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Introduction

The Thirty-Eighth conference on Infrared Technology 
and Applications was held the week of April 23-27, 
2012 at the Baltimore Convention Center in Baltimore, 
Maryland. The agenda was divided into 19 sessions:

1.  NIR/SWIR FPAs and Applications
2.  Air Force Infrared Research and Development
3.  Threat Acquisition
4.  Type II Superlattice FPAs I
5. Keynote Session—
 Advanced imaging R&D at DARPA-MTO
6.  Type II Superlattice FPAs II
7. Emerging Uncooled Technologies
8.  Uncooled FPAs and Applications
9.  Smart Processing

10. Cryocoolers for IR Focal Plane Arrays
11. IR Optics I
12. IR Optics II
13. Active Imaging
14. HgCdTe I
15. HgCdTe II
16. HOT—High Operating Temperature FPAs
17. QWIP and QDOT
18. Selected Detector Technologies
19. Various Applications of Selected Detector Tech-

nologies

In addition, there were twenty-one poster papers pre-
sented for discussion on Thursday evening—these 
have been added to the 19 sessions in the Proceedings. 
Highlights of six topical areas that are summarized 
below:

• Keynote
• Photon detectors 
• Uncooled detectors
• Optics 
• Cryocoolers 
• Smart image and signal processing 
• Applications

Keynote

The Keynote address reviewed five key 
programs at DARPA MTO in infrared imaging:

• Very wide field-of-view infrared sensors—in 
a 10 Giga-pixel architecture.

• Small pitch FPAs—5 µm for the LWIR—see 
Fig. 1.

• Broadband and HOT FPAs—using photon 
trapping arrays on HgCdTe or InAsSb nBn 
FPAs—see Fig. 2.

• Multiband and tunable FPAs—integrated vis/
NIR/SWIR and LWIR—see Fig. 3.

• Very low cost uncooled FPAs—wafer-level-
packaged, ultra-low cost small pixel microbo-
lometers, integrated electronics and molded 
optics.

• Networked uncooled FPAs—1280×1024 and 
640×480—for soldier situational awareness—
using an Android PDA.

Fig. 1  5 µm LWIR pixels—part of a 1280×1024 array. The pic-
ture shows the indium bumps after the array has been pulled apart 
from a readout.
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Photon Detectors

Photon detectors were covered in the following ses-
sions:

NIR/SWIR FPAs and Applications
Air Force Infrared Research and Development
Type II Superlattice FPAs I & II
HgCdTe I & II
HOT—High Operating Temperature FPAs
Active Imaging
QWIP and QDOT
Posters

NIR/SWIR FPAs and Applications

There were ten papers in the NIR/SWIR session. This 
spectral region has received increasing attention in the 
past few years as recognition has grown of the poten-
tial to exploit night sky glow with ambient tempera-
ture FPAs—mostly InGaAs—while operating in an 
eye-safe band that is invisible to NIR image intensi-
fiers.

The first paper in this session was not SWIR-specific, 
but still quite interesting. A camera system—illustrat-
ed in Fig. 4—has been built using a single element 
detector. Rather than raster scanning the lone pixel, a 
digital mirror array is used to sequentially bring com-
binations of a number of picture elements onto the 
detector—presumably these represent some bases-set 
of the total image. This is referred to as “compressed 
sensing”. As the image continues to be sampled, the 
composite fidelity improves as illustrated in Fig. 5 
which shows how the image quality changes with the 
percentage of samples from the full set. While this ap-
proach only needs a single detector, that fact limits it 
to low frame rates. The authors plan to move to small 
arrays to increase the frame rate.

SWIR advantages over visible in daylight conditions 
was illustrated—Fig. 6—for a scene taken in the Swiss 
alps. The visible region was limited by light scattering 
even on this sunny day. This is leading to imagers that 

Fig. 2  A photon trap structure using nBn FPAs.

Fig. 3  Multi-band detector structure combining an LWIR mi-
crobolometer and an InGaAs visible-SWIR array.

Fig. 4.  Camera system for “compressed sensing” using a sin-
gle-element detector and a digital micromirror array.

            100%      25%                    12%                   2%
Fig. 5.  Image fidelity degrades as the percentage of the full 
sample set is decreased.
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combine both visible—HD TV— and SWIR using a 
beam splitter with combined fore-optics—see Fig. 7.

Coverage of the SWIR region was reported using two 
separate approaches in one paper. First the passivation 
on an MWIR sensor was modified so that it could be 
used all the way down to the visible region, thus cov-
ering the SWIR band. The second approach was to 
develop sensors based on InGaAs and progress was 
reported on that effort using a dual-gain readout. The 
InGaAs sensor substrate was thinned so that response 
would extend into the visible region as shown in Fig. 
8. The detector dark current indicated that it was dom-
inated by diffusion in the ambient temperature region.
A solar-cell mode readout that operates the detector in 

forward bias, thereby logarithmically compressing the 
signal was described. An effective dynamic range of 
120 db was claimed for this approach. The readout has 
been tested with a thinned InGaAs detector to allow 
simultaneous imaging in the visible. “Color” imaging 
is planned using a Bayer-like mosaic filter array. The 
readout also feature a direct-injection, source-follow-
er per pixel, for operation in reverse bias. 

