Terahertz Technology and Applications V

Laurence P. Sadwick
Crédidhe M. O'Sullivan
Editors

25–26 January 2012
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 8261
Contents

<table>
<thead>
<tr>
<th>vii</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Introduction</td>
</tr>
</tbody>
</table>
| xv | Spinoptics: Spin degeneracy removal in nanostructures (Plenary Paper) [8269-100]
V. Kleiner, N. Shitrit, E. Hasman, Technion-Israel Institute of Technology (Israel) |

SESSION 1 THz Imaging, Spectroscopy, and Instrumentation I

| 8261 02 | Critical comparison of GaAs and InGaAs THz photoconductors (Invited Paper) [8261-01]
M. Martin, E. R. Brown, Wright State Univ. (United States) |
|---------|--|
| 8261 03 | Portable terahertz spectrometer with InP related semiconductor photonic devices [8261-02]
K. H. Park, N. Kim, H. Ko, H.-C. Ryu, J.-W. Park, S.-P. Han, Electronics and Telecommunications Research Institute (Korea, Republic of); M. Y. Jeon, Chungnam National Univ. (Korea, Republic of) |
| 8261 05 | Terahertz dynamic scanning reflectometry of soldier personal protective material [8261-04]
A. Rahman, Applied Research and Photonics, Inc. (United States); M. Mentzer, U. S. Army Research Lab. (United States) |
| 8261 06 | Towards monolithically integrated CMOS cameras for active imaging with 600 GHz radiation [8261-05]
S. Boppel, A. Lisauskas, V. Krozer, H. G. Roskos, Johann Wolfgang Goethe-Univ. Frankfurt am Main (Germany) |
| 8261 07 | Liquid crystals for terahertz technology [8261-06]
H. Park, F. Fan, The Hong Kong Univ. of Science and Technology (Hong Kong, China); E. P. J. Parrot, The Chinese Univ. of Hong Kong (Hong Kong, China); H. Han, Pohang Univ. of Science and Technology (Korea, Republic of); V. G. Chigrinov, E. MacPherson, The Hong Kong Univ. of Science and Technology (Hong Kong, China) |

SESSION 2 THz Imaging, Spectroscopy, and Instrumentation II

| 8261 08 | Miniature self-aligned external cavity tunable single frequency laser for THz generation [8261-07]
F. Havermeyer, Ondax, Inc. (United States); C. Moser, Ecole Polytechnique Fédérale de Lausanne (Switzerland); R. T. Logan, Jr., L. Ho, Ondax, Inc. (United States); J. R. Demers, EMCORE Corp. (United States) |
|---------|--|
| 8261 0A | Application of graphene membrane in micro-Golay cell array [8261-09]
E. Ledwosinska, T. Szkopek, McGill Univ. (Canada) and Univ. de Montréal (Canada); A. Guermoune, M. Siaj, Univ. du Québec à Montréal (Canada) and Univ. Laval Québec (Canada) |
SESSION 3 THZ MODELING AND SIMULATION

8261 0B THz lasing in InAs/GaSb broken-gap heterostructure devices and quantum-dot pillar arrays (Invited Paper) [8261-11]
D. Woolard, U.S. Army Research Office (United States) and North Carolina State Univ. (United States); W. Zhang, North Carolina State Univ. (United States)

8261 0C Energy conversion efficiency calculation model for direct-bonding planar-waveguide THz emitters based on optical rectification effects in GaAs [8261-12]
T. Yang, X. Niu, J. Wang, M. Sang, Tianjin Univ. (China)

8261 0D Long-term frequency and amplitude stability of a solid-nitrogen-cooled, continuous wave THz quantum cascade laser [8261-13]
A. A. Danylov, J. Waldman, A. R. Light, T. M. Goyette, R. H. Giles, X. Qian, N. Chandrayan, W. D. Goodhue, Univ. of Massachusetts Lowell (United States); W. E. Nixon, U. S. Army National Ground Intelligence Ctr. (United States)

8261 0E Plasmon absorption in grating-coupled InP HEMT and graphene sheet for tunable THz detection [8261-14]
N. Nader Esfahani, Univ. of Central Florida (United States) and Air Force Research Lab. (United States) and Solid State Scientific Corp. (United States); R. E. Peale, C. J. Fredricksen, Univ. of Central Florida (United States); J. W. Cleary, J. Hendrickson, Air Force Research Lab. (United States); W. R. Buchwald, Solid State Scientific Corp. (United States); B. D. Dawson, M. Ishigami, Univ. of Central Florida (United States)

