Metrology, Inspection, and Process Control for Microlithography XXXIII

Vladimir A. Ukraintsev
Ofer Adan
Editors

25–28 February 2019
San Jose, California, United States

Sponsored by
SPIE

Cosponsored by
Nova Measuring, Ltd. [United States]

Published by
SPIE

Volume 10959
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510625655

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/$18.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-first publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, ..., 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

ix Authors

xv Conference Committee

xix Introduction

SESSION 1 KEYNOTE SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10959 02</td>
<td>Tough road ahead for device overlay and edge placement error (Keynote Paper)</td>
<td>10959-1</td>
</tr>
</tbody>
</table>

SESSION 2 OVERLAY NEWS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10959 05</td>
<td>Overlay error investigation for metal containing resist (MCR)</td>
<td>10959-4</td>
</tr>
<tr>
<td>10959 06</td>
<td>Process drift compensation by tunable wavelength homing in scatterometry-based overlay</td>
<td>10959-5</td>
</tr>
<tr>
<td>10959 07</td>
<td>Measuring after etch overlay and characterizing tilt fingerprints in multi-tier 3D-NAND structures</td>
<td>10959-6</td>
</tr>
<tr>
<td>10959 08</td>
<td>Standalone alignment technology enabling feed-forward compensation of on-product overlay errors</td>
<td>10959-7</td>
</tr>
</tbody>
</table>

SESSION 3 CHALLENGES AND NEW METHODS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10959 0B</td>
<td>Image quality enhancement of a CD-SEM image using conditional generative adversarial networks</td>
<td>10959-10</td>
</tr>
<tr>
<td>10959 0C</td>
<td>Statistical significance of STEM based metrology on advanced 3D transistor structures</td>
<td>10959-11</td>
</tr>
<tr>
<td>10959 0D</td>
<td>Edge placement error measurement in lithography process with die to database algorithm</td>
<td>10959-12</td>
</tr>
</tbody>
</table>

SESSION 4 INSPECTION I

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10959 0F</td>
<td>Machine learning for predictive electrical performance using OCD</td>
<td>10959-14</td>
</tr>
</tbody>
</table>
E-beam inspection of single exposure EUV direct print of M2 layer of N10 node test vehicle [10959-16]

Gas-enhanced PFIB surface preparation enabled metrology and statistical analysis of 3D NAND devices [10959-17]

Development of standard samples with programmed defects for evaluation of pattern inspection tools [10959-74]

SESSION 5 ADVANCES IN PHYSICAL CHARACTERIZATION

Quantitative tomography with subsurface scanning ultrasound resonance force microscopy [10959-20]

Nano-scale molecular analysis of photo-resist films with massive cluster secondary ion mass spectrometry [10959-22]

SESSION 6 LWR

Unbiased roughness measurements: subtracting out SEM effects, part 3 [10959-23]

 linewidth and roughness measurement of SAOP by using FIB and Planer-TEM as reference metrology [10959-24]

Roughness decomposition: an on-wafer methodology to discriminate mask, metrology, and shot noise contributions [10959-27]

SESSION 7 NEW METHODS: STUDENT SESSION

Application of PSD for the extraction of programmed line roughness from SAXS [10959-28]

Surface effects in simulations of scanning electron microscopy images [10959-29]

Optical characterization of multi-NST nanowire test structures using Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry for sub 5nm nodes [10959-31]

Tilted beam SEM, 3D metrology for industry (Karel Urbánek Best Student Paper Award) [10959-32]
SESSION 8 MACHINE LEARNING

10959 0Z	Applications of machine learning at the limits of form-dependent scattering for defect metrology (Invited Paper) [10959-33]
10959 10	Engineering neural networks for improved defect detection and classification [10959-34]
10959 11	Using Gaussian process regression for efficient parameter reconstruction [10959-35]
10959 12	Deep learning's impact on contour extraction for design based metrology and design based inspection [10959-36]
10959 13	OPC model accuracy study using high volume contour based gauges and deep learning on memory device [10959-37]

