Metrology, Inspection, and Process Control for Microlithography XXXIV

Ofer Adan
John C. Robinson
Editors

24–27 February 2020
San Jose, California, United States

Sponsored by
SPIE

Cosponsored by
Nova Measuring, Ltd. (United States)

Published by
SPIE

Volume 11325
Contents

ix Authors
xv Conference Committee

SESSION 1 KEYNOTE SESSION

11325 02 Metrology for advanced transistor and memristor devices and materials (Invited Paper) [11325-1]

SESSION 2 PATTERN PLACEMENT AND OVERLAY METROLOGY I

11325 06 Understanding advanced DRAM edge placement error budget and opportunities for control [11325-4]
11325 07 Real-time full-wafer design-based inter-layer virtual metrology [11325-5]

SESSION 3 CHALLENGES AND NEW METHODS

11325 0A Atom probe tomography using extreme-ultraviolet light [11325-6]
11325 0B VIA dishing metrology for novel 3D NAND using neural network assisted white light interferometry [11325-7]
11325 0C High resolution acoustic metrology by combining high GHZ frequency ultrasound and scanning probe microscopy [11325-8]
11325 0D Inline Part Average Testing (I-PAT) for automotive die reliability [11325-9]

SESSION 4 INSPECTION AND MASS METROLOGY

11325 0F Multi-beam Inspection (MBI) development progress and applications [11325-11]
11325 0G Stochastic model prediction of pattern-failure [11325-69]
11325 0I Novel post-lithography macro inspection strategies for advanced legacy fab challenges [11325-13]
<table>
<thead>
<tr>
<th>SESSION 5</th>
<th>HIGH ASPECT RATIO METROLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11325 0L</td>
<td>3D-NAND wafer process monitoring using high voltage SEM with auto e-beam tilt technology [11325-16]</td>
</tr>
<tr>
<td>11325 0M</td>
<td>3D analysis of high-aspect ratio features in 3D-NAND [11325-17]</td>
</tr>
<tr>
<td>11325 0N</td>
<td>Accuracy improvement of 3D-profiling for HAR features using deep learning [11325-18]</td>
</tr>
<tr>
<td>11325 0O</td>
<td>Machine learning and hybrid metrology using HV-SEM and optical methods to monitor channel hole tilting in-line for 3D NAND wafer production [11325-19]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>ROUGHNESS METROLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>11325 0P</td>
<td>Comparing edge detection algorithms: their impact on unbiased roughness measurement precision and accuracy [11325-20]</td>
</tr>
<tr>
<td>11325 0Q</td>
<td>Comparison of SEM and AFM performances for LER reference metrology [11325-21]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>NEW METHODS: STUDENT SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>11325 0V</td>
<td>White-light Mueller-matrix Fourier scatterometry for the characterization of nanostructures with large parameter spaces [11325-24]</td>
</tr>
<tr>
<td>11325 0W</td>
<td>X-ray metrology of nanowire/ nanosheet FETs for advanced technology nodes [11325-25]</td>
</tr>
<tr>
<td>11325 0X</td>
<td>Nanoscale grating characterization through EUV spectroscopy aided by machine learning techniques [11325-26]</td>
</tr>
<tr>
<td>11325 0Z</td>
<td>Understanding the influence of 3D sidewall roughness on observed line-edge roughness in scanning electron microscopy images (Karel Urbánek Best Student Paper Award) [11325-28]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 8</th>
<th>3D PROFILE AND SHAPE ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11325 12</td>
<td>Three-dimensional feature characterization by inline Xe plasma FIB: delayering and deep milling implementation [11325-30]</td>
</tr>
<tr>
<td>11325 17</td>
<td>A hybrid total measurement uncertainty methodology for dual beam FIB/SEM metrology [11325-34]</td>
</tr>
</tbody>
</table>
SESSION 9 SCATTEROMETRY

| 11325 18 | EUV scatterometer with multiple orders of high-harmonic generation [11325-35] |
| 11325 1D | Sensitivity analysis for the detection of pitchwalk in self-aligned quadruple patterning by GISAXS [11325-39] |

SESSION 10 MACHINE LEARNING

| 11325 1F | Contact etch process control application for advanced NAND memory structures [11325-102] |