The development of a capacitive trans-impedance 
amplifier (CTIA) input readout for InGaAs detector 
arrays was discussed. The value of correlated double 
sampling (CDS) was illustrated in how much closer it 
maintained the measured noise to the shot noise limit 
at low flux levels as shown in Fig. 9.

Fabrication of InGaAs on 3- and 4-inch InP substrates 
was described, along with test results on the diodes 
and imaging examples. Fig. 10 illustrates the device 
structure. The diode behavior as a function of bias and 
diode area was reported. Substrate removal to extend 
the response down to visible wavelengths has been 
achieved.

Fig. 6.  Scene of the Swiss alps taken at a range of 37 km during 
a sunny day. Visible is shown on the left and SWIR on the right.

Fig. 7.  Optical layout for the combined visible/SWIR imaging 
system.

Fig. 8  Relative spectral response of a thinned InGaAs wafer 
with and without AR coating.

Fig. 9.  Noise as a function integrated charge after CDS in high-
gain mode for Tint = 130 μs, Vd = -0.5 V at T≈30°C. The read noise 
is extrapolated to 92 electrons.

Fig. 10.  Diode structure cross section showing the lightly-doped 
absorption layer with wider bandgap InP encapsulation/contacts. 
Zinc is diffused through the top InP contact to form the junction.
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Large array sizes of 
1280×1024 with 15 µm 
pixels fabricated on 
4-inch wafers was de-
scribed—see Fig. 11. 
Pixel dimensions as 
small as 5 µm are be-
ing explored in order to 
miniaturize SWIR cam-
eras in the future.

Even larger InGaAs ar-
ray sizes with 15 µm pixel sizes were reported in a 
1920×1080 format. A packaged die is shown in Fig. 
12. An image from one of these sensors is shown in 
Fig. 13.

Development of a reduced power-consumption SWIR 
sensor without thermoelectric temperature stabiliza-
tion was described. This involved calibration over the 
full range of operating temperature using a polyno-
mial summation model.

A paper was presented using HgCdTe as the SWIR de-
tector. This paper addressed longer wavelengths (see 
Fig. 14) than InGaAs is optimally suited to provide, 
and also operation at lower temperatures (60 - 160 K) 
and background flux levels for space sensing applica-
tions. Low dark currents were reported.

Type II superlattice and nBn detectors

Type II superlattice detectors 
have attracted a lot of devel-
opment efforts in recent years 
because they potentially can 
out-perform HgCdTe due to the-
oretically longer lifetime com-
bined with a good absorption 
coefficient.

In addition to Type II superlat-
tice devices, III-V materials have 
been used to make a wide variety 
of devices that include “barri-
ers”. These barriers are used to 
block the flow of majority carri-
ers in the device, but allow the 
photo-excited minority carriers 

Fig. 13.  Daytime imagery taken in integrate while read (IWR) mode from a 1920×1080, 15 
µm pixel pitch, low noise InGaAs SWIR sensor. The field of view of a 640×512, 15 µm sensor 
is shown by the dashed box outline.

Fig. 12  A 1920×1080, 15 µm 
pixel pitch, low noise InGaAs 
SWIR sensor with integrated ther-
moelectric cooler.

Fig. 11 A four-inch InGaAs on InP substrate wafer with sixteen 
1280×1024 die. The pixel size is 15 µm. Fig. 14 Spectral response (A/W) for three HgCdTe SWIR detec-

tors. These cutoff wavelengths are longer than those of InGaAs 
when that material is latticed-matched to InP substrates.
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A program to develop Type II superlattice infrared de-
tectors for space program applications was described. 
Data for an MWIR single-element detector was pre-
sented.

 Challenges in the effort to optimize Type II super-
lattice devices were reviewed. Topics addressed in-
cluded:

• Device design
• Material growth
• Device processing
• Minority carrier lifetime

An example of some of the progress being made is 
illustrated in Fig. 16 that shows that the presence of 
barriers that inhibit photo-carrier collection have been 
reduced for sample A so that no bias is needed to over-
come a barrier in order for photocurrent to flow.

A second paper demonstrated imaging with a 
1024×1024 format LWIR type II superlattice array, in 
this case incorporating InSb as well as InAs and GaSb 
into the device struc-
ture. Quantum effi-
ciency was reported 
to be in the range of 
50 %. Fig. 17 shows 
an image taken with 
this array.

The optical absorp-
tion derivative was 
used to study how 
Type II superlattice 
energy transitions 

to flow past the barrier to be collected. Device struc-
tures employing these barriers include nBn, pBp, pBn, 
etc. The absorbers in some cases are III-V alloys and 
in other cases Type II superlattice layers.

Papers on this topical area were found in the sessions 
Air Force Infrared Research and Development, the 
two Type II superlattice sessions, the HOT session, 
and in Posters.

Theoretical device structures were discussed for dual-
band multispectral applications. These included struc-
tures with barrier layers.

High-energy radiation tolerance of dual-band pBp 
was measured for a fluence of 63 MeV protons with 
the sample at 80 K. Dark current increased by two or-
ders of magnitude with 500 kRad (Si) dose. The quan-
tum efficiency was also impacted. Some recovery was 
observed upon annealing at room temperature.

MWIR and LWIR Type II superlattice detectors were 
reported that showed significant surface current leak-
age indicating the need for passivation improvement. 
Mid-gap traps led to g-r currents at intermediate 
temperatures ~100 K. The quantum efficiency of the 
MWIR sample was in the range of 30-40 % as shown 
in Fig. 15.