SESSION 9 SEM

10959 14	What is prevalent CD-SEM's role in EUV era? [10959-38]
10959 15	High voltage CD-SEM based metrology for 3D-profile measurement using depth-correlated BSE signal [10959-39]
10959 18	FEM simulation for artificial generation of SEM pictures [10959-42]

SESSION 10 SEM AND E-BEAM METROLOGY

10959 1A	Investigating process variability at ppm level using advanced massive eBeam CD metrology and contour analysis [10959-44]
10959 1B	Depth measurement technique for extremely deep holes using back-scattered electron images with high voltage CD-SEM [10959-45]
10959 1C	Evaluation of the accuracy and precision of STEM and EDS metrology on horizontal GAA nanowire devices [10959-46]
10959 1D	High-resolution low-shrinkage CD metrology for EUV resist using high voltage CD-SEM [10959-47]

SESSION 11 OVERLAY

| 10959 1E | Improved accuracy and robustness for advanced DRAM with tunable multi-wavelength imaging and scatterometry overlay metrology [10959-48] |
SESSION 12 DESIGN INTERACTIONS WITH METROLOGY: JOINT SESSION WITH CONFERENCES 10959 AND 10962

10959 1F Edge placement error and line edge roughness [10959-111]

10959 1G Color mixing in overlay metrology for greater accuracy and robustness [10959-50]

10959 1H Smart implant-layer overlay metrology to enable fab cycle time reduction [10959-51]

10959 1I Intra-field stress impact on global wafer deformation [10959-52]

SESSION 13 PROCESS CONTROL

10959 1J AI: from deep learning to in-memory computing (Keynote Paper) [10959-53]

10959 1L 3D optical proximity model optimization using inline 3DSEM metrology [10959-55]

SESSION 14 INSPECTION II

10959 1R Multiple beam inspection (MBI) for 7nm node and beyond: technologies and applications [10959-61]

10959 1V Process window discovery methodology for extreme ultraviolet (EUV) lithography [10959-65]

SESSION 15 OPTICAL METROLOGY AND LATE NEWS

10959 1X Spectroscopic reflectometry in the extreme ultraviolet for critical dimension metrology [10959-68]
Visualization of 3D structure of semiconductor devices by "Dig and See" using GFIS-SIM [10959-69]

Influence of sidewall perturbations of CD-SEM line roughness metrology [10959-67]

Deep learning nanometrology of line edge roughness [10959-109]

Novel method to achieve CD modelling in the presence of higher diffraction orders [10959-110]

POSTER SESSION

Application of aberration corrected low voltage SEM for metrology [10959-70]

An optimized parameter guidance system for line/space CD metrology [10959-71]

Metrology of 3D NAND in electron micrographs by scale space snakes [10959-72]

Measurement system of film structure by interferometry and ellipsometry [10959-76]

Process monitoring and control with tunable wavelength overlay coupled with simulation-to-measurement analysis [10959-77]

Parallel active cantilever AFM tool for high-throughput inspection and metrology [10959-79]

Detection of particle defect components on silicon wafer with laser induced breakdown spectroscopy combined laser cleaning technology [10959-81]

Accurate vertical sidewall measurement by a metrological tiling-AFM for reference metrology of line edge roughness [10959-82]

Casual modeling of yield [10959-83]

First results from the Large Dynamic Range Atomic Force Microscope for overlay metrology [10959-85]

CD and OCD sampling scheme optimization for HVM environment [10959-86]

Deep learning's impact on pattern matching for design based metrology and design based inspection [10959-87]

Study on a feasibility of dark-field illumination for the near-field microscope [10959-89]

Enhanced wafer overlay residuals control: deep sub-nanometer at sub-millimeter lateral resolution [10959-91]
Area-framing optical defect review under optical resolution using multi-NA dark-field microscopy images [10959-92]

YieldStar uDBO overlay metrology in Samsung D1y DRAM volume production [10959-93]