8261 0F New developments in waveguide mode-matching techniques for far-infrared astronomy [8261-15]
J. A. Murphy, S. Doherty, N. Trappe, C. Bracken, T. Peacocke, C. O'Sullivan, National Univ. of Ireland, Maynooth (Ireland)

SESSION 4 THZ SOURCES, GENERATION, AND DETECTION I

8261 0G Doubly-corrugated spoof-insulator-spoof waveguides [8261-16]
M. A. Kats, D. Woolf, R. Blanchard, N. Yu, F. Capasso, Harvard Univ. (United States)

8261 0H Wide-range broadband terahertz emission from high x \(^2\) dendrimer [8261-17]
A. Rahman, A. Rahman, Applied Research and Photonics, Inc. (United States)

8261 0I Thin-film platinum nanowires as sub-wavelength bolometers [8261-18]
P. Renoux, Univ. of Iceland (Iceland); A. Beuny, Institut National des Sciences Appliquées de Toulouse (France); L. J. Klein, H. F. Hamann, IBM Thomas J. Watson Research Ctr. (United States); S. Ingvarsson, Univ. of Iceland (Iceland)

SESSION 5 THZ SOURCES, GENERATION, AND DETECTION II

8261 0K One-half milliwatt 2.31 THz continuous-wave QCL operating at 77K [8261-21]
X. Qian, N. Chandrayan, S. R. Vangala, W. D. Goodhue, A. A. Danylov, J. Waldman, C. Baird, R. H. Giles, Univ. of Massachusetts Lowell (United States); W. E. Nixon, U. S. Army National Ground Intelligence Ctr. (United States)
Extending spectral coverage of BWOs combined with frequency multipliers to 2.6 THz
D. Fast, W. Hurlbut, V. G. Kozlov, Microtech Instruments, Inc. (United States)

Upper band operation of active photonic crystal terahertz lasers [8261-23]
A. Benz, M. Brandstetter, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser,
K. Unterrainer, Technische Univ. Wien (Austria)

Portable real-time THz imaging setup based on QC lasers [8261-24]
C. Bonzon, G. Scalari, M. I. Amanti, F. Castellano, D. Turcinkova, M. Beck, J. Faist, ETH Zurich
(Switzerland)

SESSION 6 THZ MATERIALS AND CONFIGURATIONS

Propagation loss optimization in metal/dielectric coated hollow flexible terahertz waveguides [8261-26]
P. Doradla, C. S. Joseph, J. Kumar, R. H. Giles, Univ. of Massachusetts Lowell (United States)

Thin Film Lithium Tantalate (TFLT) pyroelectric detectors [8261-27]
V. Stenger, M. Shnider, S. Sriram, SRICO, Inc. (United States); D. Dooley, M. Stout, Gentec-EO USA, Inc. (United States)

Metamaterial-based tunable absorber in the infrared regime [8261-28]
I. O. Mirza, S. Shi, Univ. of Delaware (United States); A. Sharkawy, Lumilant, Inc. (United States);
D. W. Prather, Univ. of Delaware (United States)

Changing growth of neurites of sensory ganglion by terahertz radiation [8261-29]
M. V. Tsurkan, O. A. Smolyanskaya, V. G. Bespalov, National Research Univ. of Information
Technologies, Mechanics and Optics (Russian Federation); V. A. Penniyainen, Pavlov
Institute of Physiology (Russian Federation); A. V. Kipenko, E. V. Lopatina, Pavlov Institute of
Physiology (Russian Federation) and Almazov Federal Heart, Blood and Endocrinology Ctr.
(Russian Federation); B. V. Krylov, Pavlov Institute of Physiology (Russian Federation)

SESSION 7 THZ SOURCES, GENERATION, AND DETECTION III

Advances in biomedical imaging using THz technology with applications to burn-wound
assessment (Invited Paper) [8261-30]
P. Tewari, C. Kealey, J. Sung, A. Maccabi, N. Bajwa, R. Singh, M. Culjat, Univ. of California,
Los Angeles (United States); A. Stojadinovic, Walter Reed Army Medical Ctr. (United States)
and Combat Wound Initiative Program (United States); W. Grundfest, Z. D. Taylor, Univ. of
California, Los Angeles (United States)