A 1024×1024 format LWIR type II superlattice was re-
ported using the “complementary-barrier” or CBIRD 
structure. These devices now respond at zero bias—
they no longer require a bias before generating a pho-
toresponse. The detector array had a cutoff of 11.3 µm 
and operability of 96.3%. Imaging was shown.

Fig. 15 Quantum efficiency for an MWIR 
type II superlattice detector.

Fig. 17  Image taken with a 1024×1024 
LWIR Type II superlattice detector.

Fig. 16 Responsivity vs. bias voltage for 4 Type II SLS sam-
ples. Note that sample A gives good responsivity at zero bias.
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vary with temperature. This allowed the authors to 
study transitions of the higher band levels. Fig. 18 il-
lustrates one of the measured differential spectra over 
the range of 80 to 270 K.

Carrier transport properties for Type II superlattice 
materials are another source for novel behavior not 
seen in conventional alloy materials. A paper was 
presented on the electronic transport properties using 
Hall effect measurements as a function of magnetic 
field. The authors concluded that the vertical mobil-
ity values are approximately 5× lower than the lateral 
value, while the carrier concentration ratio differed by 
5.5 × 10-4.

Passivation of Type II superlattice detectors using 
Al2O3 was presented. The authors stated that this ma-
terial has the lowest Gibbs free energy compared to 
any native oxides on the detector surface, so that its 
formation is preferred and stable. Experiments on 
MWIR material were reported.

A broad overview of developments in both Type II 
superlattice and pBp technologies was presented, in-
cluding two-color FPA demonstrations. Fig. 19 shows 
the values of the noise-equivalent temperature differ-
ence (NE∆T) for a two-color Type II superlattice FPA 
having two LWIR bands with peak response at 7.9 
and 10.2 µm respectively. Imagery from this FPA was 
also presented. A novel superlattice barrier was used 
in work on unipolar devices.

Type II superlattice material surface oxides were stud-
ied using x-ray photoelectron spectroscopy. Chlorine 
surface contamination was observed on dry-etched 
samples.

Ga-antisite defects have been suspected as the cause 
for short lifetimes in Type II superlattice materials. 
Minority carrier lifetimes up to 350 ns were measured 
in Ga-free InAs0.8Sb0.2 layers at 77 K by photolumi-
nescence decay.

Two papers were presented on efforts to increase the 
size of GaSb substrates to 4-inch diameter.

Tunneling current suppression in MWIR Type II su-
perlattice detectors by employing barriers was used to 
allow higher doping of the absorber region in order to 
also suppress diffusion currents. Low NE∆T values 
were obtained up to 130 K before the sensitivity de-
graded, as shown in Fig. 20.

Fig. 20 Temperature dependence of NE∆T 
for a HOT MWIR Type II superlattice FPA.

	 NE∆T	(mK)
Fig. 19 NE∆T histograms for two LWIR bands from a two-
color Type II superlattice array in a 640 × 512 format with 30 µm 
pixels.

Fig. 18 Differential absorption spectra from 80 to 270 K for an 
MWIR Type II superlattice sample. Letters at the top note band 
transitions.
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Type II superlattice and nBn MWIR detector dark cur-
rent properties were modeled. Effective values for the 
temperature dependence of the trap energy respon-
sible for trap-assisted tunneling was obtained. These 
traps lead to Shockley-Read-Hall (SRH) recombina-
tion that presently limit the lifetime in the III-V ma-
terials. The R0A product of MWIR Type II superlat-
tice and nBn detectors were compared to HgCdTe as 
shown in Fig. 21.

HgCdTe detectors

The HgCdTe alloy detector—characterized by a high 
absorption coefficient and a long lifetime—contin-
ues to dominate the choice for a broad range of in-
frared applications. Aside from applications that are 
ideal for either InSb in the MWIR spectral band, or 
InGaAs in the 1.7 µm SWIR band, or those that can 
utilize uncooled FPAs, HgCdTe continues to be the 
most popular choice. Papers in this section update 
how HgCdTe is continuing to develop and evolve. Pa-
pers on this topic were presented in two sessions on 
HgCdTe detectors as well as the HOT session and the 
Poster session.

A paper was presented on Al2O3 passivation of 
HgCdTe using atomic-layer deposition. Films result-
ed in good flatband characteristics as shown in Fig. 
22. The dielectric constant of the film was measured 
to be 7.1. Lifetime measurements increased after film 
deposition.

Mega-pixel FPAs fea-
turing small pixels and 
3-side buttable formats 
that can make multi-ar-
ray assemblies were de-
scribed. The small pixel 
size was demonstrated 
using a 2562 FPA while 
the design of a 1920 × 
1080 (~2 mega-pixels) 
progressive scan array 
(see Fig. 23) with 3.5 ×  
106 charge store capac-
ity is underway.

The status of HgCdTe 
FPA technology in 
France was presented 
in a paper. Topics covered included crystal growth 
of large CdZnTe substrates, reduced pixel pitch, 
high-operating temperature n-on-p diodes, avalanche 
photodiodes, high frame-rate imaging, p-on-n devices, 
VLWIR arrays, and two-color arrays. Fig. 24 illus-
trates the projected trend in pixel size reduction.

Fig. 21 Comparison of Type II superlattice and nBn MWIR de-
tector R0A values with those of HgCdTe at 230 and 300 K.