New method removing SEM image noise to characterize CD and LWR [10959-94]

Alignment sampling by thorough run-to-run simulation [10959-95]

Overlay run-to-run control based on device structure measured overlay in DRAM HVM [10959-96]

Analysis and modeling of patterned wafer nano-topography using multiple linear regression on design GDS and silicon PWG data [10959-97]

Macro CDSEM 2D metrology supporting advanced DRAM patterning [10959-99]

Intra-field alignment for overlay feed-forward simulation with sampling optimization [10959-101]

In-depth analysis and research of additional components of the uncertainty budget using the finite element method [10959-102]

Characterization of STEM alignments and their automation [10959-103]

Analyze line roughness sources using power spectral density (PSD) [10959-104]

A diffraction-based overlay model based on FDTD method [10959-105]

Verification and analysis of FEM for measurement of temperature distribution through the multilayer wall [10959-106]

Denoising line edge roughness measurement using hidden Markov models [10959-112]

Defect learning with predictive sampling for process improvement [10959-113]

First demonstration of a 331-beam SEM [10959-114]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B…0Z, followed by 10-1Z, 20-2Z, etc.

<table>
<thead>
<tr>
<th>Author</th>
<th>CID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adiga, Umesh</td>
<td>01, 24</td>
</tr>
<tr>
<td>Adolf, A.</td>
<td>31</td>
</tr>
<tr>
<td>Aerts, Silvia</td>
<td>2V</td>
</tr>
<tr>
<td>Ahmad, Ahmad</td>
<td>29</td>
</tr>
<tr>
<td>Allkoken, R.</td>
<td>25</td>
</tr>
<tr>
<td>Amif, Bran</td>
<td>1E</td>
</tr>
<tr>
<td>Anberg, Doug</td>
<td>1I</td>
</tr>
<tr>
<td>Ando, Satoshi</td>
<td>0B</td>
</tr>
<tr>
<td>Arjavac, Jason</td>
<td>24</td>
</tr>
<tr>
<td>Atkins, Phillip</td>
<td>21</td>
</tr>
<tr>
<td>Avedissian, Brett</td>
<td>0I</td>
</tr>
<tr>
<td>Bahrenberg, Lukas</td>
<td>1X</td>
</tr>
<tr>
<td>Barla, Kathy</td>
<td>0C, 1C</td>
</tr>
<tr>
<td>Barnes, Bryan M.</td>
<td>0Z</td>
</tr>
<tr>
<td>Bar-On, T.</td>
<td>2S</td>
</tr>
<tr>
<td>Bellah, Md. Motsim</td>
<td>06, 28</td>
</tr>
<tr>
<td>Bendavid, Nif</td>
<td>06, 28</td>
</tr>
<tr>
<td>Bérard-Bergery, Sébastien</td>
<td>0Y</td>
</tr>
<tr>
<td>Besacier, Maxime</td>
<td>0U, 0Y</td>
</tr>
<tr>
<td>Befyller, Charlotte</td>
<td>1M</td>
</tr>
<tr>
<td>Bhattacharyya, Kaustuve</td>
<td>02, 1G</td>
</tr>
<tr>
<td>Bledzyciśl, Mark</td>
<td>01</td>
</tr>
<tr>
<td>Birnstein, Norman</td>
<td>2O</td>
</tr>
<tr>
<td>Bizen, Daikuke</td>
<td>1D</td>
</tr>
<tr>
<td>Blancquaert, Yoann</td>
<td>0U</td>
</tr>
<tr>
<td>Bonam, Ravì</td>
<td>1O</td>
</tr>
<tr>
<td>Borisov, Sergei</td>
<td>1Z</td>
</tr>
<tr>
<td>Boullart, Werner</td>
<td>0C, 1C</td>
</tr>
<tr>
<td>Bouysouis, Regis</td>
