## Contents

v  Authors  

vii Conference Committee  

ix Introduction  

xi The renaissance of CdTe-based photovoltaics (Solar Energy Plenary Paper) [9177-302]  

xix Hot carrier solar cell absorbers: materials, mechanisms and nanostructures (Solar Energy Plenary Paper) [9178-304]

### SOLAR ENERGY PLENARY PAPER

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9179 02</td>
<td>International PV QA Task Force's proposed comparative rating system for PV modules (Solar Energy Plenary Paper) [9179-305]</td>
<td></td>
</tr>
</tbody>
</table>

### SESSION 1  PV MODULE TESTING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9179 05</td>
<td>Japanese Task Group 8 activities in international PV module quality assurance (Invited Paper) [9179-3]</td>
<td></td>
</tr>
<tr>
<td>9179 06</td>
<td>Statistical analysis of degradation modes and mechanisms in various thin-film photovoltaic module technologies [9179-4]</td>
<td></td>
</tr>
<tr>
<td>9179 07</td>
<td>Analysis of the degradation and aging of a commercial photovoltaic installation [9179-5]</td>
<td></td>
</tr>
<tr>
<td>9179 08</td>
<td>Comparison of environmental degradation in Hanwha 295 W and SunPower 320 W photovoltaic modules via accelerated lifecycle testing [9179-6]</td>
<td></td>
</tr>
<tr>
<td>9179 09</td>
<td>Outdoor performance of CIGS modules in different climates [9179-7]</td>
<td></td>
</tr>
</tbody>
</table>

### SESSION 2  PV MODULE RELIABILITY: SIMULATION AND MODELING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9179 0C</td>
<td>Effect of shading on the switching of bypass diodes in PV modules [9179-11]</td>
<td></td>
</tr>
<tr>
<td>9179 0D</td>
<td>Angle of incidence effects on soiled PV modules [9179-12]</td>
<td></td>
</tr>
<tr>
<td>9179 0F</td>
<td>Reliability of hybrid photovoltaic DC micro-grid systems for emergency shelters and other applications (Invited Paper) [9179-33]</td>
<td></td>
</tr>
</tbody>
</table>
### SESSION 3  RELIABILITY OF PV CELLS, MODULES, SYSTEMS AND COMPONENTS I

9179 0H  Research, test, and development activities performed by junction box bypass diode task force # 4 (Invited Paper) [9179-14]

9179 0I  Accelerated performance degradation of CIGS solar cell determined by in-situ monitoring [9179-15]

9179 0J  Thermal performance of microinverters on dual-axis trackers [9179-16]

9179 0K  The influence of atmospheric species on the degradation of aluminum doped zinc oxide and Cu(In,Ga)Se₂ solar cells [9179-17]

### SESSION 4  ENCAPSULANT, BACKSHEET, AND PACKAGING MATERIALS

9179 0L  Quantifying PV module microclimates and translation into accelerated weathering protocols (Invited Paper) [9179-18]

9179 0N  Predicting edge seal performance from accelerated testing [9179-20]

9179 0O  Effect of UV aging on degradation of Ethylene-vinyl Acetate (EVA) as encapsulant in photovoltaic (PV) modules [9179-21]

9179 0P  Optical properties of PV backsheets: key indicators of module performance and durability [9179-22]

9179 0Q  Device to analyze leakage current pathways in photovoltaic modules in real-time [9179-23]

9179 0R  Chemical depth profiling of photovoltaic backsheets after accelerated laboratory weathering [9179-24]

### SESSION 5  RELIABILITY OF PV CELLS, MODULES, SYSTEMS, AND COMPONENTS II

9179 0S  Junction box wiring and connector durability issues in photovoltaic modules (Invited Paper) [9179-25]

9179 0U  Combined-environment influence on microcrack evolution in mono-crystalline silicon [9179-27]

### SESSION 6  METROLOGY AND QUALITY MANAGEMENT TOOLS FOR IMPROVED RELIABILITY

9179 0X  The vital role of manufacturing quality in the reliability of PV modules [9179-31]