Fig. 22 C-V characteristics of Al2O3 passiv-
ation film on HgCdTe. Flatband properties are 
seen near zero bias.

Fig. 23 Photograph of the 1920 
× 1080 readout for a HgCdTe 
MWIR array with a 3-side but-
table layout and 12 µm pixels.

Fig. 24 Pixel size reduction trend for HgCdTe FPAs.
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In another paper, HgCdTe FPA technology develop-
ments in Germany were reviewed. Trends include 
smaller pixels and larger arrays, with MBE growth on 
GaAs substrates being explored to replace LPE mate-
rial. Figure 25 is an image from with an LWIR FPA 
in a 1280 × 1024 format with 15 µm pitch and 12.5 
× 106 charge storage capacity. The long-term reliabil-
ity of HgCdTe FPAs was also established for thermal 
cycling and the stability of non-uniformity correction 
coefficients was studied.

MOVPE-grown HgCdTe for astronomy applications 
was featured in a paper covering SWIR and NIR spec-
tral bands. The uniformity of x-value across a 3-inch 
wafer was measured to be 0.003. Mesa pixels featured 
optical concentration. Figure 26 shows an Arrhenius 
dark current plot of three n-on-p SWIR diodes. Some 
signal persistence was noted after signal saturation.

Fig. 25 Image taken with an LWIR HgCdTe FPA having a 1280 
× 1024 format and 15 µm pixels. VLWIR HgCdTe p-on-n detector technology was re-

viewed. Junctions were formed by As ion-implanta-
tion into In-doped absorber layers grown by LPE. Fig. 
27 was shown to illustrate the range of performance in 
terms of R0A vs. detector cutoff wavelength.

The dark current of N+p HgCdTe photodiodes grown 
on GaAs substrates by MOVPE was modeled. The 
current was fit to a model that included an ionized 
donor flaw. Fig. 28 illustrates the measured data and 
the fit using the model. The p-type absorber layer was 
doped with As.

HgCdTe FPAs with photon-trapping pixels that re-
duce detector volume while maintaining high quan-

tum efficiency 
were described 
with the goal of 
improving high 
operating tem-
perature perfor-
mance. A variety 
of volume-re-
ducing designs 
were experimen-
tally studied. An 
example is il-
lustrated in Fig. 
29 that shows a 
few pixels from 
an array of 5122 

pixels.
Fig. 26 Dark current vs. inverse temperature for three MOVPE-
grown HgCdTe SWIR diodes.

Fig. 27 R0A data at 80 K for HgCdTe photodiodes as a function 
of cutoff wavelength over the LWIR-VLWIR bands.

Fig. 28 Dark current vs. inverse tem-
perature for two MWIR HgCdTe grown on 
GaAs substrates—measured and modeled.
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HOT—High Operating Temperature FPAs

The goal of increasing the operating temperature of 
FPAs without sacrificing performance is motivated by 
the reduction in cooler power, improved cooler effi-
ciency, smaller size, and lighter weight sensor systems 
that this makes possible. This goal is being pursued 
using HgCdTe, Type II superlattice, and nBn materi-
als.

The benefits of HOT performance were quantified in a 
paper on MWIR HgCdTe array performance. Fig. 30 
shows how the cool-down time and cooler power are 
reduced with increasing operating temperature. Limi-
tations to raising the operating temperature come from 
increasing dark current that increases NE∆T and from 
an increasing percentage of defective pixels as illus-
trated in Fig. 31. The effect of coldshield radiation at 
higher operating temperatures was also noted.

HgCdTe grown on CdZnTe, Si, and GaAs were com-
pared to InSb at elevated operating temperatures. A 
formalism was presented to describe the normal dis-
tribution of pixels and the distribution of high-noise 
pixels using two gamma functions as illustrated in Fig. 
32 for a HgCdTe grown on GaAs sample.

Epitaxial InSb and XBn InAsSb detectors were dis-
cussed for HOT operation. Epitaxial growth of InSb 
has reduced the number 
of generation-recombi-
nation (g-r) centers al-
lowing operation at 105 
K with f/3 optics. Fig. 
33 shows the dark cur-
rent reduction with epi-
InSb. The XBn technol-
ogy allows operation up 
to 175 K for material 
with a 4.1 µm cutoff 
and total suppression of 
g-r currents.

Fig. 29 30 µm pixels with a sub-array of 5 × 5 
photonic-crystal holes to reduce the volume of active 
HgCdTe material.

Fig. 30 Cool-down time and steady-state cooler power as a 
function of operating temperature for a 640 × 480 HgCdTe FPA.

Fig. 31 NE∆T and pixel defect percentage as a function of oper-
ating temperature for a 640 × 480 HgCdTe FPA.

Fig. 32 NE∆T histogram from a HgCdTe FPA grown on GaAs 
that is fit with two gamma functions.

Fig. 33 Dark current of im-
planted InSb (planar) compared to 
epitaxial-grown junction material.
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The photoconductive gain for a pBp device was com-
pared to that of a PIN diode. Both devices used Type 
II superlattice absorbers. Fig. 34 shows the measured 
gain. It was conjectured that the gain of the pBp de-
vice was limited by the short lifetime and low bias 
voltage in the neutral absorber region.