<td>1M</td>
</tr>
<tr>
<td>Bozkurt, Mural</td>
<td>1G</td>
</tr>
<tr>
<td>Brose, Sascha</td>
<td>1X</td>
</tr>
<tr>
<td>Brouzet, V.</td>
<td>2Q</td>
</tr>
<tr>
<td>Buhl, Stefan</td>
<td>2F</td>
</tr>
<tr>
<td>Bunday, Benjamin D.</td>
<td>1Z</td>
</tr>
<tr>
<td>Burger, Sven</td>
<td>11</td>
</tr>
<tr>
<td>Byun, Jin-Moo</td>
<td>2M</td>
</tr>
<tr>
<td>Canga, Ben</td>
<td>2K</td>
</tr>
<tr>
<td>Chagois-Gardon, Alexis</td>
<td>1M</td>
</tr>
<tr>
<td>Chang, Hsien-Hung</td>
<td>21</td>
</tr>
<tr>
<td>Chang, Jan-Hau</td>
<td>21</td>
</tr>
<tr>
<td>Chang, Ken</td>
<td>1G</td>
</tr>
<tr>
<td>Chang, Nick Weissan</td>
<td>21</td>
</tr>
<tr>
<td>Charley, Anne-Laure</td>
<td>0F, 1N, 1O</td>
</tr>
<tr>
<td>Chen, Alden</td>
<td>1R</td>
</tr>
<tr>
<td>Chen, Kali-Hung</td>
<td>1G</td>
</tr>
<tr>
<td>Chen, Xiaomel</td>
<td>2A</td>
</tr>
<tr>
<td>Cheng, Zh. H.</td>
<td>22</td>
</tr>
<tr>
<td>Chiu, Afu</td>
<td>2P</td>
</tr>
<tr>
<td>Chiu, Chu-Han</td>
<td>21</td>
</tr>
<tr>
<td>Choi, Ahlin</td>
<td>1E, 2F</td>
</tr>
<tr>
<td>Choi, Byoung-Il</td>
<td>13</td>
</tr>
<tr>
<td>Choi, DongSub</td>
<td>1E</td>
</tr>
<tr>
<td>Choi, Joeseung</td>
<td>13</td>
</tr>
<tr>
<td>Chou, Kevin</td>
<td>1R</td>
</tr>
<tr>
<td>Chu, Hsi-Lin</td>
<td>2P</td>
</tr>
<tr>
<td>Clarke, James</td>
<td>01</td>
</tr>
<tr>
<td>Cohen, Avi</td>
<td>2K</td>
</tr>
<tr>
<td>Constantoudis, Vassilios</td>
<td>1F, 20, 2Z</td>
</tr>
<tr>
<td>Cramer, Jillian</td>
<td>0C</td>
</tr>
<tr>
<td>Cross, Andrew</td>
<td>1V</td>
</tr>
<tr>
<td>Danlylyuk, Serhui</td>
<td>1X</td>
</tr>
<tr>
<td>Das, Sayantant</td>
<td>0F, 0H</td>
</tr>
<tr>
<td>Decaunes, J.</td>
<td>1Q</td>
</tr>
<tr>
<td>Decoster, Stefan</td>
<td>0Q</td>
</tr>
<tr>
<td>Demirer, Onur</td>
<td>0S</td>
</tr>
<tr>
<td>Den Boet, Arle</td>
<td>1G</td>
</tr>
<tr>
<td>Deng, Shaoen</td>
<td>1N, 1O</td>
</tr>
<tr>
<td>Desmoulins, S.</td>
<td>1A</td>
</tr>
<tr>
<td>Dezaudier, Christophe</td>
<td>1M</td>
</tr>
<tr>
<td>Diebold, Alex C.</td>
<td>0X</td>
</tr>
<tr>
<td>Dillen, Harm</td>
<td>2W</td>
</tr>
<tr>
<td>Diller, Timothy</td>
<td>2N</td>
</tr>
<tr>
<td>Dmitriev, Vladmir</td>
<td>2K</td>
</tr>
<tr>
<td>Dohl, H.</td>
<td>22</td>
</tr>
<tr>
<td>Dong, Libong</td>
<td>2X</td>
</tr>
<tr>
<td>Dou, Shuyang</td>
<td>2G</td>
</tr>
<tr>
<td>Drar, Chen</td>
<td>06, 28</td>
</tr>
<tr>
<td>Ducolé, J.</td>
<td>1M</td>
</tr>
<tr>
<td>Duvadwani-Bar, S.</td>
<td>2S</td>
</tr>
<tr>
<td>Ebertle, A. L.</td>
<td>3I</td>
</tr>
<tr>
<td>Ebert, Martin</td>
<td>1R</td>
</tr>
<tr>
<td>Eller, Michael J.</td>
<td>0O</td>
</tr>
<tr>
<td>Enomoto, Masashi</td>
<td>2N</td>
</tr>
<tr>
<td>Biley, Georg</td>
<td>1P</td>
</tr>
<tr>
<td>Fang, Wei</td>
<td>23, 2W</td>
</tr>
<tr>
<td>Feng, Mu</td>
<td>13</td>
</tr>
<tr>
<td>Fillinger, Laurent</td>
<td>0M</td>
</tr>
<tr>
