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ABSTRACT   

Many works have devoted to exploring local region information including both the information of the local features 
in local region and their spatial relationships, but none of these can provide a compact representation of the information. 
To achieve this, we propose a new approach named Local Visual Similarity (LVS). LVS first calculates the similarities 
among the local features in a local region and then forms these similarities as a single vector named LVS descriptor. In 
our experiments, we show that LVS descriptor can preserve local region information with low dimensionality. Besides, 
experimental results on two public datasets also demonstrate the effectiveness of LVS descriptor. 
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1. INTRODUCTION  
The significant performance improvement induced by preserving spatial information of local features has attracted 

much attention in recent years. One of the most predominant works is spatial pyramid matching (SPM) [10], which has 
emerged as a popular framework to serve various works [2-8, 13].  Its basic idea is to partition an image into multiple 
increasingly finer blocks and then concatenates all the pooling vectors for each block to form a final image 
representation. Nevertheless, this approach only preserves the global spatial information of the local features within an 
image. To solve this problem, many works have devoted to exploring local region information, which includes both the 
information of the local features in local region and their spatial relationships. These works can be roughly divided into 
three classes. The first class [1, 2, 3] groups the spatially close visual words into visual phrases and then represents an 
image as a histogram of these phrases. The major problems of this class are combinatorial explosion and inadequate 
description on geometric information. These problems are addressed in the second class [4, 5, 6] to some degree. 
Different from obtaining visual phrases after feature quantization, the second one first concatenates the neighboring local 
features into joint features and then learns codebook over these features by K-means or sparse coding. In [5], local 
features are concatenated in different directions to preserve more geometric information. One shortcoming of this class is 
the high dimensionality of the joint feature. For example, a joint feature of size d × 9 is required to represent a local 
region including 9 local features, where d is the dimensionality (e.g., 128 for SIFT [9]) of local feature. The third class 
[7, 8] employs graph to accurately describe the spatial relationships among visual words and then performs graph based 
clustering algorithm to learn visual graph codebook. In [8], a fast sub-graph detection algorithm is adopted for higher 
classification performance, but it still incurs high computational cost. 

All the above approaches preserve local region information more or less, but none of these can provide compact 
representation vector for local region. To achieve this, we propose a new approach named Local Visual Similarity 
(LVS), which does not belong to any one of the above classes. LVS first calculates the similarities among the local 
features in a local region and then forms these similarities as a single vector named LVS descriptor. The only weak 
assumption followed in this paper is that local features approximately reside on a low-dimensional and irregular 
manifold. This assumption is also the reason why LVS descriptor is capable of preserving local region information. Our 
experiments show that LVS descriptor becomes more precise as more pairs of local features involve in the similarity 
calculation. Following the common classification pipeline [13], we also evaluate the classification performance of LVS 
descriptor on 15 Scenes [10] and Caltech 101 [11] dataset, yielding the promising classification results. 

 

2. LOCAL VISUAL SIMILARITY DESCRIPTOR 
In this paper, we aim to produce compact representation vector named LVS descriptor for local region, which can 

preserve not only the information of the local features in a local region but also their spatial relationships. To obtain a 
LVS descriptor, we only need to perform two steps sequentially: (1) calculating the similarities among the local features 
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in a local region; (2) concatenating these similarities to form a LVS descriptor. The two steps are shown in Fig. 1. Since 
the similarities among local features are recorded in a sequence, their spatial relationships are preserved accurately. 

 
Figure 1. Illustration on the production process of LVS descriptor. The local region in the red box includes 9 local features with their 
indices i = 1, 2, …, 9. sij denotes the similarity between the ith local feature and the jth one, and s is the LVS descriptor for the region. 

The production process of LVS descriptor can also be well illustrated from the viewpoint of feature space. As 
mentioned in Section 1, local features approximately reside on a low-dimensional and irregular manifold, and the 
features in a local region are the data points on the manifold. After performing similarity calculation (e.g., l2 distance), a 
graph is built over these data points and the distances between the nodes are recorded in a LVS descriptor. Given a local 
region and its LVS descriptor, if the similar LVS descriptors to the given one are only obtained around the local features 
in the region, then the region is well-described. In general, a local region is described more precisely with more 
complicated graph. As shown in Fig. 2, the graph in Fig. 2b is much better than the one in Fig. 2a in terms of preserving 
local region information.  

 
(a)                                                                           (b) 

Figure 2. Graphs built over 4 local features within a 2 × 2 local region. The red points denote the local features located at a low-
dimensional manifold, and the black lines indicate which pairs of nodes involve in similarity calculation. 