Numerical 3D modeling of nBn devices was described 
for InAs back-side illuminated 3 × 3 pixel array struc-
tures. One of these included only the contact layer 
mesa, while the other had a mesa the include both 
the contact and the barrier layers of the device. It was 
pointed out that laying out a numerial mesh for the 
modeling is very critical—an example of the mesh is 
shown in Fig. 35. Crosstalk was calculated—a critical 
concern because the absorber layer is not delineated in 
the structures. The calculations illustrated a possible 
explanation for anomalously long lateral collection 
lengths.

An improved dry-etching process was described in 
connection with processing LWIR complemenatary-
barrier (CBIRD) devices.

Quantum dots were combined with a complementary-
barrier (CBIRD) detector for high operating tempera-
ture applications. The quantum dots of InSb were in-
corporated in order to extend the wavelength beyond 
the 4.2 µm where InAsSb is lattice matched to a GaSb 
substrate. Figure 36 shows the extended wavelength 
tail that was obtained at three temperatures.

InAsSb, adjusted to a cutoff of approximately 5 µm at 
200 K, was fabricated with a backside pyramid struc-
ture to facilitate minimal reflection. This led to high 
quantum efficiency, as illustrated in Fig. 37.

HOT operation was pursued using p+n HgCdTe detec-
tors for both MWIR and LWIR spectral bands. For the 
LWIR band—9.3 µm cutoff at 80 K—dark current 
was two orders of magnitude lower for p+n compared 
with a standard n+p structure. This allowed the oper-
ability to be maintained above 99 % up to 110 K as 
shown in Fig. 38.

Fig. 34 Photoconductive gain of a pBp detector compared to a 
PIN diode, both with a Type II superlattice absorber.

Fig. 35 Corner of the 3 × 3 array of the contact plus bar-
rier mesa pixels. The mesh layout is illustrated in the figure.

Fig. 36 Extended spectral response from 
InSb quantum dots in a CBIRD detector.

Fig. 37 High quantum efficiency achieved in an In-
AsSb detector with anti-reflection backside pyramids.
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Active Imaging

Presentations in active imaging included both InGaAs 
and HgCdTe FPAs operating in the SWIR spectrum. 

APDs (avalanche photodiodes) with impact ioniza-
tion engineering (I2E) structures based on InAlAs and 
InGaAlAs heterostructures as avalanche layers have 
achieved an excess noise factor of 0.15 and a noise 
equivalent power (NEP) of 150 fW/Hz1/2 over 1 GHz 
bandwidth at 1.06 μm. New results with APDs having 
multiple I2E stages showed optical gains over 100 pri-
or to breakdown with low excess noise. A fully func-
tional 16 channel photoreceiver was built for a NASA 
LIDAR system. The NEP of one channel is shown in 
Fig. 39.

HgCdTe hole-avalanche APDs were reviewed in a 
number of array formats including linear and 2D. Op-
eration in the linear mode for photon counting with 
no dead time was discussed—see Fig. 40. Detection 
probability was reported to be 99.6 % at a gain of 20.

Fig. 38 Operability of LWIR (9.3 µm @ 80 K) HgCdTe p+n de-
tectors remains above 99 % up to 110 K.

Another company discussed efforts to further reduce 
the excess noise (<0.15) in InGaAs SWIR APDs using 
a new multiplier structure based on InAlAs/InGaAlAs 
multiple quantum wells structures. Preliminary device 
characterization results show optical gain greater than 
100. 

A French company described development of a 384 × 
288 MCT e-APDs with 15 µm pixels for both passive 
and 2D range gated imaging and a 320 × 240 APD 
with 30 µm pixels for both passive and 3D imaging.

QWIP and QDOT

The statistical results of production history for QWIP 
FPAs in France were described, including NE∆T, op-
erability, cooldown time, power consumption, and the 
stability of non-uniformity correction was reviewed. 
Dual-band QWIPs are now beginning production—
see Fig. 41.

Fig. 39 Noise equivalent power for an I2E detector channel 
as a function of bias.

Fig. 40 Single-photon detection with a HgCdTe hole-avalanche 
APD detector.

Fig. 41 Spectral responsivity for two batches of 
dual-band MWIR/LWIR QWIP
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Uncooled Thermal Detectors

The two leading uncooled technologies – vanadium 
oxide (VOx) and amorphous silicon microbolom-
eters are continuing to be rapidly improved. The base 
line for these FPAs has become a pixel pitch of 17 
µm or less. One company described their 384 × 288 
amorphous silicon microbolometer that can operate 
TEC-less—without thermoelectric cooling—and with 
a power consumption of 60 mW at 60 Hz in analog 
mode.

Both wafer-level packaging and pixel-level packaging 
approaches are being developed for low-cost high-
volume applications. Figure 42 shows a pixel-level-
packaged pixel.

A Japanese company demonstrated a 2 M-pixel—2000 
× 1000—uncooled array based on series-connected Si 
diodes—silicon-on-insulator (SOI)—FPA with 15 µm 
pixels – the largest SOI FPA fabricated to date. An 
SEM photo of the device is seen in Fig. 43.  An image 
from this array is shown in Fig. 44.

Researchers from Turkey demonstrated a simplified 
Non-Uniformity Correction (NUC) scheme based on 
pixel heating.

The development of novel uncooled detectors is also 
continuing. The following selected novel uncooled 
technologies were reported on in this conference:

• GaN as a potential material for microbolom-
eters was investigated by growing MOCVD 
GaN thin films on Si (with a buffer layer) and 
shown to have a temperature coefficient of re-
sistance of -0.64%/ºC.