<td>Foleyński, Bartosz</td>
<td>2M</td>
</tr>
<tr>
<td>Frachel, Michael</td>
<td>1P</td>
</tr>
<tr>
<td>Freitag, Martin</td>
<td>2T</td>
</tr>
<tr>
<td>Filtz, H.</td>
<td>31</td>
</tr>
<tr>
<td>Ronnhold, Andreas</td>
<td>0T</td>
</tr>
<tr>
<td>Gao, Kun</td>
<td>06, 28</td>
</tr>
<tr>
<td>Gao, Uinfei</td>
<td>06</td>
</tr>
<tr>
<td>Gao, Xindong</td>
<td>06, 28</td>
</tr>
<tr>
<td>Gardin, Christian</td>
<td>1A, 1M</td>
</tr>
<tr>
<td>Ger, Avron</td>
<td>0F, 1N</td>
</tr>
<tr>
<td>Gergaud, Patrice</td>
<td>0U</td>
</tr>
</tbody>
</table>
Gershtein, L, 2S
Ghafouri, Moerin, 1X
Glennarou, Eva, 20
Glebsch, Sven, 1X
Gogollides, Evangelos, 1F, 20, 2Z
Goldswain, Anna, 1E
Gonda, Satoshi, 2B
Goosen, Malik, 2W
Gorbad, Kujan, 2K
Gosall, Benny, 1G
Goto, Yasunori, 15
Gottipati, Abhishek, 06, 28
Gourgon, Cecile, 0Y
Gredy, V., 2Q
Groseger, Philip, 1P, 2F
Gronheid, Roel, 05
Grouwsra, Cedric, 2M
Gu, Yajun, 1I
Guillemann, Steffen, 2F, 2O
Gulyev, Elshad, 29
Gu, Yajun, 1I
Habets, Boris, 1P, 2O, 2P, 2f
Hagens, C.W., 0V
Hagge, Jack, 24
Haja, Elfen, 1E, 28
Hajajmadl, Reza, 1G
Hakak, Chris, 1C
Hakker, Sandip, 0F, 0H, 1V
Hammaguchi, Aikiko, 1B
Hammerschmidt, Martin, 11
Han, Sang-Jun, 07, 1E
Han, Woo-Jun, 2I
Hand, Sean, 1I
Hao, Xueyi, 06, 28
Hashizume, Tomihito, 1Y
Hasbi, Faegheh, 1H
Hayashi, S., 22
Hazart, Jerome, 0Y
Henn, Mark-Alexander, 0Z
Hermans, Jan, 1I
Herrera, Pedro, 06, 28
Hertz, Elfan, 1E
Higashibata, Satoshi, 05
Hiroi, Aikiko, 2B
Hirose, K., 22
Holt, Mathias, 29
Hong, Minhyung, 1E
Horiwaka, I., 25
Hou, Xisen, 00
Hou, Zhenyu, 13
Hsu, Hiaoh-Lin, 2P, 2T
Hu, Kwang-Young, 2M
Hu, Xuerang, 1R
Huang, Foster, 2P
Huang, Guo-Tsai, 1G
Huang, Shang-Chieh, 0D
Hulsman, Thomas J., 2W
Hung, Joey, 0F, 1N
Hunsche, S., 1A
Hwang, Jong-Hyun, 2M
Ida, Chihiro, 1B
Ida, Susumu, 0J
Ikota, Masami, 0Q, 1Y
Illiberi, Andrea, 1N, 1O
Ishikawa, Jun, 08
Ishikawa, Masayoshi, 12, 2G
Ivanov, Tzetlan, 29
Iwawa, Masayuki, 12, 2G
Jang, Won-Jae, 2M
Jawaherhi, Namri, 1G
Jeon, Sanghuck, 1E
Jeon, Se-Ra, 2M
Jeong, Junhee, 2L
Ji, Rongyi, 2A
Johansen, Hayley, 0C, 1C
Joo, K.-N., 27
Joung, Tony, 06, 28
Kai, Ding, 20
Kal, Subhadeep, 0X
Kammer, N., 31
Kang, Daekwon, 13
Kassenberg, Jaap, 07
Kartsov, Angela, 1L
Kaufmann, N., 31
Kawada, Hiroki, 0Q
Kazumi, H., 22
Keller, Nick, 0X
Kereleu, Anne, 0C, 1C
Kern, Robert, 2N
Kesar, M., 2Q
Keyvani, S., 2E
Kiers, T., 1A
Kim, Cheollyun, 13
Kim, Gilbert, 13
Kim, Hwi, 2L
Kim, Joisoon, 2I
Kim, Jang-Sun, 2M
Kim, Jun-Young, 07
Kim, Mingyu, 2F
Kim, Seop, 2F
Kim, Wan-Soo, 2F
Kim, Young-Seok, 13
Kizu, Ryosuke, 2B
Klebanov, G., 25
Klein, Dana, 1E
Ko, Sung-woo, 13
Kobayashi, Shinji, 2N
Kontoyianni, Ioannis, 2Z
Korde, Madhulika, 0X
Koref, Roy, 0F, 1N
Kris, R., 2S
Krishnan, Shankar, 21
Kruft, P., OV
Kupfer, S., 2E
Kwakman, Lauren, 0C, 1C
Lam, Auguste, 1H
Conference Committee