SESSION 11 PATTERN PLACEMENT AND OVERLAY METROLOGY II

11325 1J	Taking the multi-wavelength DBO to the next level of accuracy and robustness [11325-44]
11325 1K	Run to run and model variability of overlay high order process corrections for mean intrafield signatures [11325-45]
11325 1L	Stitched overlay evaluation and improvement for large field applications [11325-46]
11325 1M	The application of a Rapid Probe Microscope (RPM) for investigating 1D and 2D structures from EUV lithography [11325-97]
11325 1O	Process context based wafer level grouping control: an advanced overlay process correction designed for DRAM 1z nm node in high volume manufacturing [11325-48]
11325 1P	On product overlay metrology challenges in advanced nodes [11325-49]

SESSION 12 METROLOGY FOR THE EUV ERA

| 11325 1T | EUV photoresist reference metrology using TEM tomography [11325-53] |
| 11325 1U | Novel on-product focus metrology for EUV enabling direct focus monitoring and control for EUV systems [11325-54] |

SESSION 13 PATTERN PLACEMENT AND OVERLAY METROLOGY III

| 11325 1V | Using e-Beam inspection and overlay as tool for identifying process weaknesses in semiconductor processing [11325-55] |
| 11325 1W | Mitigating gain, effort and cost for EOW overlay control [11325-56] |
SESSION 14 LATE BREAKING NEWS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Paper Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>11325 20</td>
<td>Statistical local CD uniformity with novel SEM noise reduction method</td>
<td>11325-60</td>
</tr>
<tr>
<td>11325 21</td>
<td>On-product focus monitoring and control for immersion lithography in 3D-NAND manufacturing</td>
<td>11325-61</td>
</tr>
<tr>
<td>11325 22</td>
<td>A novel accurate and robust technique in after-etch overlay metrology of 3D-NAND’s memory holes</td>
<td>11325-62</td>
</tr>
<tr>
<td>11325 24</td>
<td>Realizing more accurate OPC models by utilizing SEM contours</td>
<td>11325-2</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Paper Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>11325 25</td>
<td>EB metrology of Ge channel gate-all-around FET: buckling evaluation and EB damage assessment</td>
<td>11325-65</td>
</tr>
<tr>
<td>11325 26</td>
<td>Automated semiconductor wafer defect classification dealing with imbalanced data</td>
<td>11325-66</td>
</tr>
<tr>
<td>11325 27</td>
<td>SEM image quality enhancement: an unsupervised deep learning approach</td>
<td>11325-67</td>
</tr>
<tr>
<td>11325 28</td>
<td>Massive metrology for process development and monitoring applications</td>
<td>11325-68</td>
</tr>
<tr>
<td>11325 29</td>
<td>Enabling accurate and robust optical metrology of in device overlay</td>
<td>11325-70</td>
</tr>
<tr>
<td>11325 2A</td>
<td>Contour extraction algorithm for edge placement error measurement using machine learning</td>
<td>11325-71</td>
</tr>
<tr>
<td>11325 2B</td>
<td>Color filter and numeric aperture selections for image based overlay measurement in critical recording head manufacturing process</td>
<td>11325-72</td>
</tr>
<tr>
<td>11325 2C</td>
<td>Machine learning for Tool Induced Shift (TIS) reduction</td>
<td>11325-73</td>
</tr>
<tr>
<td>11325 2E</td>
<td>OPO residuals reduction with imaging metrology color per layer mode</td>
<td>11325-75</td>
</tr>
</tbody>
</table>
A trainable die-to-database for fast e-Beam inspection: learning normal images to detect defects [11325-76]

A strengthen mask r-CNN method for PFA image measurement [11325-77]

A novel high throughput probe microscope: for measuring 3D structures, designed for in-line, integrated or standalone operation [11325-78]

OPO residuals improvement with imaging metrology for 3D NAND [11325-81]

Photosensitive organic insulator photo-cell monitoring through advanced macro inspection [11325-82]

Enhancing the applications space of diffraction based overlay metrology by increasing throughput and target pitch flexibility [11325-83]

Wavelength influence on the determination of subwavelength grating parameters by using optical scatterometry [11325-84]

Nano-scale molecular analysis of positive tone photo-resist films with varying dose [11325-85]