Terahertz generation from quasi-phase matched gallium arsenide using a type II ring cavity
optical parametric oscillator [8261-32]
P. F. Tekavec, W. C. Hurlbut, V. G. Kozlov, Microtech Instruments, Inc. (United States);
K. Vodopyanov, Stanford Univ. (United States)
Continuous-wave terahertz reflection imaging of ex vivo nonmelanoma skin cancers [8261-34]
C. S. Joseph, Univ. of Massachusetts Lowell (United States); A. N. Yaroslavsky, Univ. of Massachusetts Lowell (United States) and Harvard Medical School, Massachusetts General Hospital (United States); V. A. Neel, Harvard Medical School, Massachusetts General Hospital (United States); T. M. Goyette, R. H. Giles, Univ. of Massachusetts Lowell (United States)

THz time-domain spectroscopy in different carbon nanotube thin films [8261-35]
E. Dadrasnia, H. Lamela, GOTL, Univ. Carlos III de Madrid (Spain); M.-B. Kuppam, F. Garet, J.-L. Coutaz, IMEP-LAHC, Univ. de Savoie (France)

Laser-driven generation of intense single-cycle THz field [8261-36]
C. Vicario, C. Ruchert, Paul Scherrer Institute (Switzerland); F. L. Ardana, C. P. Hauri, Paul Scherrer Institute (Switzerland) and Ecole Polytechnique Federale de Lausanne (Switzerland)

Aberrations of the large aperture attenuating THz lenses [8261-10]
M. Sypek, Warsaw Univ. of Technology (Poland); J.-L. Coutaz, IMEP-LAHC, CNRS, Univ. of Savoie (France); A. Kolodziejczyk, M. Makowski, J. Suszek, Warsaw Univ. of Technology (Poland)

THz transmission modulated by a dc-bias through GaN quantum well structure [8261-19]
A. Penot, J. Torres, T. Laurent, R. Sharma, P. Nouvel, S. Blin, L. Varani, W. Knap, Univ. Montpellier 2 (France) and TeraLab Montpellier (France); Y. Codier, M. Chmielowska, S. Chenot, Ctr. de Recherche sur l’Hétéro-Epitaxie et ses Applications, CNRS (France); J.-P. Faurie, B. Beaumont, LUMILOG (France); P. Shiktorov, E. Starikov, V. Gruzinskiis, Semiconductor Physics Institute (Lithuania); V. V. Korotyeyev, V. A. Kochelap, Institute of Semiconductor Physics (Ukraine)

Addendum
Conference Committee

Symposium Chair

Klaus P. Streubel, OSRAM GmbH (Germany)

Symposium Cochairs

David L. Andrews, University of East Anglia Norwich (United Kingdom)
Liang-Chy Chien, Kent State University (United States)

Program Track Chair

James G. Grote, Air Force Research Laboratory (United States)

Conference Chairs

Laurence P. Sadwick, InnoSys, Inc. (United States)
Créidhe M. O’Sullivan, National University of Ireland, Maynooth (Ireland)

Program Committee

Antao Chen, University of Washington (United States)
Robert H. Giles, University of Massachusetts Lowell (United States)
R. Jennifer Hwu, InnoSys, Inc. (United States)
J. Anthony Murphy, National University of Ireland, Maynooth (Ireland)
Michael C. Wanke, Sandia National Laboratory (United States)
Tianxin Yang, Tianjin University (China)

Session Chairs

1 THz Imaging, Spectroscopy, and Instrumentation I
Laurence P. Sadwick, InnoSys, Inc. (United States)
Tianxin Yang, Tianjin University (China)

2 THz Imaging, Spectroscopy, and Instrumentation II
Robert H. Giles, University of Massachusetts Lowell (United States)
Laurence P. Sadwick, InnoSys, Inc. (United States)

3 THz Modeling and Simulation
Laurence P. Sadwick, InnoSys, Inc. (United States)
Stephen Doherty, National University of Ireland, Maynooth (Ireland)
4 THz Sources, Generation, and Detection I
Laurence P. Sadwick, InnoSys, Inc. (United States)
R. Jennifer Hwu, InnoSys, Inc. (United States)

5 THz Sources, Generation, and Detection II
Laurence P. Sadwick, InnoSys, Inc. (United States)
Tianxin Yang, Tianjin University (China)

6 THz Materials and Configurations
Antao Chen, University of Washington (United States)
Stephen Doherty, National University of Ireland, Maynooth (Ireland)