• A GaN micromechanical resonator was inves-
tigated as a potential uncooled infrared detec-
tor. Shifts in the resonant frequency with the 
absorption of infrared radiation were used as 
the detection mechanism.

• A “nanobolometer” in which the infrared ab-
sorption occurs in optically resonant nanopar-
ticle arrays embedded in the gate oxide of a 
MOSFET device. Changes in the electric field 
around the nanoparticles due to the infrared 
induce leakage currents between the channel 
and the gate. 

Optics

The two IR Optics sessions, 11 and 12, addressed 
choice of materials for multispectral operating re-
fractive and reflective systems, miniaturization and 
athermalization of optical systems, as well as applica-
tions of IR optical technologies in laboratory and field 
countermeasure systems. 

Fig. 44 Image taken with a 2000 × 1000 uncooled array fabri-
cated with SOI technology. NE∆T for this 15 µm pixel array was 
65 mK.

Fig. 43 SEM image of an SOI uncooled pixel structure. Each 
sensor contains 10 silicon diodes in series in a 15 µm pitch.

Fig. 42 Pixel-level-packaged microbolometer.
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Multi-spectral operation has proved to be the opti-
mum solution for IR systems required to simultane-
ously detect and identify targets. A common aperture, 
common focal plane is required to answer the demand 
for compactness, ruggedness and ease of operation. 
One company discussed the selection of refractive 
materials for multi-spectral optical systems covering 
the SWIR – LWIR spectral range. When demands for 
athermalization and resilience are added, the number 
of potential refractive materials is reduced. Several 
design examples were presented – one of them being 
a catadioptric system.

Modern military optical systems for target detection, 
recognition, and identification often require multiple 
FOVs in a package that is small and light. An addi-
tional requirement may be the ability to image both 
the battlefield scene and a laser spot projected on a tar-
get. This spot may originate from a target range finder 
or designator. An army laboratory, in cooperation with 
industry, presented a solution for a reflective / refrac-
tive SWIR-MWIR optical system for multi FOVs – 
see spot operation. A unique FOV switching afocal 
was developed to create the three FOVs—see Fig. 45.. 
 
To protect the imager’s FPA from being damaged by 
excessively intense laser radiation, such as a see-spot 
reflected from mirror-like surfaces, a company pre-
sented their threshold-triggered blocking filter that 
protects the FPA during high-intensity laser irradiance 
and returns to normal operation as soon as the inten-
sity is reduced to acceptable levels.

A group of scientists from industry, a governmental 
laboratory, and university presented an MWIR spec-
trometer-on-a-chip that was based on surface plasmon 
polaritons (SPP). The elements demonstrated includ-
ed a robust, lightweight, portable spectrometer with 

no moving parts and a resolving power sufficient to 
enable identification of specific chemical and biologi-
cal threats in the field.

Two presentations reported on successful miniaturiza-
tion of optical systems by integration of the optics in-
side the cooled detector-dewar-cooler-assembly. Wide 
field of view systems, suitable for micro-UAVs, with 
a lens integrated in the cold shield, were discussed. 
FOVs between 60 and 180 degrees were obtained—
see Fig. 46. Optics temperature stabilization and re-
duced background radiation are added advantages of 
these designs.  A second approach, termed IR-Cam-
on-Chip, integrates the optics directly on the FPA. The 
optical system consists of microlenses. An algorithm 
was developed for reconstructing a well-sampled im-
age from a set of undersampled subimages acquired 
by the camera.

A companion paper reported on a very compact, fast 
spectrometer which operates without use of any mov-
ing parts. A wedge attached to, or part of, an FPA 
gives rise to an interferogram whose Fourier trans-
form represents the source spectrum. The presentation 
compared the two wedge technologies – one based on 
grinding the FPA’s substrate to a wedge and the other 
based on a silicon plate attached at an angle to the 
front side of the FPA. The latter technology was found 
to be the better one.  

Fig. 45 Afocal and imager for the three FOVs (from left: NFOV, 
MFOV and WFOV)

Fig. 46 Optical scheme of cooled wide FOV IR Fish-Eye cam-
era.
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Passive athermalization, which minimizes the change 
of focus due to variations in temperature, has become 
a key-technology for automotive and other outdoor ap-
plications using modern uncooled 25 and 17 µm pitch 
bolometer arrays. The authors of one paper proposed 
a measure to quantify athermalization and discussed 
both optical and mechanical means for achieving best 
performance.  A range of LWIR materials were con-
sidered and it was found that a combination of chalco-
genide and crystalline optical elements, together with 
Passive Mechanical Athermalization, PMA —see Fig. 
47—resulted in the best performance.  Another pre-
sentation arrived at the same conclusion but without 
the use of PMA.  
 
In the field of high and low reflectance materials, one 
company reported on their development of low reflec-
tance coatings for various substrates. They concluded 
that multilayer coatings having Diamond Like Carbon 
(DLC) as a front surface coating were optimum for 
both MWIR and LWIR regions. Images showing the 
elimination of the Narcissus effect were presented.  
Four presentations reported on the advantages of using 
Visible Quality (VQ) aluminum in high reflectance IR 
optical systems. The properties of VQ Al were com-
pared to those of beryllium and silicon carbide. It was 
concluded that excellent results are attainable using 
aluminum from various sources.