Improved device overlay by litho aberration tracking with novel target design for DRAM [11325-89]

OPO reduction by novel target design [11325-90]

High speed roughness measurement on blank silicon wafers using wave front phase imaging [11325-94]

Improving after-etch overlay performance using high-density in-device metrology in DRAM manufacturing [11325-95]

The improvement of measurement accuracy of SADP pitch walking issue [11325-98]

Metrology of 3D-NAND structures using machine learning assisted fast marching level-sets algorithm [11325-99]

High speed, high accuracy displacement extraction from sinusoidal like Moiré fringes in a novel optical encoding technology [11325-109]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abramovitz, Yaniv, 15
Adam, Kostas, 07
Adam, Ofir, 15
Adiga, Umesh, 1T, 30
Ahi, Kevin, 0G
Alix, Cheryl, 0W
Annezo, Vincent, 05
Arjavac, Jason, 1T
Avishai, Amir, 0M
Bachar, Ohad, 1Z
Backhauss, H., 1X
Bahrenberg, Lukas, 0X
Barnes, Bryan M., 1E
Barnum, Andrew, 1T
Batuk, Dmitry, 1T
Beccalli, A., 0I
Belletti, Filippo, 29
Ben-Nahum, Barak, 1H
Beral, Christophe, 28
Bevis, Christopher, 1M
Beylier, Charlotte, 05
Bhattacharyya, Kaustuve, 1J, 2L
Biedrzycki, Mark, 1T, 30
Birner, Albert, 12
Blancquaert, Yoann, 1L
Böcker, Paul, 21, 2X
Böckl, Max, 1Z
Bordagna, A., 0I, 2K
Bottegal, Giulio, 22, 29
Bouckou, L., 0I
Boutheen, Alwyn, 2X
Bouyssou, Régis, 05
Bowser, Aaron, 2B
Braga, M., 2K
Braun, Michaela, 12
Breton, Mary A., 0T, 14
Bringoltz, Barak, 1H
Broitman, Ariel, 1H
Brose, Sascha, 0X
Bunday, Benjamin D., 0R
Buxbaum, Alex, 0M
Cady, Nathaniel C., 02
Canestrari, P., 2K
Caplins, Benjamin W., 0A
Casfor Zapata, Maren, 1D
Chai, Yvon, 22
Chang, Jimmy, 2U
Chang, M. C., 18
Chao, Hung-Wen, 2Z
Chapon, Jean-Damien, 1K
Charley, Anne-Laure, 1M, 1T
Chen, Aidan, 0F
Chen, Albert, 1O
Chen, Chi, 0B
Chen, Chia-Hung, 2U, 2V
Chen, Gangyi, 0L
Chen, Kunyuan, 2U
Chen, Lu, 0B
Chen, Sam, 29
Chen, Xuemei, 23
Chen, Y. C., 18
Chess, J., 1F
Chew, Marko, 07
Chiaramonti, Ann N., 0A
Chien, Chester, 17
Chiu, Yen-Chan, 22
Choi, Dongsun, 1Z, 2E
Chou, Asei, 2U, 2V
Chou, Kevin, 0F
Corno, A., 0I, 2K
Corradi, Antonio, 06
Cross, Andrew, 28
Czerkas, S., 1X
Dabernat, Didier, 1W
Dakeshi, Koshiba, 1U
Danylyuk, Serhiy, 0X
Das, Sayantan, 0J, 24, 28
Davidescu, Ron, 15
de la Fuente Valentin, Isabel, 06
den Boef, Arie, 1J, 2L
Deng, Yunfei, 24
Dépré, Jérome, 1L
Dettoni, Florent, 1W
Diebold, Alain C., 02, 0W
Diercks, David R., 0A
Dillen, Harm, 06
Ding, Xiaoye, 0B
Dror, C., 1X
Du, Jie, 2U, 2V
Duclaux, Benjamin, 1K, 1W
Ducoté, Julien, 05
Dusa, Mircea, 1M
Duvdevani Bar, S., 1F
Ebert, Martin, 0F
Ebizuuka, Yasushi, 1Q
Elia, Alex, 1H
El Kodadi, Mohamed, 21