We further ameliorate LVS descriptor by taking the following two practices. One is that we can calculate a similarity 
vector instead of a scalar by utilizing the structure characteristic of local feature, as shown in Fig. 3b. This practice 
improves the preciseness of LVS descriptor especially when there are a few local features in a local region (verified in 
section 3.1). The other is that we can freely rule the pairs of local features involving in similarity calculation. In our 
experiments, this practice leads to comparable classification performance with more compact LVS descriptors. 

Taking into account the above two practices, we formulate LVS descriptor in the following. Given a local region r, 
we denote by U = {(f  i 

p ,  f  i 
q ), i = 1, 2, …, N } the set of the pairs of local features involving in similarity calculation, in 

which  fq ∈ ℝd  and  fq ∈ ℝd
  indicate the pth and qth local feature in the region r, respectively. Let g: ℝd ×ℝd ⟶ ℝm be the 

similarity operation, LVS descriptor can be defined as: 
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Here, the similarity operation g could be lp distance, or histogram distance [12], or other sophisticated distances. 
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3. EXPERIMENTS AND RESULTS 
In this section, we first investigate LVS descriptor in Section 3.1 to 3.3 from three aspects, then compare LVS 

descriptor with the joint SIFT feature (named macrofeature in [6]) in Section 3.4, and finally report the classification 
performance of the combination of LVS and SIFT descriptor in Section 3.5. Following [6], a joint SIFT feature is the 
concatenation of the local features in a local region, for example, an 1152-dimensional joint SIFT feature for a 3 × 3 
local region including 9 SIFT features. 

 
(a) Rules of defining the pairs involving in similarity calculation. 

 
(b) Types of similarity vector. 

Figure 3. Illustration on the rule R of defining the pairs involving in similarity calculation and the type T of similarity vector. 

We conduct these experiments on Caltech 101 and 15 Scenes dataset. Caltech 101 dataset is a challenging object 
recognition benchmark. It has 102 classes and each class has 31 to 800 images. 15 Scenes dataset consists of 4492 
images covering 15 scene classes. The number of images per class varies from 260 to 440. For Caltech 101 dataset, we 
use 30 training images per class and 50 testing images per class. For 15 Scenes dataset, 100 images per class are used for 
training and the rest for testing. Dense SIFT is extracted from each image on a regular grid of 16 × 16 pixels. The step-
size is fixed to 8 pixels for 15 Scenes dataset and 6 pixels for Caltech 101 dataset. After obtaining the SIFT features 
within an image, we extract the LVS descriptors for the image over the neighborhoods of all the SIFT features. K-means 
is employed to learn codebook over the training LVS descriptors, and the codebook size is set to 1024 for 15 Scenes 
dataset and 2048 for Caltech 101 dataset. We adopt Localized Soft-assignment Coding (LSC) [13] for feature coding and 
perform max pooling to obtain the final image representation. The spatial pyramid with the levels of 1 × 1, 2 × 2 and 4 × 4 is used to preserve the spatial information of LVS descriptors and linear SVMs are used for classification. In 
particular, we use Caltech 101 dataset to investigate LVS descriptor in Section 3.1 to 3.3, and l2 distance for similarity 
calculation throughout all the experiments unless otherwise indicated. 

For comprehensive analysis, we produce various LVS descriptors by combining the three factors: the side length S of 
local region, the rule R (Fig. 3a) of defining the pairs involving in similarity calculation and the type T (Fig. 3b) of 
similarity vector. In addition to the rules defined in Fig. 3a, we also test the rule (R = C) which asks each local feature in 
a local region to perform similarity calculation with all other features in the region. For simplicity, we assume that local 
region is square in this paper. 

3.1 LVS descriptor preserving local region information 
To investigate whether LVS descriptor can preserve local region information and what LVS descriptor is better, the 

most immediate method is to restore a LVS descriptor to all the possible local regions and then measure the average 
difference between the real region and these possible regions. However, this method is too expensive. Instead, we take a 
simple method by considering the following two factors: (1) similar local regions should have similar LVS descriptors; 
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(2) the local regions restored from similar LVS descriptors should be similar. Firstly, a LVS descriptor is randomly 
selected from the set of LVS descriptors obtained from 1000 images. Afterwards, the distance d between the joint SIFT 
feature corresponding to the selected LVS descriptor and its nearest one is measured in the joint SIFT feature space. Next, 
we find the nearest LVS descriptor to the selected one in the LVS descriptor space. At the end, we measure the distance 
d’ between the joint SIFT feature corresponding to the nearest LVS descriptor and the one corresponding to the selected 
LVS descriptor. The above process is performed 1000 times separately, and the average ratio over 1000 ratios τ = d’ / d 
is reported as the final evaluation result. Apparently, the closer the average ratio to 1, the more precise LVS descriptor is. 