Among other optical technologies discussed were de-
sign trade-offs for shutters employed in man-portable 
infrared imagers, and photonic microstructures in the 
LWIR region. The micro-structures are tailored to a 
given transmission band and preferentially transmit a 
linear polarization within this band—see Fig. 48. This 
type of narrow-band spectro-polaric planar filter has 

Fig. 47 Principle of passive mechanical athermalization.

several applications, among them the ability to reduce 
false alarms in a LWIR target search system. 

Cryocoolers

Presently FPAs operating at high temperatures (HOT) 
of  95 – 110 K, with near-term potential for increase to 
up to 150 K, and having performance similar to that of 
their 77 – 80 K predecessors, have led to high activity 
among developers of FPA cryocoolers. By optimizing 
their cryocoolers for these higher operating tempera-
tures, the cryocoolers, as well as the resulting infrared 
systems, will have higher reliability and less weight, 
volume and power consumption (SWaP)—see Fig. 49.  
 
Four of the six presentations in session 10 discussed 
various design aspects of the HOT-compatible cryo-
coolers – both linear and rotary types. Two companies 

Fig. 49 Impact of detector temperature on typical power con-
sumption.

Fig. 48 Schematics of an FPA with integrated sub-pixel 
spectro-polarimetric transmission filters.
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discussed optimization and tradeoffs for HOT rotary 
cryocoolers for FPA temperatures up to 200 K. The 
impact of the higher operational temperature on per-
formance parameters like cooldown time, input power, 
Mean-Time-To-Failure (MTTF) and size—see Fig. 
50—were measured and reported. 
 
     Two presentations discussed the advantages of lin-
ear cryogenic coolers for HOT FPAs. Stress was put 
on the miniaturization required for cryocoolers opti-
mized for use in UAVs and by soldiers in the field—
see Fig. 51. While, traditionally, rotary coolers were 
considered to be less expensive, lighter, more compact 
and normally having better electromechanical perfor-
mance, this technology was claimed to be limited in 
terms of further SWaP reduction. A micro-miniature 
linear cooler was demonstrated. One company pre-
sented a compact linear cooler obtained by changing 
the compressor design from a dual to a single piston 
type. This cooler was optimized for an operating tem-
perature of about 140 K. 
 
As the cryocooler input power is significantly re-
duced for HOT conditions, the power consumption 

of the cooler drive and control electronics becomes 
relatively important. Two companies discussed design 
and testing of their drive electronics optimized for low 
input power requirements—see Fig. 52. 

Smart image and signal processing

A joint session held with conference 8355, included 
papers on the following topics:

• A bio-inspired system-on-chip focal plane 
readout architecture which at the system lev-
el, relies on an event based sampling scheme 
where only pixels within a programmable 
range of photon flux rates are output.

• A new Non-Uniformity Correction (NUC) al-
gorithm for uncooled FPAs that needs no cam-
era motion or registration of images. The pro-
posed method uses a hybrid scheme including 
an automatic locally-adaptive contrast adjust-
ment and a state-of-the-art image denoising 
method.

• An information theoretic approach for large 
format small pixel uncooled FPAs is used to 
carry out computational imaging.

A paper from conference 8355 was presented that 
discussed the question of how small pixels should be 
made—see Proceedings volume 8355.

Fig. 50 Redesigned (left) and standard (right) rotary cooler.

Fig. 51 Linear compressor with regular and short-
ened cold fingers.

Fig. 52 Testing of a tactical cryocooler with ex-
posed COTS Low Cost Cryocooler Electronics.
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Applications

Presentations focusing on applications of the various 
infrared technologies in systems and sub-systems were 
presented in Sessions 2, 3 and 19. As applications are 
the main drivers for technology R&D, references to 
systems can be found throughout the Proceedings. 

Hyperspectral imagers (HSI) are becoming the domi-
nant space-based IR systems for target reconnais-
sance. One reason for this is that the hyperspectral 
data may, in some cases, allow targets to be recog-
nized even if these targets are not spatially resolved. 
Obviously, these systems are required to be simple, 
compact and of low mass. These requirements are not 
well met by today’s extended spectral coverage HSI 
systems. One laboratory suggested an HSI concept us-
ing direct imaging onto a single FPA without the use 
of optical dispersion elements. Two techniques were 
discussed. One is the use of a continuously varying 
band-gap instead of the discrete band-gaps used in 
dual-band FPAs. The other exploits the variation of a 
detector material’s absorption coefficient with wave-
length giving rise to varying”spectral photocurrents” 
from different depths in the material. 

A national laboratory outlined the design and perfor 
mance of their SWIR hyperspectral imager. The space-
based system is intended for identification of natural 
resources. A fused silica prism is used as the disper-
sive element—see Fig. 53. Monitoring of background 
radiation and use of a smart ROIC with programmable 
gain are used for achieving high sensitivity from 0.9 
to 2.5 µm.   

While the HgCdTe FPA in the above system was cryo-
genically cooled, an aerospace exploration agency 
employed, for the first time, a 640 × 480 pixels mi-
crobolometer in their CIRC space-based camera. The 
main mission of this camera is to detect wildfires. In 
order to increase the observation frequency, the com-
pact camera will be mounted on several satellites. One 
example is shown in Fig. 54. The authors outlined the 
camera’s design, calibration and testing. 