Proc. of SPIE Vol. 11325 1132501-9
Kim, Young-Sik, 2X
Kipferl, Wolfgang, 12
Kizu, Ryosuke, 0Q
Klebanov, G., 1F
Kline, R. Joseph, 0W
Klochkov, Dmitriy, 0M
Kobayashi, Shinji, 20
Kolbe, Michael, 1D
Kong, Dexin, 14
Koo, Seung-Woo, 1Z, 2X
Korb, Thomas, 0M
Korde, Madhulika, 0W
Kris, R., 1F
Ku, Y. S., 18
Kuan, Chiyan, 0F
Kubo, Shinji, 0L
Kusnadi, Ir, 24
Kwon, Oh-Sung, 06, 1J
Lakcher, Amine, 21
Lam, Pui, 1L
Lambregts, Cees, 2X
Lapeyre, Céline, 1L
Laske, F., 1X
Laubis, Christian, 1D
Lee, Allen, 12
Lee, Do-Haeng, 29
Lee, Dohwa, 2E
Lee, Dong-Jin, 1Z, 2X
Lee, Dongyoung, 2E
Lee, Gunwoong, 21
Lee, Honggoo, 1Z, 2E
Lee, James, 06, 29
Lee, Jeongjin, 06, 1J, 1U, 29
Lee, Jeongpyo, 1Z
Lee, Jinho, 06
Lee, Jin-Woo, 06
Lee, Joungchel, 1L
Lee, Kang-Min
Lee, Kang-San, 2X
Lee, Keumsil, 0M
Lee, Po-Hsuan, 26
Lee, Sang-Hoon, 30
Lee, Se-Hui, 1U
Lee, Seongjae, 2E
Lee, Seung Yoon, 06, 1J, 1U, 29
Lee, Soo-Kyung, 21
Lee, Yoon-Tae, 1U
Leevis, Christian, 29
Le-Gratiet, Bertrand, 0S, 1W
Lei, Shi, 2J
Leay, Phillippe, 0J, 1S, 1P, 1T
Leung, Fiona (Shuk Fan), 2C, 2J
Levi, Shimon, 15
Levin, Guy, 15
Levin, L., 1X
Levinski, V., 1X
Levy, Avi, 1H
Li, Chenyi, 34
Li, Jhen-Cyuan, 22
Li, Mingqi, 2N
Li, Penghao, 34
Li, Shifang, 2B
Li, Shiguang, 34
Li, Xin, 23
Liao, Chun Yen, 2G
Lin, Chenxi, 1O
Lin, Chun-Hung, 2G
Liu, Chun-Han, 2Z
Liu, Haibo, 1H
Liu, Lei, 0F
Liu, Pei, 2Z
Liu, Xiaolei, 2R
Liu, Xuedong, 0F
Liu, Yi, 2B
Liu, Zephyr, 2S
Lo, C. W., 18
Lomtscher, Patrick, 1Y
Loosen, Peter, 0X
Lopez Gomez, Alberto, 07
Lorusso, Gian, 25
Luo, Xinan, 0F
Luthra, Roma, 1H
Ma, Eric, 0F
Ma, Qingcheng, 34
Ma, Yanzhong, 0B
Maassen, Marlijn, 0F
Mack, Chris A., 0P
Makino, Katsushi, 1Y
Mani, Antonio, 23
Maruyama, Kotaro, 0J, 24, 2A
Mathias, Gavin, 2B
Mathijssen, Simon, 1J, 2L
May, Michael, 1L
McNamara, Elliott, 1U, 2L
Megged, Eli, 1P, 2C, 2E, 2J
Meng, Michael, 0O
Mermet, Olivier, 1K, 1W
Mi, Jian, 0L, 0O
Miaja-Avila, Luis, 0A
Miceli, B., 0I, 0M
Miceli, Giacomo, 29
Michelsson, D., 1X
Millequant, Matthieu, 05
Minghetti, Blandine, 1L
Mirovoy, V., 1F
Mizumi, Ichiko, 0Q
Mohitashami, Abbas, 0C
Moreau, David J., 1V
Mori, Taihei, 2A
Mosden, Aelan, 0W
Motta, L., 0I
Moussa, Alain, 1M, 1T
Mozaani, Babak, 22
Mudarikwa, L., 2H
Mustata, Ruxandra, 21
Nakazawa, Shinichi, 2A
Nath, Ira, 2S
Nath, Abhinandan, 07
Nelson, Dan, 30
Conference Committee