7 THz Sources, Generation, and Detection III
Laurence P. Sadwick, InnoSys, Inc. (United States)
R. Jennifer Hwu, InnoSys, Inc. (United States)

8 THz Sources, Generation, and Detection IV
Laurence P. Sadwick, InnoSys, Inc. (United States)
Robert H. Giles, University of Massachusetts Lowell (United States)
Introduction

The 2012 Terahertz Technology and Applications Conference was divided into eight sessions reflecting specific categories as follows: Session 1 – THz Imaging, Spectroscopy, and Instrumentation I, Session 2 – THz Imaging, Spectroscopy, and Instrumentation II, Session 3 – THz Modeling and Simulation, Session 4 – THz Sources, Generation, and Detection I, Session 5 – THz Sources, Generation, and Detection II, Session 6 – THz Materials and Configurations, Session 7 – THz Sources, Generation, and Detection III, and Session 8 – THz Sources, Generation, and Detection IV.

Session 1 included an invited talk by Professor Elliott Brown covering: a critical comparison of GaAs and InGaAs THz photoconductors, and contributed talks on a portable terahertz spectrometer with InP related semiconductor photonic devices, high-speed three-dimensional terahertz tomography using electronically controlled optical sampling, terahertz dynamic scanning reflectometry of soldier protective material, and a talk towards monolithically integrated CMOS cameras for active imaging with 600 GHz radiation.

Session 2 included papers on a miniature self-aligned external cavity tunable single frequency laser for THz imaging, an evaluation of terahertz spectra using chemometric methods, and the application of graphene membrane in micro-Golay cell array.

Session 3 began with an invited paper by Dr. Dwight Woolard of the Army Research Office on THz lasing in InAs/GaSb broken-gap heterostructure devices and quantum-dot pillar arrays followed by a talk on energy conversion efficiency calculation model for direct-bonding planar-waveguide THz emitters based on optical rectification effects in GaAs, a talk on long-term frequency and amplitude stability of a solid-nitrogen cooled continuous wave THz quantum cascade laser, followed by a talk on the plasmonic response of grating-gated InGaAs/InP HEMT device to terahertz and millimeter wave radiation, and concluding with a talk on new developments in waveguide mode matching techniques for far-infrared astronomy.

Session 4 began with a paper on the spoof plasmon analogue of metal-insulator-metal waveguides, followed by a talk on Wide-range broadband terahertz emission from high chi(2) dendrimer, a talk on thin-film platinum nanowires as sub-wavelength bolometers, and concluding with a talk on terahertz transmission enhancement through GaN quantum wells controlled by a DC voltage. There was also a poster on Aberrations of the large aperture attenuating THz lenses.

Session 5 began with an invited talk on real-world applications of terahertz pulsed technology by Dr. Philip F. Taday of TeraView Ltd., followed by a talk on one-half
milliwatt 2.33 THz CW QCL operating at 77K, a talk on backwards wave oscillators combined with solid state frequency multipliers extending the spectral coverage of electronic sources to 2.2 THz, a talk on the upper band operation of active photonic crystal terahertz lasers, real-time THz imaging setup based on QC lasers, and concluding with a talk on exploring performance limits of silicon CMOS FET detectors for THz frequencies.

Session 6 began with a talk on the propagation loss optimization in dielectric/metal coated hollow flexible terahertz waveguides, followed by a talk on thin film lithium tantalate (TFLTR) pyroelectric detectors, a talk on metamaterial-based tunable absorber in the infrared regime, and concluding with a talk on changing growth of neurites of sensory ganglions by terahertz radiation.

Session 7 began with an invited talk on advances in biomedical imaging using THz technology with applications to burn wound assessment by Dr. Zachary D. Taylor from the Univ. of California, Los Angeles, the invited talk was followed by a talk on the generation and detection of broadband THz pulses (>10 THz) with organic nonlinear optical crystals OH1 and DSTMS as alternatives to DAST, and concluding with a talk on terahertz generation from quasi-phase matched gallium arsenide using a type II ring cavity optical parametric oscillator.

Session 8 began with a talk on continuous wave terahertz reflection imaging of ex vivo nonmelanoma skin cancers, followed by a talk on THz time-domain spectroscopy in different carbon nanotube and graphene thin-films, and concluding with a talk on the laser driven generation of an intense single-cycle THz field.

As in prior Terahertz Technology and Applications Conferences, these papers represent a cross section of much of the research work that is being pursued in the technically challenging terahertz spectral region.