Symposium Chair
Will Conley, Cymer, an ASML Company (United States)

Symposium Co-chair
Kafai Lai, IBM Thomas J. Watson Research Center (United States)

Conference Chair
Vladimir A. Ukkaintsev, Qorvo Corporation (United States)

Conference Co-chair
Ofer Adan, Applied Materials Israel, Ltd. (Israel)

Conference Program Committee
John A. Allgair, BRIDG (United States)
Masafumi Asano, Tokyo Electron Ltd. (Japan)
Benjamin D. Bundy, Abeam Technologies, Inc. (United States)
Jason P. Cain, Advanced Micro Devices, Inc. (United States)
Xiaomeng Chen, Taiwan Semiconductor Manufacturing Company Ltd. (Taiwan)
Hugo Cramer, ASML Netherlands B.V. (Netherlands)
Timothy F. Cimminns, Intel Corporation (United States)
Shunsuke Koshihara, Hitachi High-Technologies Corporation (Japan)
Yi-Sha Ku, Industrial Technology Research Institute (Taiwan)
Byoung-Ho Lee, SK hynix, Inc. (Korea, Republic of)
Philippe Leray, IMEC (Belgium)
Narender Rana, Western Digital Corporation (United States)
Christopher J. Raymond, Nanometrics Inc. (United States)
John C. Robinson, KLA Corporation (United States)
Martha I. Sanchez, IBM Research - Almaden (United States)
Matthew J. Sendelbach, Nova Measuring Instruments Inc. (United States)
Richard Silver, National Institute of Standards and Technology (United States)
Eric Solecky, GLOBALFOUNDRIES Inc. (United States)
Alexander Staikov, I&I Consulting (United States)
Alok Vaid, GLOBALFOUNDRIES Inc. (United States)
Session Chairs