An outline was presented of the DUCAS program. 
The aim of the four-year, seven nations, project is to 
investigate the potential benefits of combined high 
spatial and spectral resolution airborne imagery for 
several defense applications in an urban area. The pro-
gram, which is based on lessons learned in Iraq and 
Afghanistan, includes measurements of targets and 
backgrounds from aerial platforms as well as ground 
truth observations—see Fig. 55. One important out-
come of the project is to propose conceptual design of 
multi-function systems consisting of high resolution 
active and passive subsystems.  A few results of the 
measurements were given. 

Fig. 53 SWIR spectrometer optics.

Fig. 54 Schematic view of CIRC’s mount-
ing position on a satellite.

Wavelength
Fig. 55 Overview of ground based and airborne sensors used in 
data collection..
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One company presented an outline of their lightweight, 
rugged wideband MWIR camera core designed for air-
borne applications. To achieve high reliability, much 
attention was directed toward mechanical robustness 
and high temperature, HOT, FPA operation. Excellent 
pixel operability and near-background limited per-
formance at temperatures up to 200 K were demon-
strated. Creating a common housing for the dewar and 
electronics was one of the many important challenges 
that were met. 

Development of a high-volume, low-cost camera for 
short range security surveillance during day and night 
is a very attractive challenge. One company reported 
on their remarkable results using a camera based on 
their black silicon XQE technology. The camera has 
up to 768 × 480 pixels and is sensitive in the visible 
and NIR parts of the spectrum. Figure 56 shows im-
ages from a room which is dark to the eye with a 940 
nm LED as the only illumination. 
 
Airborne Missile Warning Systems (MWS) are sus-
ceptible to false alarm sources such as sun glints and 
radiant objects with IR signature similar to that of 

Fig. 56 Images collected in a completely dark 
room. The only illumination is from a 940 nm LED. 
The upper image is the XQE sensor and the lower is 
a standard CMOS sensor. Both sensors have 380 × 
240 resolution and 11.2 µm pixels. The integration 
time for both is 16 msec.

an attacking missile. One company presented their 
MWIR dual color sensor which effectively reduces the 
false-alarm-rate by comparing signals from both sides 
of the 4.3 µm CO2 absorption band. Each FPA has its 
own cold shield, which is integrated with its own op-
timized set of lenses and spectral filter—see Fig. 57. 
The reasons for using a hybrid dual color detector hav-
ing two separate FPAs assembled in the same dewar 
instead of a monolithic dual-color type detector were 
explained.

Dazzling and blinding of Air-Force pilots caused 
by laser irradiance is a known countermeasure. One 
group presented their dazzling protection filter which 
is an efficient counter-counter-measure that reduces 
the high-intensity laser irradiance while retaining the 
transmission at wavelengths different from that of the 
laser. The wide-band filter returns to its earlier condi-
tion at the disappearance of the laser irradiance.

Six presentations addressed threat acquisition. The 
threats included terrorists at close range, vehicles and 
soldiers in the battlefield, poisonous gases and naval 
targets in littoral waters.  

Facial recognition plays a crucial role in many law en-
forcement scenarios. One group investigated eye and 
full face detection when the culprit’s eyes were hidden 
behind sunglasses or when the full face was hidden 
by tinted architectural and automotive glass. Both pas-
sive and active illumination were used and images col-
lected within five SWIR bands. Marked variations in 
the ease of identification were observed when the cen-
ter of the spectral SWIR band was varied—see Fig. 
58. In a companion presentation the authors described 
the multi-band SWIR imager used in the investigation 
and determined optimum illumination, imager mea-
surement settings, and image quality measures.

Fig. 57 Dual-color IDCA with two FPAs and two cold radiation 
shields and optics.
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Two presentations addressed the use of thermal imag-
ers for a driver’s vision enhancement during search 
for targets in a near featureless terrain. IR stereoscopic 
imaging, without use of goggles, is being explored as a 
means to increase contrast and thereby the situational 
awareness. One company described the two uncooled 
cameras, the display and the eye tracker - components 
used in their prototype system for the Leopard 2 tank 
and other vehicles. The second presentation report-
ed on development on a stereovision camera—Fig. 
59—for integration on an unmanned ground vehicle 
(UGV). The cameras from both companies were based 
on uncooled microbolometer FPAs. The possibility of 
obtaining range data was discussed and demonstrated. 
 
Fourier-transform spectroscopy is used for remote de-
tection of poisonous gases. Presently a second spec-
trum, the background spectrum representative of the 
environment, must be obtained in order to identify the 
gases. The collection of a good background spectrum 
introduces many difficulties.  A university group, in 
cooperation with a police forensics center, has de-
veloped a method of calculating a sample spectrum 
without the need to acquire a background spectrum. 
The superiority of their robust “CSCA+SCA” method 

Fig. 59 Stereo camera and internal workings.

was validated by measuring the spectrum of gas-phase 
nitromethane – a high energetic substance more explo-
sive than TNT.  

A naval IR surveillance system for detection and 
tracking of targets in littoral waters and at open sea is 
required to search a large field and, at the same time, 
possess a high spatial resolution for reduction of false 
alarms. These two requirements are difficult to satisfy 
in a single system. One presentation outlined the de-
sign of a single MWIR non-scanning system which 
covered 90° azimuth by 20° elevation.  Smart image 
processing that reduced the false alarms and corrected 
for pixel non-uniformity and optical distortion was 
discussed—Fig. 60. Finally, some data from field ex-
periments were presented.

Fig. 60  Data flow schematic. 

Fig. 58 Sample images for various SWIR spectral bands.
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