Symposium Chairs

Will Conley, Cymer, LLC (United States)
Kafai Lai, IBM Thomas J. Watson Research Center (United States)

Conference Chair

Ofer Adan, Applied Materials (Israel)

Conference Co-chair

John C. Robinson, KLA Corporation (United States)

Conference Program Committee

John A. Allgair, BRIDG (United States)
Masafumi Asano, Tokyo Electron Ltd. (Japan)
Benjamin D. Bunday, AMAG Consulting, LLC (United States)
Jason P. Cain, Advanced Micro Devices, Inc. (United States)
Xiaomeng Chen, Taiwan Semiconductor Manufacturing Company Ltd. (Taiwan)
Hugo Cramer, ASML Netherlands B.V. (Netherlands)
Timothy F. Crimmins, Intel Corporation (United States)
Shunsuke Koshihara, Hitachi High-Technologies Corporation (Japan)
Yi-Sha Ku, Industrial Technology Research Institute (Taiwan)
Byoung-Ho Lee, SK hynix, Inc. (Korea, Republic of)
Philippe Leray, IMEC (Belgium)
Narender Rana, Western Digital Corporation (United States)
Christopher J. Raymond, Onto Innovation Inc. (United States)
Matthew J. Sendelbach, TEL Technology Ctr., America, LLC (United States)
Richard Silver, National Institute of Standards and Technology (United States)
Eric Solecky, GLOBALFOUNDRIES Inc. (United States)
Alexander Starikov, I&I Consulting (United States)
Alok Vaid, GLOBALFOUNDRIES Inc. (United States)

Session Chairs

1 Keynote Session
Ofer Adan, Applied Materials Israel, Ltd. (Israel)
John C. Robinson, KLA Corporation (United States)
2 Pattern Placement and Overlay Metrology I
 Alexander Starikov, I&I Consulting (United States)
 Jason P. Cain, Advanced Micro Devices, Inc. (United States)

3 Challenges and New Methods
 Shunsuke Koshihara, Hitachi High-Technologies Corporation (Japan)
 Philippe Leray, imec (Belgium)

4 Inspection and Mass Metrology
 Yi-Sha Ku, Industrial Technology Research Institute (Taiwan)
 Masafumi Asano, Tokyo Electron Ltd. (Japan)

5 High Aspect Ratio Metrology
 Richard M. Silver, National Institute of Standards and Technology
 (United States)
 Hugo Cramer, ASML Netherlands B.V. (Netherlands)

6 Roughness Metrology
 Masafumi Asano, Tokyo Electron Ltd. (Japan)
 Matthew J. Sendelbach, TEL Technology Ctr., America, LLC
 (United States)

7 New Methods: Student Session
 Benjamin D. Bunday, AMAG Consulting, LLC (United States)
 Matthew J. Sendelbach, TEL Technology Ctr., America, LLC (United
 States)

8 3D Profile and Shape Analysis
 Shunsuke Koshihara, Hitachi High-Technologies Corporation (Japan)
 Benjamin D. Bunday, AMAG Consulting, LLC (United States)

9 Scatterometry
 Philippe Leray, imec (Belgium)
 Yi-Sha Ku, Industrial Technology Research Institute (Taiwan)

10 Machine Learning
 Masafumi Asano, Tokyo Electron Ltd. (Japan)
 Matthew J. Sendelbach, TEL Technology Ctr., America, LLC
 (United States)

11 Pattern Placement and Overlay Metrology II
 Hugo Cramer, ASML Netherlands B.V. (Netherlands)
 Richard M. Silver, National Institute of Standards and Technology
 (United States)
12 Metrology for the EUV Era
 Phillipe Leray, imec (Belgium)
 Shunsuke Koshihara, Hitachi High-Technologies Corporation (Japan)

13 Pattern Placement and Overlay Metrology III
 Jason P. Cain, Advanced Micro Devices, Inc. (United States)
 John A. Allgair, BRIDG (United States)

14 Late Breaking News
 Ofer Adan, Applied Materials Israel, Ltd. (Israel)
 John C. Robinson, KLA Corporation (United States)