9179 0Y  A review of manufacturing metrology for improved reliability of silicon photovoltaic modules [9179-32]
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abramson, Alexis R., OJ
Ashcroft, Ian, O0
Badiee, Amir, O0
Barreau, Nicolas, O1, OK
Biggie, R., O8
Boppana, S., OD
Bradley, Alexander Z., O7, OP
Brooker, R. Paul, OY
Chung, Simon, xix
Conibeer, Gavin, xix
Dai, Xi, xix
Dasgupta, Supratik, OK
Daume, Felix, O1
Davis, Kristopher O., OY
Dhere, Neelkanth G., O6, OC, OF, OH, OQ, OY
Duggal, Anil R., xi
Felder, Thomas C., OP
Feng, Yu, xix
Fonseca, Leandro C., O6
Fortuno, Z. D., OU
Foster, Christopher, OK
French, Roger H., OJ, OP
Fu, Oakland, OP
Fujikake, Shinji, O5
Gade, Vivek, OC, OH
Gambogi, William J., O7, OP
Gok, Abdulkerim, OP
Gu, Xiaohong, OR
Gupta, Neeti, xix
Hamzavtyehrany, Babak, O7, OP
Hans, Vincent, OI
Hardikar, Kedar, ON
Hossain, Mohammad A., OJ
Hu, Hongjie, OP
Huang, Shujuan, xix
Huang, W.-J., O8, OU
Huber, William H., xi
Ji, Liang, OJ
John, J., OD
Kalejs, Juris, O5
Kessler, Bill, O9
Kopchick, James G., OP
Krajewski, Todd, ON
Krommenhoek, Peter J., OR
Kurtz, Sarah, O2
Lai, T., O8
Li, M., OU
Liakopoulou, Aikaterini, OI
Liao, H., OU
Liao, Yuanxun, xix
Lin, Chiao-Chi, OR
Lin, Shu, xix
Liu, J., OU
Mohajeri, Nahid, OY
Nakamura, Tetsuro, O5
Nishihara, Hironori, O5
Patterson, Robert, xix
Peacock, R. Scott, OY
Pereira, Camila L., O6
Peshek, Timothy J., OJ
Phillips, Nancy H., OL
Potter, B. G., Jr., O8, OU
Rajasekar, V., OY
Robusto, Paul F., OY
Rodgers, Marlanne P., OY
Rudack, Andrew C., OY
Rusch, Peter, OX
Sakai, Toshiaki, O5
Sakurai, Keichiro, O5
Sapoo, Ajay, O9, ON
Scardera, Giuseppe, OY
Schleith, Susan, OF
Schneller, Eric, O6, OC, OQ, OY
Schoenfeld, Winston V., OY
Scott, Kurt P., OL
Seigneur, Hubert, OY
Shiradkar, Narendra S., O6, OC, OH, OQ, OY
Shrestha, Santosh, xix
Simmons-Potter, K., O8, OU
Smyth, Suntrana, xix
Steijvers, Henk, OI
Stika, Katherine M., OP
Sun, Jiayang, OJ
Takani, Masayoshi, O5
Takano, Akihiro, O5
Tamizhmani, G., OD
Tatapudi, S., OD
Tayebjee, Murad, xix
Theelen, Mirjam, OI, OK
Toivola, Kristopher, O9
Trout, T. John, OP
Uchida, Yasunori, OH
Vlkavage, Dan, ON
Vroon, Zeger, OI, OK
Walters, Joseph, OY
Wang, Pei, xix
Watson, Stephanie S., OR
Whitfield, Kent, OH
Wildman, Ricky, 0O
Wohlgemuth, John, 02, 0H, 0Y
Xia, Hongze, xix
Xu, Yifan, 0J
Yanase, Hironori, 05
Zeman, Miro, 0I, 0K
Zhang, Pengfei, xix
Zhang, Zhilong, xix
Conference Committee

Symposium Chair

Oleg V. Sulima, GE Global Research (United States)

Conference Chair

Neelkanth G. Dhere, University of Central Florida (United States)

Conference Co-chairs

John H. Wohlgemuth, National Renewable Energy Laboratory (United States)
Rebecca Jones-Albertus, U.S. Department of Energy (United States)