1 Keynote Session
Martha I. Sanchez, IBM Research - Almaden (United States)
Ofer Adan, Applied Materials Israel, Ltd. (Israel)

2 Overlay News
Alexander Starikov, I&I Consulting (United States)
Christopher J. Raymond, Nanometrics Inc. (United States)

3 Challenges and New Methods
Shunsuke Koshihara, Hitachi High-Technologies Corporation (Japan)
Christopher J. Raymond, Nanometrics Inc. (United States)

4 Inspection I
Timothy F. Crimmins, Intel Corporation (United States)
Byoung-Ho Lee, SK Hynix, Inc. (Korea, Republic of)

5 Advances in Physical Characterization
Richard M. Silver, National Institute of Standards and Technology (United States)
Hugo Cramer, ASML Netherlands B.V. (Netherlands)

6 LWR
John C. Robinson, KLA Corporation (United States)
Matthew J. Sendelbach, Nova Measuring Instruments Inc. (United States)

7 New Methods: Student Session
Timothy F. Crimmins, Intel Corporation (United States)
Matthew J. Sendelbach, Nova Measuring Instruments Inc. (United States)

8 Machine Learning
Masafumi Asano, Tokyo Electron Ltd. (Japan)
Benjamin D. Bundy, Abeam Technologies, Inc. (United States)

9 SEM
Benjamin D. Bundy, Abeam Technologies, Inc. (United States)
Shunsuke Koshihara, Hitachi High-Technologies Corporation (Japan)

10 SEM and e-Beam Metrology
Christopher J. Raymond, Nanometrics Inc. (United States)
Philippe Leray, IMEC (Belgium)
11 Overlay
Hugo Cramer, ASML Netherlands B.V. (Netherlands)
John C. Robinson, KLA Corporation (United States)

12 Design Interactions with Metrology: Joint Session with Conferences 10959 and 10962
John A. Allgair, BRIDG (United States)
Ryoung-Han R. Kim, IMEC (Belgium)

13 Process Control
Philippe Leray, IMEC (Belgium)
Alexander Starikov, I&I Consulting (United States)

14 Inspection II
Masafumi Asano, Tokyo Electron Ltd. (Japan)
Xiaomeng Chen, Taiwan Semiconductor Manufacturing Company Ltd. (Taiwan)

15 Optical Metrology and Late News
Ofer Adan, Applied Materials Israel, Ltd. (Israel)
John C. Robinson, KLA Corporation (United States)
Introduction

The Metrology, Inspection, and Process Control for Micro Lithography XXXII conference started with metrology challenges of state of the art silicon based quantum devices. While quantum devices are all about entanglement, quantum was not the only entanglement in the conference. Edge Placement Error (EPE) metrology approaches were presented to address the entanglement between metrology and inspection, and within metrology the entanglement of CD uniformity, roughness, 3D, pattern placement, and overlay errors. Various approaches were presented; from an all in one solution to a heterogeneous fleets of different perspectives of metrology and inspection to novel technologies, fused by artificial intelligence. Artificial intelligence was also studied from the metrological challenges raised by the new devices enabling it. CPU’s, GPU’s, and TPU’s and future solutions all reviewed in invited tutorials you can read about in these Proceedings. As technology nodes shrink and structures become more complex, many novel technologies were introduced, and workhorse ones were improved.

Hopefully these Proceedings become a reference and foundation for future work. This comes with a bigger hope that the readers come back, and submit a paper telling others of novel achievements, and sharing interesting results of scientific merit to keep fueling the conference audience interest.

Dear readers,

Looking forward to seeing your submissions, presented next year on the podium, or interacting with the audience next to your poster.

Thank you.

Vladimir A. Utkintsev
Ofer Adan