Fig. 4a shows the average ratios for various LVS descriptors. The results indicated by the black bins are the baselines, 
which are obtained by randomly selecting 1000 joint SIFT features as the fake ones corresponding to 1000 nearest LVS 
descriptors. Clearly, these black bins are higher than others, which means that LVS descriptor is capable of preserving 
local region information. Besides, LVS descriptor becomes more precise with finer similarity vector and the same 
tendency can also be found as more pairs of local features involve in similarity calculation. Fig. 4b reports the 
classification accuracies for these LVS descriptors. Overall, the higher accuracies are acquired with the LVS descriptors 
with the lower average ratios. In addition, it is worth noting that the LVS descriptors for the larger local region (e.g., 4 × 
4) result in slightly inferior accuracies. 
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(a)                                                               (b) 

Figure 4. Evaluation results for various LVS descriptors. (a) average ratios; (b) classification accuracies on Caltech 101 dataset. 

 

3.2 Normalization on LVS descriptor 
We check out the influence of common normalization operations on classification performance. The LVS descriptor 

obtained when S = 3, R = C and T = A is adopted for evaluation. Fig. 5b reports the classification accuracies for several 
normalization operations: l2, l1 and l1.5. As can be seen, the performance drops significantly after applying normalization 
operation on LVS descriptor. The reason is that normalization operation reduces the graph information recorded in LVS 
descriptor, making more dissimilar local regions have similar LVS descriptors. This explanation is demonstrated by the 
increase of average ratio τ = d’ / d in Fig. 5a. 
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Figure 5. Evaluation results for normalization on LVS descriptor. (a) average ratios; (b) classification accuracies on Caltech 101 
dataset. 

 

3.3 Impact of similarity operation on classification performance 
In the definition of LVS descriptor, the similarity between two local features could be measured by lp distance, or 

histogram distance, or other sophisticated distances. Here, several common distance metrics, l2, l1 and histogram distance, 
are chosen for evaluation. We can see in Fig. 6b that l1 and histogram distance lead to inferior accuracies to l2 distance. 
The reason can be found in Fig. 6a. As shown, LVS descriptor obtained by l2 distance performs significantly better in 
terms of preserving local region information. 
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Figure 6. Evaluation results for various similarity operations. (a) average ratios; (b) classification accuracies on Caltech 101 
dataset. 

 

3.4 Performance comparison between LVS descriptor and the joint SIFT feature 
To further evaluate LVS descriptor, we compare LVS descriptor to the joint SIFT feature on 15 Scenes and Caltech 

101 dataset. Here, the evaluated LVS descriptor is obtained when S = 3, R = C and T = A, and the joint SIFT feature is a 
vector of size 128 × 9 accordingly. Table 1 reports the classification accuracies and the numbers in parentheses denote 
the dimensionality. As can be seen, while LVS descriptor results in inferior classification accuracies to the joint SIFT 
feature, its dimensionality is much lower than that of the joint SIFT feature, incurring low computational cost and storage 
complexity. 

Table 1. Results for LVS descriptor and the joint SIFT feature on Caltech101 and 15 Scenes dataset. 
 LVS descriptor (36) Joint SIFT feature (1152) 

Caltech 101 69.5 ± 0.47 72.9 ± 0.73 

15 Scenes 74.5 ± 0.56 78.6 ± 0.61 
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3.5 Performance of the combination of LVS and SIFT descriptor 
In this section, we evaluate the performance of the combination of SIFT descriptor and the LVS descriptor obtained 

when S = 3, R = C and T = A. Here, the final image representation is the concatenation of the one obtained by the LVS 
descriptor and the one by SIFT descriptor. From Table 2, we find that the combination of LVS and SIFT descriptor gives 
better classification performance than both LVS and SIFT descriptor used separately. 

Table 2. Results for the combination of LVS and SIFT descriptor on Caltech101 and 15 Scenes dataset. 

 LVS descriptor SIFT descriptor LVS + SIFT 

Caltech 101 69.5 ± 0.47 74.1 ± 0.95 75.0 ± 0.67 

15 Scenes 74.5 ± 0.56 82.6 ± 0.14 83.2 ± 0.58 

 

4. CONCLUSION 
In this paper, we proposed a new approach for preserving local region information. Different from the existing 

works, our approach can produce compact representation vector named LVS descriptor for local region. Our experiments 
show that LVS descriptor becomes more precise with more complicated graph. Besides, the classification results on 
Caltech 101 and 15 Scenes dataset also demonstrates the effectiveness of LVS descriptor. The current works we are 
pursuing are to improve the preciseness of LVS descriptor, such as incorporating the angle information of graph into 
LVS descriptor and weighting the elements in LVS descriptor to highlight the discriminative information in local region. 
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