Conference Program Committee

David S. Albin, National Renewable Energy Laboratory (United States)
Glenn Alers, University of California, Santa Cruz (United States)
Ward I. Bower, Sandia National Laboratories (United States)
Leila R. O. Cruz, Instituto Militar de Engenharia (Brazil)
Takuya Doi, National Institute of Advanced Industrial Science and Technology (Japan)
Fernando Fabero, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Spain)
Vivek S. Gade, Jabil Circuit, Inc. (United States)
William J. Gambogi Jr., DuPont (United States)
Werner Herrmann, TÜV Rheinland Group (Germany)
Stephen J. Hogan, Spire Corporation (United States)
Michael Köhl, Fraunhofer-Institut für Solare Energiesysteme (Germany)
Ralf Leutz, Concentrator Optics GmbH (Germany)
Xavier Mathew, Centro de Investigación en Energía (Mexico)
Robert McConnell, Arzon Solar, LLC (United States)
Yoichi Murakami, Japan Electrical Safety & Environment Technology Laboratories (Japan)
F. J. John Pern, Sunshine Sci-Tech LLC (United States)
Laure-Emmanuelle Perret-Aebi, Ecole Polytechnique Fédérale de Lausanne (Switzerland)
Shirish Pethe, Applied Materials, Inc. (United States)
Marianne Rodgers, University of Central Florida (United States)
Ivan Sinicco, Oerlikon Solar Ltd. (Switzerland)
Oleg V. Sulima, GE Global Research (United States)
Bolko von Roedern, von Roedern & Associates LLC (United States)
Session Chairs

1      PV Module Testing
      **Nancy Phillips**, 3M Company (United States)

2      PV Module Reliability: Simulation and Modeling
      **Michael D. Kempe**, National Renewable Energy Laboratory
      (United States)

3      Reliability of PV Cells, Modules, Systems and Components I
      **John H. Wohlgemuth**, National Renewable Energy Laboratory
      (United States)

4      Encapsulant, Backsheet, and Packaging Materials
      **Michael Köhl**, Fraunhofer-Institut für Solare Energiesysteme (Germany)

5      Reliability of PV Cells, Modules, Systems, and Components II
      **John H. Wohlgemuth**, National Renewable Energy Laboratory
      (United States)

6      Metrology and Quality Management Tools for Improved Reliability
      **Neelkanth G. Dhere**, University of Central Florida (United States)
Introduction

This year’s conference on Reliability of Photovoltaic Cells, Modules, Components, and Systems VII, as a part of the SPIE Solar Energy and Technology meeting, was a great success. There were a number of excellent presentations from organizations around the world, with international participation from the United States, Japan, Germany, Netherlands, France, United Kingdom, and Spain. The conference participants came from a diverse background including universities, national laboratories, photovoltaic industry, and project finance. The friendly and intimate atmosphere allowed for several interactive group discussions that addressed a number of pressing issues involving photovoltaic module reliability.

The sessions included presentations on photovoltaic module testing and characterization, simulation and modeling, reliability of modules and components, packaging materials and encapsulation, and quality management tools. A common topic in this conference was regarding the efforts of the International Photovoltaic Quality Assurance Task Force (PVQAT) in addressing the needs for module qualification protocols and lifetime predictions of photovoltaic module performance. A number of research groups presented on the performance of modules and systems both under accelerated conditions and in the field. Additional highlights include the research and development related to module packaging materials and components such as encapsulants, backsheets, junction boxes, bypass diodes, and micro-inverters. Finally, efforts in the approaches to quality assurance during module manufacturing were presented.

The conference ended with an interactive panel discussion involving seasoned experts in photovoltaic module reliability in which current challenges and opportunity for research and development were discussed. This was a great opportunity for all attendees to get involved in the discussions, make comments and ask questions that addressed a wide variety of issues affecting photovoltaic reliability. On behalf of the conference organizing committee, we would like to thank all attendees and presenters for their outstanding work and engaging discussions. We look forward to your continued support and participation in next year’s conference.

Neelkanth G. Dhere
John H. Wohlgemuth
Rebecca Jones-Albertus