In the prior five years of the Proceedings of this conference (Conferences 6472, 6893, 7215, 7601, and 7938, respectively), we (including Dr. Kurt Linden) presented a list of recent technical articles describing significant advances in the terahertz technology. This year, for the interested reader, we also include a list that points to a rather extensive and growing database on the terahertz absorption characteristics of a large number of chemicals given on the website www.thzdb.org. That website, in turn, provides links to related terahertz technology database websites as shown in Table 1.
Table 1. List of terahertz technology database websites as found at www.thzdb.org

In the last five years’ introduction to SPIE Proceedings, Volumes 6472, 6893, 7215, 7601, and 7938, respectively, two tables were included, one summarizing the more common terahertz radiation sources, and the other summarizing the more common terahertz detector types. For the interest of the general reader we again include these tables without updates other than to note that recent advancements in vacuum electronics BWOs coupled with solid state multipliers have now produced usable power above 2 THz and that devices such as quantum cascade lasers continue to make improvements that encroach upon established high power sources such as carbon dioxide lasers. Due to such advancements, any values listed in Tables 2 and 3 are likely to be bested by new records in a very short time period; however the sources and detectors listed in Tables 2 and 3 still comprise the majority of those used in the THz regime. Readers of this volume may send additions and enhancements to these tables so that future volumes can continue to provide readers with relevant information on the availability of terahertz sources and detectors. Such suggestions can be sent to sadwick@innosystech.com.
<table>
<thead>
<tr>
<th>THz source type</th>
<th>Details</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchrotron</td>
<td>* Coherent synchrotron produces very high photon flux, including THz region, room temperature, to 1.2 THz</td>
<td>E-beam, very broadband source, limited instrument availability, very large size, 20 W pulsed</td>
</tr>
<tr>
<td>Free electron laser</td>
<td>* Benchtop design at Univ. Essex, UK Elec beam moves over alternate H-field regions</td>
<td>Tunable over entire THz region, under development 0.1 - 4.8 THz, 0.5 - 5 kW, 1 - 20 us pulses at 1 Hz</td>
</tr>
<tr>
<td>Smith-Purcell emitters</td>
<td>* E-beam travels over metal grating surface, Require vacuum, has low efficiency</td>
<td></td>
</tr>
<tr>
<td>Backward-wave oscillators</td>
<td>* Vacuum tube, requires homog H-field~10 kg * Carcinotron, room temperature, to 1.2 THz</td>
<td>Tunable output possible. Under development and commercially available, 10 mW power level, <1 THz</td>
</tr>
<tr>
<td>Mercury lamp</td>
<td>* Water cooled housing, low press. 1E-3 Torr 75-150 W lamp, broad emission</td>
<td>Sciencetech SPS-200,300, low power density Low-cost, used in THz spectroscopy</td>
</tr>
<tr>
<td>Optically pumped gas cell laser</td>
<td>* Grating-tuned CO2 laser and far-IR gas cell such as methane. Most mature laser.</td>
<td>> 100 mW, 0.3-10 THz, discrete lines, CW/pulsed Commercially avail - Coherent ($400K - $1M)</td>
</tr>
<tr>
<td>Opt pump GaAs, p-InAs, Si, ZnTe, InGaAs (fiber laser pump), Ge photoconducting (PC) switch</td>
<td>* Mode locked Nd:YAG or Ti:sapphire laser creates short across biased spiral antenna gap</td>
<td>Imaging apparatus produced, 0.1 to 3 THz Commercially available, CW uW range, $50K-500K</td>
</tr>
<tr>
<td>Laser-induced air plasma</td>
<td>* Ti-saph laser induces air plasma</td>
<td>Remote THz generation possible, very low power Possibility of power increase in multiple plasmas</td>
</tr>
<tr>
<td>Photomixing of near-IR lasers</td>
<td>* Mixing tunable Ti-sapphire laser and diode laser in LT-grown GaAs photomixer.</td>
<td>Tens of nW, tunable. Requires antenna pattern Not commercial. GaP gave 480 mW @ 1.3 THz</td>
</tr>
<tr>
<td>Electrically pumped Ge in H-field</td>
<td>* Electric field injects electrons, magnetic field splits hole levels for low-E transitions</td>
<td>Requires electric and magnetic fields Output up to hundreds of mW, cryogenic cooling, 1.5 ~ 4 THz</td>
</tr>
<tr>
<td>Electrically pumped Si:8 or As</td>
<td>* Transitions between impurity levels 100 x 200 um rectangle mesas, biased</td>
<td>31 uW output at 8.1 THz, slightly polarized Cryogenic cooling needed</td>
</tr>
<tr>
<td>Electrically pulsed InGaAs RTD</td>
<td>* Harmonically generated by electrical pulses RTD integrated into slot antenna</td>
<td>0.6 uW, 1.02 THz harmonic from InGaAs/AIAs RTD pulsed at 300 Hz</td>
</tr>
<tr>
<td>Direct multiplied mm waves</td>
<td>* Multiplied to low-THz region up-multiplied from mm-wave</td>
<td>Low power (uW level), available (VA Diodes) Coherent, heterodyne local oscillators in astronomy</td>
</tr>
<tr>
<td>Parametric generators</td>
<td>* Q-switched Nd:YAG pumps MgO-LNbO3 non-linear crystal, Phase matched GaAs, GaP</td>
<td>200 W pulsed power, room temp., 0.1-5 THz tunable some commercially available ~ $30K</td>
</tr>
<tr>
<td>Quantum cascade (QC) laser</td>
<td>* First announced in 2002, semiconductor, AlGaAs/GaAs-based, MBE grown, 1.6 to 4 THz</td>
<td>Operated at mW power, and up to 164K pulsed THz not commercially available, require cryo-cooling</td>
</tr>
<tr>
<td>Josephson junction cascades</td>
<td>* Research stage</td>
<td>0.4-0.85 THz, microwatts</td>
</tr>
<tr>
<td>Transistor</td>
<td>* InGaAs channel PHEMT with 35 nm gate * InGaAs with 12.5 nm gate, 0.845 THz</td>
<td>1.2 THz, development at Northrop Grumman InGaAs with 12.5 nm gate, 0.845 THz Univ. Ill (Dec 2006)</td>
</tr>
<tr>
<td>Grating-bicoupled plasmon-FET</td>
<td>* GaAs based double interdigitated grating with 1.5um laser illum., Tohoku/Hokkaido Univ.</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Summary of common terahertz radiation detectors

