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ABSTRACT

Optoelectronic instrument principle and design includes the optical, mechanical, electrical and count modules for one 
system. We change traditional mode of customary specialty course design for only taking the cell design ability into 
account. Optical coherence tomography (OCT) can provide high-resolution 3D imaging system and wide application for 
tissue in vivo. In this work, we carry out OCT system– driven teaching into execution in the course design teaching, and 
decompose OCT system into four modules for teaching progress. The reform is not only cultivating student design 
ability based on OCT system exploitation, improving the engineering ability, but also help scientific research promote 
teaching process. 
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1．INTRODUCTION 

Optoelectronic instrument principle and design mainly includes the optical, mechanical, electrical and count units for one 
system. However, these four modules are completely independently in the traditional teaching mode. There is no 
connection among the units and lack of system and integrity. Teaching contents in each unit are isolated and far from the 
actual projects, which resulted in the poor design ability and the week general application ability and even the bade 
whole concept. The reason is that the contents and teaching method of the course design is based on the curriculum, not 
the course system.  

In order to overcome the problem, we choose the advanced optoelectronic instrument—optical coherence 
tomography (OCT) as the object for teaching contents. We carry out OCT system– driven teaching into execution in the 
course system teaching, and decompose OCT system into four modules for teaching progress. The teaching method 
guarantees all contents including integrated system design, and helps foster students’ capacity of system design. 

OCT is a high-resolution, cross-sectional, three-dimensional imaging modality [1-8]. We have studied OCT system 
and its application for over ten years [9-10], and have accumulated the enough knowledge for teaching.   
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OCT system to fuse the knowledge system of the students and improve the comprehensive application ability. The 
teaching contents of four module (optical, mechanical, electrical and count modules) were determined by the OCT 
system requirements. The students not only strengthen and master relevant theoretical knowledge, but also enhance the 
capacity of system design through the study of OCT four modules. OCT system-driven teaching help teachers guide 
students to complete a system design from part to whole, and promote scientific research into teaching process to expand 
the students' vision. Furthermore, students complete a project and improve the students' comprehensive design ability. 
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