 Light Matter Interaction: Spontaneous Emission and Lasing II
Victor I. Klimov, Los Alamos National Laboratory (United States)

10 Light Matter Interaction: Strong Coupling and Cavity QED
Arthur J. Fischer, Sandia National Laboratories (United States)

11 Active Plasmonics
Daniel M. Wasserman, University of Massachusetts Lowell (United States)

12 Active Switchable and Tunable Devices
Stavroula Foteinopoulou, The University of Exeter (United Kingdom)
Introduction

Advanced photonic materials offer a versatile platform to engineer the EM vacuum and control light-matter interactions. These extra-ordinary structures consist of "smartly" arranged metallic, dielectric, metallo-dielectric, or semiconductor building blocks. These artificial materials have provided transformative possibilities in the field of photonics, as they can dramatically divert, confine, focus, and slow down the flow of light. Incorporation of active elements, such as quantum dots and non-linear media, has taken the functionality of such type of photonic materials to the next level and opened up new avenues encompassing a wide range of applications including bio/chemical sensing, thresholdless lasing, on-chip compact integrable sources, as well as optical computing and communications. This vast potential for high impact applications has been a constant driving force in active photonic materials research.

The SPIE Active Photonic Materials III conference brought together scientists and engineers working in different aspects of the field. In this conference, exciting research encapsulating recent theoretical and experimental advances in a wide range of affiliated topics was reported. In particular, current research was presented in a variety of topics including novel lasing and second harmonic generation structures, new prototypes of THz sources and optical isolators, control of thermal radiation, fabrication of quantum dots and active photonic crystals, enhancement and directionality of spontaneous emission, strong coupling and polariton condensates, tunable photonic waveguides, as well as novel chip-scale compact photonic sources. The many engaging presentations in these topics have laid out the present state-of-the-art in the active photonic materials field and provided inspiration for exciting future research.

As conference chairs, we would like to express our sincere thanks to all the participants of the 7756 conference who contributed with their presentations as well as manuscripts to make it a successful and truly interesting program!

Ganapathi S. Subramania
Stavroula Foteinopoulou