<table>
<thead>
<tr>
<th>THz detector type</th>
<th>Details</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si bolometer</td>
<td>* Most sensitive (10 pW Hz$^{1/2}$) THz detector at liquid He temp., slow response time</td>
<td>Responsivity $2E^9$V/W, NEP=1E-17 WHz$^{1/2}$, 100 mK Requires liquid He dewar, commercially avail.</td>
</tr>
<tr>
<td>Superconducting hot electric bolometer</td>
<td>* Highest sensitivity</td>
<td>Requires cooling to 0.3 K, NEP=1E-17 WHz$^{1/2}$</td>
</tr>
<tr>
<td>Pyroelectric detectors</td>
<td>* Slow response 1, 220 nW sensitivity at 24 Hz Requires pulsed signals or mechanical chopper</td>
<td>Room temp operation, commercially available, Low cost, imagers available ~ $10K</td>
</tr>
<tr>
<td>Schottky diodes</td>
<td>* ~ 1 THz cutoff frequency Fast response, but low THz sensitivity Requires pulsed signals or mechanical chopper</td>
<td>Commercially available ((VA Diodes) with corner ref. Room temp operation, good for mixers</td>
</tr>
<tr>
<td>PC dipole antennas</td>
<td>* signal gen across biased spiral antenna gap Must be pulsed Short pulsed detection only</td>
<td>Analagous to optically pumped THz PC switch but in detection mode. Commercially available</td>
</tr>
<tr>
<td>Antenna coupled inter-subband</td>
<td>* 4-terminal phototransistor, 1.6 THz</td>
<td>Under development UCSB</td>
</tr>
<tr>
<td>III-V HEMT & Si FET to 300K</td>
<td>* HEMT with 250 nm gate Plasma wave-based detection</td>
<td>20 K, 50 mV/W at 420 GHz, still in development Univ research, Si NEP to 1E-10 W/Hz$^{1/2}$ at 300 K</td>
</tr>
<tr>
<td>Quantum dot photon detector</td>
<td>* Demo-photon counting terahertz microscopy imaging, requires 0.3 K temp, research only</td>
<td>Under development, 1E-19 W = 100 photons/sec, Tokyo Univ.</td>
</tr>
</tbody>
</table>

Laurence P. Sadwick
Créidhe M. M. O’Sullivan